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DEQUANTIZED SCHRÖDINGER EQUATION NOT REQUIRING A

DURATION RESTRICTION ∗

WILLIAM M. MCENEANEY †

Abstract. A stochastic control representation for solution of the Schrödinger equation is ob-
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1. Introduction. Diffusion representations have long been utilized in the study
of Hamilton-Jacobi partial differential equations (HJ PDEs), cf. [6, 12, 16] among
many others. The bulk of such results apply to real-valued HJ PDEs, that is, to HJ
PDEs where the coefficients and solutions are real-valued. The Schrödinger equation
is complex-valued, although generally defined over a real-valued space domain, which
presents difficulties for the development of stochastic control representations. There
is substantial existing work on the relation of stochastic processes to the Schrödinger
equation, cf. [13, 18, 27, 28, 31]. The approach considered here is in the spirit of the
Feynman path-integral interpretation [7, 8], where in particular, one looks at a certain
action-based functional, S, where ψ = exp{ i~S} and ~ denotes Planck’s constant. One
seeks a representation for S in the form of a value function for a stochastic control
problem where the action functional is the payoff, cf. [2, 3, 7, 8, 11, 17, 21]. We
note that this latter approach is also sometimes employed in analysis of semiclassical
limits, cf. [1, 3, 11, 17].

An issue that arises in such approaches is that control has traditionally considered
classical optimization (minimization or maximization) of some payoff. Implicit in that
is an assumption that the payoff is real valued. In [4, 24, 26], the authors consider a
least-action approach to obtaining fundamental solutions to two-point boundary value
problems (TPBVPs) for conservative dynamical systems. However, that formulation,
which was in terms of minimization of the action, induced duration limits on the
problems which could be addressed, where those limits were also similar to duration
limits present in existing results on the Schrödinger equation representation in terms of
action, cf. [2, 3, 11]. We note that the duration limits are related to a loss of convexity
of the payoff as the time horizon is extended. While in [4, 24, 26], the least-action
principle was applied, the more generally applicable form is the stationary-action
principle, which coincides with the least-action principle when the action functional
is convex and coercive. Consequently and more recently, the notion of “staticization”
was introduced for such TPBVPs, in which case one seeks a stationary point of the
action over the space of control inputs. The extension to stationarity removes the
restriction on problem duration. This yields a dynamic program which takes the form
of an HJ PDE in the case of continuous-time/continuous-space processes, where these
were studied in the context of deterministic dynamics in [22, 23, 25].
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As staticization seeks points where the derivative of a functional is zero, as op-
posed to optimization of the functional, it is easily extended to the case of complex-
valued systems. The extension to stochastic dynamics is easily made as well. Also,
as staticization does not require the imposition of duration limits on the problems,
one can apply this new tool to the stochastic-control representation problem for the
dequantized Schrödinger equation, and that is the topic considered herein.

In order to clarify the details in the above, we recall the Schrödinger initial value
problem, given as

0 = i~ψt(s, y) + ~2

2m∆ψ(s, y)− ψ(s, y)V (y), (s, y) ∈ D, (1.1)

ψ(0, y) = ψ0(y), y ∈ Rn, (1.2)

where m ∈ (0,∞) denotes mass, initial condition ψ0 takes values in C, V denotes a
known potential function, ∆ denotes the Laplacian with respect to the space (second)
variable, D .

= (0, t)×Rn, and subscript t will denote the derivative with respect to the
time variable (the first argument of ψ here) regardless of the symbol being used for
time in the argument list. We also let D .

= (0, t]×Rn. We consider what is sometimes
referred to as the Maslov dequantization of the solution of the Schrödinger equation
(cf. [20]), which as noted above, is S : D → C given by ψ(s, y) = exp{ i~S(s, y)}.
The Maslov dequantization is clearly similar to the logarithmic transform (cf. [9]),
but with a modification induced through multiplication by an imaginary constant.
Note that ψt = i

~ψSt, ψy = i
~ψSy and ∆ψ = i

~ψ∆S − 1
~2ψ|Sy|2c where for x ∈ Cn,

|x|2c
.
=
∑n
j=1 x

2
j . (We remark that notation | · |2c is not intended to indicate a squared

norm; the range is complex.) We find that (1.1)–(1.2) become

0 = −St(s, y) + i~
2m∆S(s, y) +H(y, Sy(s, y)), (s, y) ∈ D, (1.3)

S(0, y) = φ(y), y ∈ Rn, (1.4)

where H : Rn × Cn → C is the Hamiltonian given by

H(y, p) = −
[

1
2m |p|

2
c + V (y)

]
= stat
u0∈Cn

{
(u0)T p+ m

2 |u
0|2c − V (y)

}
, (1.5)

stat will be defined in the next section, and throughout, superscript T denotes trans-
pose. We look for solutions in the space

S .
= {S : D → C |S ∈ C1,2

p (D) ∩ C(D)}, (1.6)

where C1,2
p denotes the space of functions which are continuously differentiable once in

time and twice in space, and which satisfy a polynomial-growth bound. We will find
it helpful to reverse the time variable, and hence we look instead, and equivalently,
at the Hamilton-Jacobi partial differential equation (HJ PDE) problem given by

0 = St(s, y) + i~
2m∆S(s, y) +H(y, Sy(s, y)), (s, y) ∈ D, (1.7)

S(t, y) = φ(y), y ∈ Rn. (1.8)

Working mainly with this last form, we will fix t ∈ (0,∞), and allow s to vary in
(0, t].

Recall that in semiclassical limit analysis, one views ~ as a small parameter, and
examines the limit as ~ ↓ 0. Applying this in (1.7)–(1.8) yields an HJ PDE problem
of the form

0 = St(s, y) +H(y, Sy(s, y)), (s, y) ∈ D, (1.9)

S(t, y) = φ(y), y ∈ Rn. (1.10)
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Recalling the above-noted recent work on least-action and stationary-action formula-
tions of certain TPBVPs [4, 22, 24, 26, 23, 25], it was found that the associated HJ
PDEs for such problems also take the form (1.9)–(1.10). This was the original motiva-
tion for the effort here, where we develop a stationary-action based representation for
the solution of (1.7)–(1.8) (and consequently (1.1)–(1.2)). Due to the complex multi-
plier on the Laplacian, this representation is in terms of a stationary-action stochastic
control problem with a complex-valued diffusion coefficient.

Again, a significant contribution of this effort is that the use of stationarity rather
than optimization allows for the extension of the stochastic representation to arbitrary
duration problems (Theorem 4.1). More specifically, we demonstrate that solutions of
(1.7)–(1.8) are given by (4.2), where J~ and ξ· are given by (4.1) and (3.6), respectively.
Further, as this representation has a similar form to that of the stationary-action value
for the limit system, but where the latter lacks the input diffusion term, one has the
expectation that this will provide a new tool for the study of semiclassical limits.
One should also note that the results are obtained here under strong assumptions. In
particular, we assume the existence of a sufficiently smooth potential function, defined
over all of the complex space domain, which matches V on Rn. The assumptions allow
for the inclusion of the case of the quantum harmonic oscillator, when one takes the
potential to be a holomorphic quadratic over the complex domain. Potentials lacking
such smoothness are beyond the scope here, and it is expected that such problems
will be studied in a later effort.

In Section 2, we recall the definitions necessary for stationarity problems. In
Section 3, the underlying space domain is extended from a space over the real field
to a space over the complex field. This necessitates several other minor extensions,
which are covered in the subsections. In particular, some classical existence and
uniqueness results for stochastic differential equations (SDEs) are easily extended
to their complex-valued counterparts. In Section 4, the main result of the paper, a
stationarity-based stochastic-control value function representation for the dequantized
Schrödinger equation, is obtained. More specifically, a verification result is obtained
demonstrating that if a solution of the HJ PDE over the “complexified” domain exists,
then that solution has the indicated representation. Lastly, in Section 5, we indicate
a result about existence of solutions of the HJ PDE over the complexified domain.

2. Stationarity definitions. Recall that classical systems obey the stationary
action principle, where the path taken by the system is that which is a stationary
point of the action functional. For this and other reasons, as in the definition of
the Hamiltonian given in (1.5), we find it useful to develop additional notation and
nomenclature. Specifically, we will refer to the search for stationary points more
succinctly as staticization (in analogy with minimization, and similar to that, based
on the Latin “statica”). In particular, we make the following definitions. Suppose
(A, | · |) is a generic normed vector space over C with G ⊆ A, and suppose F : G → C.
We say ᾱ ∈ argstat{F (α) |α ∈ G} if ᾱ ∈ G and either lim supα→ᾱ,α∈G\{ᾱ} |F (α) −
F (ᾱ)|/|α − ᾱ| = 0, or there exists δ > 0 such that G ∩ Bδ(ᾱ) = {ᾱ} (where Bδ(ᾱ)
denotes the ball of radius δ around ᾱ). If argstat{F (α) |α ∈ G} 6= ∅, we define the
possibly set-valued stats operator by

stats
α∈G

F (α)
.
= stats{F (α) |α ∈ G} .=

{
F (ᾱ)

∣∣ ᾱ ∈ argstat{F (α) |α ∈ G}
}
.

If argstat{F (α) |α ∈ G} = ∅, statsα∈G F (α) is undefined. We will also be inter-
ested in a single-valued stat operation. In particular, if there exists a ∈ C such that
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statsα∈G F (α) = {a}, then statα∈G F (α)
.
= a; otherwise, statα∈G F (α) is undefined.

At times, we may abuse notation by writing ᾱ = argstat{F (α) |α ∈ G} in the event
that the argstat is the single point {ᾱ}. The following is immediate from the above
definitions.

Lemma 2.1. Suppose A is a Hilbert space, with open set G ⊆ A, and that
F : G → C is Fréchet differentiable at ᾱ ∈ G with Riesz representation Fα(ᾱ) ∈ A
Then, ᾱ ∈ argstat{F (α) |α ∈ G} if and only if Fα(ᾱ) = 0.

For further discussion, we refer the reader to [22, 25].

3. Extensions to the complex domain. Various details of extensions to the
complex domain must be considered prior to the development of the representation.

3.1. Extended problem and assumptions. Although (1.1)–(1.2), (1.3)–(1.4)
and (1.7)–(1.8) are typically given as HJ PDE problems over D, as in Doss et al.
[1, 2, 3] we will find it convenient to change the domain to one where the space
components lie over the complex field. We also extend the domain of the potential to
Cn, i.e., V : Cn → C, and we will abuse notation by employing the same symbol for
the extended-domain functions. Throughout, for k ∈ N, and x ∈ Ck or x ∈ Rk, we let
|x| denote the Euclidean norm. Let DC

.
= (0, t)×Cn and DC = (0, t]×Cn, and define

SC
.
= {S : DC → C|S is continuous on DC, continuously differentiable in time on DC,

and holomorphic on Cn for all r ∈ (0, t] }, (3.1)

SpC
.
= {S ∈ SC | S satisfies a polynomial growth condition in space,

uniformly on (0, t] }. (3.2)

The extended-domain form of problem (1.7)–(1.8) is

0 = S̄t(s, x) + i~
2m∆S̄(s, x) +H(x, S̄x(s, x)), (s, x) ∈ DC, (3.3)

S̄(t, x) = φ(x), x ∈ Cn. (3.4)

Throughout Sections 3–4, we will assume the following. In Section 5, existence will
be discussed under weaker assumptions.

For each ~ ∈ (0, 1], there exists a solution, S̄ = S̄~ ∈ SpC to (3.3)–(3.4). (A.0)

V, φ : Cn → C are holomorphic on Cn. Further, there exists C0 <∞ and
q ∈ N such that |Vxx(x)|, |φxx(x)| < C0(1 + |x|2q) for all x ∈ Cn. (A.1)

For each ~ ∈ (0, 1], there exists CS = C~
S < ∞ such that |S̄x(r, x)| ≤

CS(1 + |x|) and |S̄xx(r, x)| ≤ CS(1 + |x|2q) for all (r, x) ∈ DC. (A.2)

3.2. The underlying stochastic dynamics. We let (Ω,F , P ) be a probability
triple, where Ω denotes a sample space, F denotes a σ-algebra on Ω, and P denotes
a probability measure on (Ω,F). Let {Fs | s ∈ [0, t]} denote a filtration on (Ω,F , P ),
and let B· denote an F·-adapted Brownian motion taking values in Rn. For s ∈ [0, t],
let

Us
.
= {u : [s, t]× Ω→ Cn |u is F·-adapted, right-continuous and such that

E
∫ t
s
|ur|m dr <∞ ∀m ∈ N }. (3.5)

We supply Us with the norm ‖u‖Us
.
= maxm∈ ]1,M̄ [

[
E
∫ t
s
|ur|m dr

]1/m
, where M̄ ≥ 8q,

and where throughout, for integer a ≤ b, we define ]a, b[ = {a, a+ 1, . . . b}. We will be
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interested in diffusion processes given by

ξr = ξ(s,x)
r = x+

∫ r

s

uρ dρ+
√

~
m

1+i√
2

∫ r

s

dBρ
.
= x+

∫ r

s

uρ dρ+
√

~
m

1+i√
2
B∆
r , (3.6)

where x ∈ Cn, s ∈ [0, t], u ∈ Us, and B∆
r

.
= Br − Bs for r ∈ [s, t]. We will also be

interested in the case where the control input is generated by a state-feedback. In
particular, we will consider

ξ̄∗r = ξ̄∗,(s,x)
r

.
= x+

∫ r

s

(−1
m )S̄x(ρ, ξ̄∗,(s,x)

ρ ) dρ+
√

~
m

1+i√
2
B∆
r , (3.7)

where presuming for now existence and uniqueness of a solution of (3.7), we may
define the resulting ū∗,(s,x) ∈ Us given by

ū∗,(s,x)
r (ω)

.
= ˆ̄u(r, ξ̄∗,(s,x)(ω))

.
= (−1

m )S̄x(r, ξ̄∗,(s,x)
r (ω)) ∀ r ∈ [s, t], ω ∈ Ω. (3.8)

For s ∈ [0, t], we let

Xs
.
= {ξ : [s, t]× Ω→ Cn | ξ is F·-adapted, right-continuous and such that

E sup
r∈[s,t]

|ξr|m <∞ ∀m ∈ N }. (3.9)

We supply Xs with the norm ‖ξ‖Xs

.
= maxm∈ ]1,M̄ [

[
E supr∈[s,t] |ξr|m

]1/m
.

It is natural to work with complex-valued state processes in this problem domain.
However, in order to easily apply many of the existing results regarding existence,
uniqueness and moments, we will find it handy to use a “vectorized” real-valued
representation for the complex-valued state processes. We begin from the standard
mapping of the complex plane into R2, denoted here by V00 : C→ R2, with V00(x)

.
=

(y, z)T , where y = Re(x) and z = Im(x). This immediately yields the mapping
V0 : Cn → R2n given by V0(y + iz)

.
= (yT , zT )T , where component-wise, (yj , zj)

T =
V00(xj) for all j ∈ ]1, n[ . Also in the interests of a reduction of cumbersome notation,
we will henceforth frequently abuse notation by writing (y, z) in place of (yT , zT )T

when the meaning is clear.
Given control process, u ∈ Us, we define its vectorized analog by the isometric

isomorphism, V : Us → Uvs , where [V(u)]r
.
= (vTr , w

T
r )T and (vTr , w

T
r )T = V0(ur) for

all r ∈ [s, t] and ω ∈ Ω, and where

Uvs
.
= {(v, w) : [s, t]× Ω→ R2n | (v, w) is F·-adapted, right-continuous and (3.10)

such that E
∫ t
s
|vr|m + |wr|m dr <∞ ∀m ∈ N},

‖u‖Uv
s

.
= max
m∈ ]1,M̄ [

[
E
∫ t
s
|vr|m + |wr|m dr

]1/m
. (3.11)

Again abusing notation, we also define the isometric isomorphism, V : Xs → X vs by
[V(ξ)]r

.
= [V(η + iζ)]r

.
= (ηTr , ζ

T
r )T for all r ∈ [s, t] and ω ∈ Ω, where

X vs
.
= {(η, ζ) : [s, t]× Ω→ R2n | (η, ζ) is F·-adapted, right-continuous and (3.12)

such that E sup
r∈[s,t]

[|ηr|m + |ζr|m] <∞ ∀m ∈ N },

‖(η, ζ)‖Xv
s

.
= max
m∈ ]1,M̄ [

[
E sup
r∈[s,t]

(|ηr|m + |ζr|m)
]1/m

. (3.13)
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Under transformation by V, (3.6) becomes(
ηr
ζr

)
=

(
y
z

)
+

∫ r

s

(
vρ
wρ

)
dρ+

√
~
m

1√
2

(
In×n
In×n

)
B∆
r . (3.14)

We may decompose S̄ ∈ SC as

(R̄(r,V0(x)), T̄ (r,V0(x)))T
.
= V00(S̄(r, x)), (3.15)

where R̄, T̄ : D2
.
= (0, t] × R2n → R, and we also let D2

.
= (0, t) × R2n. For

later reference, it will be helpful to recall some standard relations between deriva-
tive components, which are induced by the Cauchy-Riemann equations. For all
(r, x) = (r, y + iz) ∈ (0, t) × Cn and all j, k, ` ∈ ]1, n[ , and suppressing the argu-
ments for reasons of space we have

Re[S̄xj ,xk
] = R̄yj ,yk = −R̄zj ,zk = T̄zj ,yk = T̄yj ,zk , (3.16)

Im[S̄xj ,xk
] = −R̄yj ,zk = −R̄zj ,yk = −T̄zj ,zk = T̄yj ,yk , (3.17)

Re[S̄xj ,xk,x`
] = R̄yj ,yk,y` = −R̄yj ,zk,z` = −R̄zj ,zk,y` = −R̄zj ,yk,z`

= T̄zj ,yk,y` = −T̄zj ,zk,z` = T̄yj ,zk,y` = T̄yj ,yk,z` , (3.18)

Im[S̄xj ,xk,x`
] = −R̄yj ,yk,z` = −R̄yj ,zk,y` = R̄zj ,zk,z` = −R̄zj ,yk,y`

= −T̄zj ,yk,z` = −T̄zj ,zk,y` = −T̄yj ,zk,z` = T̄yj ,yk,y` . (3.19)

One may also easily verify that with R̄, T̄ given by (3.15) and (y, z) = V0(x),

V00(|S̄x(r, x)|2c) =

(∑n
j=1 R̄

2
yj (r, y, z)− R̄2

zj (r, y, z)∑n
j=1−2R̄yj (r, y, z)R̄zj (r, y, z)

)
=

(∑n
j=1 T̄

2
zj (r, y, z)− T̄ 2

yj (r, y, z)∑n
j=1 2T̄yj (r, y, z)T̄zj (r, y, z)

)
. (3.20)

Further, given u0 ∈ Cn, s ∈ [0, t] and x ∈ Cn with (y, z)
.
= V0(x),

V0

(
argstat
u0∈Cn

[ n∑
j=1

S̄xj
(r, x)u0

j + m
2 |u

0|2c
])

= V0

(−1
m S̄x(r, x)

)
= 1

m

(
−R̄y(r, y, z)
R̄z(r, y, z)

)
= 1

m

(
−T̄z(r, y, z)
−T̄y(r, y, z)

)
. (3.21)

Using the above, we see that under transformation V, (3.7) becomes(
η̄∗r
ζ̄∗r

)
=

(
y
z

)
+

∫ r

s

1
m

(
−R̄y(ρ, η̄∗ρ, ζ̄

∗
ρ )

R̄z(ρ, η̄
∗
ρ, ζ̄
∗
ρ )

)
dρ+

√
~
m

1√
2

(
In×n
In×n

)
B∆
r

=

(
y
z

)
+

∫ r

s

−1
m

(
T̄z(ρ, η̄

∗
ρ, ζ̄
∗
ρ )

T̄y(ρ, η̄∗ρ, ζ̄
∗
ρ )

)
dρ+

√
~
m

1√
2

(
In×n
In×n

)
B∆
r . (3.22)

Throughout, concerning both real and complex stochastic differential equations, typ-
ically given in integral form such as in (3.22), solution refers to a strong solution,
unless specifically cited as a weak solution.

Lemma 3.1. Let s ∈ [0, t), x ∈ Cn, u ∈ Us, (y, z) = V0(x) and (v, w) = V(u).
There exists a unique solution, (η, ζ) ∈ X vs , to (3.14), and a unique solution, (η̄∗, ζ̄∗) ∈
X vs , to (3.22).
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Lemma 3.1 is easily obtained from well-known existing results. For completeness,
a brief proof is given in Appendix 6.

The following is straightforward, cf. [29].

Lemma 3.2. Let s ∈ [0, t), x ∈ Cn, u ∈ Us, (y, z) = V0(x) and (v, w) = V(u).
ξ ∈ Xs is a solution of (3.6) if and only if V(ξ) ∈ X vs is a solution of (3.14). Similarly,
ξ̄∗ ∈ Xs is a solution of (3.7) if and only if V(ξ̄∗) ∈ X vs is a solution of (3.22).

Combining Lemmas 3.1 and 3.2, one has:

Lemma 3.3. Let s ∈ [0, t), x ∈ Cn and u ∈ Us. There exists a unique solution,
ξ ∈ Xs, to (3.6), and a unique solution, ξ̄∗ ∈ Xs, to (3.7).

3.3. A relationship among the solutions. By the Cauchy-Riemann equa-
tions and (3.16)–(3.17),

|S̄x|2c =
n∑
j=1

R̄2
yj − R̄

2
zj + 2iT̄yj T̄zj , and ∆S̄ =

n∑
j=1

T̄yj ,zj − iR̄yj ,zj . (3.23)

Let(
V R(V0(x)), V I(V0(x))

)T .
= V00(V (x)) and

(
φR(V0(x)), φI(V0(x))

)T .
= V00(φ(x))

(3.24)
for all x ∈ Cn. Substituting (3.23)–(3.24) into (3.3), and separating the real and
imaginary parts, we have

0 = R̄t − ~
2m

n∑
j=1

R̄yj ,zj − 1
2m

n∑
j=1

(
R̄2
yj − R̄

2
zj

)
− V R ∀ (s, y, z) ∈ D2, (3.25)

0 = T̄t − ~
2m

n∑
j=1

T̄yj ,zj − 1
m

n∑
j=1

T̄yj T̄zj − V I ∀ (s, y, z) ∈ D2, (3.26)

on D2, and, of course,

R̄(t, y, z) = φR(y, z) ∀ (y, z) ∈ R2n, (3.27)

T̄ (t, y, z) = φI(y, z) ∀ (y, z) ∈ R2n. (3.28)

Proposition 3.4. Let S̄ ∈ SC and R̄, T̄ satisfy (3.15) for all (r, x) ∈ DC.
If S̄ satisfies (3.3)–(3.4), then R̄, T̄ satisfy (3.25)–(3.28). Alternatively, if R̄, T̄ ∈
C1,2(D2;R) ∩ C(D2;R) satisfy (3.25)–(3.28), and S̄ ∈ SC is given by (3.15), then S̄
satisfies (3.3)–(3.4).

In order to focus on the verification result of the next section, the proof of Propo-
sition 3.4 is delayed to Appendix 6.

4. The verification. We will obtain a verification result demonstrating that a
solution of (1.7)–(1.8) is the stationary value of the expectation of the action functional
on process paths satisfying (3.6).

For s ∈ (0, t) and ~ ∈ (0, 1], we define payoff J~(s, ·, ·) : Rn × Us → C by

J~(s, x, u)
.
= E

{∫ t

s

m
2 |ur|

2
c − V (ξr) dr + φ(ξt)

}
, (4.1)
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where ξ satisfies (3.6) with input u ∈ Us and initial state x ∈ Rn. The stationary
value, S~ : D → C, is given by

S~(s, x)
.
= stat
u∈Us

J~(s, x, u) ∀ (s, x) ∈ D. (4.2)

We assume throughout Section 4 that

argstatu∈Us J
~(s, x, u) is single-valued for all (s, x) ∈ D. (A.3)

This is the last assumption. We remark that one may want to weaken this assumption
to uniqueness in some prespecified subset of D, but leave that additional complication
to a later effort. The main result of the section is:

Theorem 4.1. Let ~ ∈ (0, 1]. Suppose S̄ ∈ SpC satisfies (3.3)–(3.4), and that

there exists ĈS < ∞ such that |S̄xxx(r, x)|, |S̄txx(r, x)|, |S̄xxxx(r, x)| ≤ ĈS(1 + |x|2q)
for all (s, x) ∈ DC. Then, S̄(s, x) = S~(s, x) for all (s, x) ∈ DC.

We remark that the representation is proved for general ~ ∈ (0, 1] in anticipation
of possible use in semiclassical limit results. We begin with two lemmas.

Lemma 4.2. Let s ∈ [0, t), x ∈ Cn, ~ ∈ (0, 1] and u ∈ Us. Let ξ ∈ Xs be given by
(3.6). Suppose S̄ ∈ SpC satisfies (3.3)–(3.4). Let ū∗ = ū∗,(s,x), ξ̄∗ = ξ̄∗,(s,x) be given
by (3.7)-(3.8). Then,

S̄(s, x) = E
{∫ t

s

−S̄t(r, ξr)− S̄Tx (r, ξr)ur − i~
2m∆S̄(r, ξr) dr + φ(ξt)

}
= E

{∫ t

s

−S̄t(r, ξ̄∗r )− S̄Tx (r, ξ̄∗r )ū∗r − i~
2m∆S̄(r, ξ̄∗r ) dr + φ(ξ̄∗t )

}
.

Proof. We prove only the second asserted representation; the proof of the first
is similar and somewhat simpler. Fix ~ ∈ (0, 1] and (s, x) ∈ DC. Let ξ̄∗ = ξ̄∗,(s,x)

and ū∗ = ū∗,(s,x) be given by (3.7)-(3.8). Let (y, z) = V0(x), (η̄∗, ζ̄∗) = V(ξ̄∗),
(v̄∗, w̄∗) = V(ū∗), and (R̄(r,V0(x)), T̄ (r,V0(x))) = V00(S̄(r, x)) for all (r, x) ∈ DC.
Note that (η̄∗, ζ̄∗) satisfy (3.22). By Itô’s formula,

E
[
R̄(t, η̄∗t , ζ̄

∗
t )
]

= R̄(s, y, z) + E
{∫ t

s

R̄t(r, η̄
∗
r , ζ̄
∗
r ) + R̄Ty (r, η̄∗r , ζ̄

∗
r )v̄∗r

+ R̄Tz (r, η̄∗r , ζ̄
∗
r )w̄∗r + ~

4m

n∑
j=1

[
R̄yj ,yj + 2R̄yj ,zj + R̄zj ,zj

]
(r, η̄∗r , ζ̄

∗
r ) dr

+
√

~
2m

∫ t

s

[
R̄y(r, η̄∗r , ζ̄

∗
r ) + R̄z(r, η̄

∗
r , ζ̄
∗
r )
]T
dBr

}
, (4.3)

where, in the interests of space we let
[
R̄yj ,yj + 2R̄yj ,zj + R̄zj ,zj

]
(r, η̄∗r , ζ̄

∗
r ) denote

R̄yj ,yj (r, η̄∗r , ζ̄
∗
r ) + 2R̄yj ,zj (r, η̄∗r , ζ̄

∗
r ) + R̄zj ,zj (r, η̄∗r , ζ̄

∗
r ), and use other similar notation

where helpful throughout.

Now, by Assumption (A.2) and the definition of R̄, T̄ , there exists ĈS <∞ such
that

|R̄y(r, y, z)|, |R̄z(r, y, z)| ≤ ĈS(1 + |y|+ |z|) ∀ (s, y, z) ∈ D2.
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Consequently, by Lemma 3.1 (noting that this implies (η̄∗, ζ̄∗) ∈ X vs ), there exists
M1 = M1(t− s, |x|) <∞ such that

E
∫ t

s

|R̄y(r, η̄∗r , ζ̄
∗
r )|2 dr, E

∫ t

s

|R̄z(r, η̄∗r , ζ̄∗r )|2 dr < M1. (4.4)

By (4.4) and standard results (cf. [10], Section V.3),

E
{∫ t

s

[
R̄y(r, η̄∗r , ζ̄

∗
r ) + R̄z(r, η̄

∗
r , ζ̄
∗
r )
]T
dBr

}
= 0. (4.5)

Combining (4.3) and (4.5) yields

R̄(s, y, z) = E
{∫ t

s

−R̄t(r, η̄∗r , ζ̄∗r )− R̄Ty (r, η̄∗r , ζ̄
∗
r )v̄∗r − R̄Tz (r, η̄∗r , ζ̄

∗
r )w̄∗r

− ~
4m

n∑
j=1

[
R̄yj ,yj + 2R̄yj ,zj + R̄zj ,zj

]
(r, η̄∗r , ζ̄

∗
r ) dr + R̄(t, η̄∗t , ζ̄

∗
t )

}
. (4.6)

Then, by (3.27) and (4.6),

R̄(s, y, z) = E
{∫ t

s

−R̄t(r, η̄∗r , ζ̄∗r )− R̄Ty (r, η̄∗r , ζ̄
∗
r )v̄∗r − R̄Tz (r, η̄∗r , ζ̄

∗
r )w̄∗r

− ~
4m

n∑
j=1

[
R̄yj ,yj + 2R̄yj ,zj + R̄zj ,zj

]
(r, η̄∗r , ζ̄

∗
r ) dr + Re(φ(ξ̄∗t ))

}
. (4.7)

Similarly,

T̄ (s, y, z) = E
{∫ t

s

−T̄t(r, η̄∗r , ζ̄∗r )− T̄Ty (r, η̄∗r , ζ̄
∗
r )v̄∗r − T̄Tz (r, η̄∗r , ζ̄

∗
r )w̄∗r

− ~
4m

n∑
j=1

[
T̄yj ,yj + 2T̄yj ,zj + T̄zj ,zj

]
(r, η̄∗r , ζ̄

∗
r ) dr + Im(φ(ξ̄∗t ))

}
. (4.8)

Now, applying V−1
00 to (4.7),(4.8), one has

S̄(s, x) = R̄(s, y, z) + iT̄ (s, y, z)

= E
{∫ t

s

−S̄t(r, ξ̄∗r )− [R̄y(r, η̄∗r , ζ̄
∗
r ) + iT̄y(r, η̄∗r , ζ̄

∗
r )]T v̄∗r

− [T̄z(r, η̄
∗
r , ζ̄
∗
r )− iR̄z(r, η̄∗r , ζ̄∗r )]T iw̄∗r

− ~
4m

n∑
j=1

[
R̄yj ,yj+ 2R̄yj ,zj+ R̄zj ,zj+ i(T̄yj ,yj+ 2T̄yj ,zj+ T̄zj ,zj )

]
(r, η̄∗r , ζ̄

∗
r ) dr

+ S̄(t, ξ̄∗t )

}
,

and using the Cauchy-Riemann equations, this is

= E
{∫ t

s

−S̄t(r, ξ̄∗r )− S̄Tx (r, ξ̄∗)ū∗r

− ~
4m

n∑
j=1

[
R̄yj ,yj+ 2R̄yj ,zj+ R̄zj ,zj+ i(T̄yj ,yj+ 2T̄yj ,zj+ T̄zj ,zj )

]
(r, η̄∗r , ζ̄

∗
r ) dr+ S̄(t, ξ̄∗t )

}
,

(4.9)

which by (3.16), (3.17),
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= E
{∫ t

s

−S̄t(r, ξ̄∗r )− S̄Tx (r, ξ̄∗)ū∗r − i~
2m∆S̄(r, ξ̄∗) dr + S̄(t, ξ̄∗t )

}
.

Lemma 4.3. Let ~ ∈ (0, 1], and suppose that S̄ ∈ SpC satisfies (3.3)–(3.4). Then,
S̄(s, x) = J~(s, x, ū∗,(s,x)) for all (s, x) ∈ DC, where ū∗,(s,x) is given by (3.7)-(3.8)
with S̄ in place of S.

Proof. Fix ~ ∈ (0, 1] and (s, x) ∈ DC. Let ξ̄∗ = ξ̄∗,(s,x) and ū∗ = ū∗,(s,x) be given
by (3.7)-(3.8) with S̄ replacing S. From the second assertion of Lemma 4.2, we have

S̄(s, x) = E
{∫ t

s

−S̄t(r, ξ̄∗r )− S̄Tx (r, ξ̄∗r )ū∗r − i~
2m∆S̄(r, ξ̄∗r ) dr + φ(ξ̄∗t )

}
,

which by (3.8),

= E
{∫ t

s

−S̄t(r, ξ̄∗r ) + 1
m |S̄x(r, ξ̄∗r )|2c − i~

2m∆S̄(r, ξ̄∗r ) dr + φ(ξ̄∗t )

}
= E

{∫ t

s

−S̄t(r, ξ̄∗r ) + 1
2m |S̄x(r, ξ̄∗r )|2c + V (ξ̄∗r )− i~

2m∆S̄(r, ξ̄∗r ) dr

+

∫ t

s

m
2 |(
−1
m )S̄x(r, ξ̄∗r )|2c − V (ξ̄∗r ) dr + φ(ξ̄∗t )

}
,

which by (1.5) and (3.3),

= E
{∫ t

s

m
2 |(
−1
m )S̄x(r, ξ̄∗r )|2c − V (ξ̄∗r ) dr + φ(ξ̄∗t )

}
,

which by the choice of ū∗ = ū∗,(s,x) and (4.1),

= J~(s, x, ū∗,(s,x)).

Proof. [proof of Theorem 4.1.] Fix (s, x) ∈ DC. Let L(x, u0)
.
= m

2 |u
0|2c − V (x) for

all x, u0 ∈ Cn. For compactness of notation, let ξ̄∗ = ξ̄∗,(s,x) and ū∗ = ū∗,(s,x). By
Lemma 4.3,

S̄(s, x) = E
{∫ t

s

L(ξ̄∗r , ū
∗
r) dr + φ(ξ̄∗t )

}
= J~(s, x, ū∗). (4.10)

It remains to be shown that ū∗ is the argstat over Us of J~(s, x, ·).
Let u ∈ Us and δ

.
= u − ū∗ ∈ Us. Let ξ ∈ Xs be the trajectory generated by u,

i.e., the solution of (3.6), and let ∆
.
= ξ − ξ̄∗ ∈ Xs, where we note that ∆r =

∫ r
s
δρ dρ

for all (r, ω) ∈ [s, t]× Ω. By (4.10),

J~(s, x, ū∗) = S̄(s, x) = E{S̄(t, ξt)}+
[
S̄(s, x)− E{S̄(t, ξt)}

]
,

which by Lemma 4.2 and (3.4),

= E{S̄(t, ξt)}+ E
{∫ t

s

−S̄t(r, ξr)− S̄Tx (r, ξr)ur − i~
2m∆S̄(r, ξr) dr

}
= E{φ(ξt)}+ E

{∫ t

s

L(ξr, ur) dr

}
+ E

{∫ t

s

−L(ξr, ur) dr − S̄t(r, ξr)− S̄Tx (r, ξr)ur − i~
2m∆S̄(r, ξr) dr

}
. (4.11)
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Now, by (1.5), (3.3),

0 = S̄t(r, x) + stat
u0∈Cn

{
S̄Tx (r, x)u0 + m

2 |u
0|2c − V (x)

}
+ i~

2m∆S̄(r, x).

Taking x = ξ̄∗r in this, and using (3.8) and Lemma 2.1, we have

0 = S̄t(r, ξ̄
∗
r ) + S̄Tx (r, ξ̄∗)ū∗r + m

2 |ū
∗
r |2c − V (ξ̄∗r ) + i~

2m∆S̄(r, ξ̄∗r ) (4.12)

for all (r, ω) ∈ (s, t) × Ω. Combining (4.11), (4.12) and the definition of L from the
top of the proof, one has

J~(s, x, ū∗) = E
{∫ t

s

L(ξr, ur) dr + φ(ξt)

}
+ E

{∫ t

s

L(ξ̄∗r , ū
∗
r)− L(ξr, ur) + S̄t(r, ξ̄

∗
r )− S̄t(r, ξr)

+ S̄Tx (r, ξ̄∗r )ū∗r − S̄Tx (r, ξr)ur + i~
2m [∆S̄(r, ξ̄∗r )−∆S̄(r, ξr)] dr

}
= J~(s, x, u) + E

{∫ t

s

L(ξ̄∗r , ū
∗
r)− L(ξr, ur) + S̄t(r, ξ̄

∗
r )− S̄t(r, ξr)

+ S̄Tx (r, ξ̄∗r )ū∗r − S̄Tx (r, ξr)ur + i~
2m [∆S̄(r, ξ̄∗r )−∆S̄(r, ξr)] dr

}
.

This implies∣∣J~(s, x, ū∗)− J~(s, x, u)
∣∣

≤ E
{∫ t

s

∣∣L(ξ̄∗r , ū
∗
r)− L(ξr, ur) + S̄t(r, ξ̄

∗
r )− S̄t(r, ξr) (4.13)

+ S̄Tx (r, ξ̄∗r )ū∗r − S̄Tx (r, ξr)ur + i~
2m [∆S̄(r, ξ̄∗r )−∆S̄(r, ξr)]

∣∣ dr} .
= E

{∫ t

s

∣∣Ξr(ω)
∣∣ dr}.

Note that by Taylor’s Theorem, for x, x̄, u0, ū0 ∈ Cn and r ∈ (s, t), and using the
assumed bounds on derivatives and the definition of L,∣∣∣L(x, u0)− L(x̄, ū0) + S̄t(r, x)− S̄t(r, x̄) + S̄Tx (r, x)u0 − S̄Tx (r, x̄)ū0

+ i~
2m [∆S̄(r, x)−∆S̄(r, x̄)]

∣∣∣
≤
∣∣∣− V Tx (x̄)(x− x̄) +m(ū0)T (u0 − ū0) + S̄Ttx(r, x̄)(x− x̄)

+ [S̄xx(r, x̄)ū0]T (x− x̄) + S̄Tx (r, x̄)(u0 − ū0)

+
{
S̄Tx (r, x)u0 − S̄Tx (r, x̄)ū0 − [S̄xx(r, x̄)ū0]T (x− x̄)− S̄Tx (r, x̄)(u0 − ū0)

}
+ i~

2m (∆S̄)x(r, x̄)(x− x̄)
∣∣∣+K1

(
1 + |x|2q + |x̄|2q

)
|x− x̄|2 +m|u0 − ū0|2, (4.14)

for appropriate K1 = K1(C0, ĈS , ~,m) <∞. This implies∣∣Ξr∣∣ ≤ ∣∣∣− V Tx (ξ̄∗r )∆r +m(ū∗r)
T δr + S̄Ttx(r, ξ̄∗r )∆r + [S̄xx(r, ξ̄∗r )ū∗r ]

T∆r + S̄Tx (r, ξ̄∗r )δr

+
{
S̄Tx (r, ξr)ur − S̄Tx (r, ξ̄∗r )ū∗r − [S̄xx(r, ξ̄∗r )ū∗r ]

T∆r − S̄Tx (r, ξ̄∗r )δr
}

(4.15)

+ i~
2m (∆S̄)Tx (r, ξ̄∗r )∆r

∣∣∣+K1

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 +m|δr|2 ∀ (r, ω) ∈ (s, t)× Ω.
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Now recall that ū∗ = −1
m S̄x(r, ξ̄∗r ) = argstatu0∈Cn

[
m
2 |u

0|2c + S̄x(r, ξ̄∗r )u0
]
, and

consequently by Lemma 2.1,

mū∗r + S̄x(r, ξ̄∗r ) = 0. (4.16)

Substituting (4.16) into (4.15) yields∣∣Ξr∣∣ ≤∣∣∣− V Tx (ξ̄∗r )∆r + S̄Ttx(r, ξ̄∗r )∆r + [S̄xx(r, ξ̄∗r )ū∗r ]
T∆r +

{
S̄Tx (r, ξr)ur

− S̄Tx (r, ξ̄∗r )ū∗r − [S̄xx(r, ξ̄∗r )ū∗r ]
T∆r − S̄Tx (r, ξ̄∗r )δr

}
+ i~

2m (∆S̄)Tx (r, ξ̄∗r )∆r

∣∣∣
+K1

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 +m|δr|2 ∀ (r, ω) ∈ (s, t)× Ω. (4.17)

Also, more generally, recalling definitions (3.8),

ˆ̄u(r, x) = −1
m S̄x(r, x) = argstat

u0∈Cn

[
L(x, u0) + S̄Tx (r, x)u0

]
∀ (r, x) ∈ DC. (4.18)

Note that

− Vx(ξ̄∗r ) + S̄tx(r, ξ̄∗) + S̄xx(r, ξ̄∗r )ū∗r + i~
2m (∆S̄)x(r, ξ̄∗)

=
∂

∂x

[
− V (x) + S̄t(r, x) + S̄Tx (r, x)u0 + i~

2m S̄xx(r, x)
]∣∣∣∣
x=ξ̄∗r , u

0=ˆ̄u(r,ξ̄∗r )

where the partial derivative notation indicates that the derivative is taken only over

explicitly appearing arguments, and this is

=
d

dx

[
L(x, ˆ̄u(r, x)) + S̄t(r, x) + S̄Tx (r, x)ˆ̄u(r, x) + i~

2m S̄xx(r, x)
]∣∣∣∣
x=ξ̄∗r

− ∂

∂u0

[
L(x, u0) + S̄Tx (r, x)u0

]∣∣∣∣
x=ξ̄∗r , u

0=ˆ̄u(r,ξ̄∗r )

d

dx
ˆ̄u(r, x)

∣∣∣∣
x=ξ̄∗r

,

which by (4.18),

=
d

dx

[
L(x, ˆ̄u(r, x)) + S̄t(r, x) + S̄Tx (r, x)ˆ̄u(r, x) + i~

2m S̄xx(r, x)
]∣∣∣∣
x=ξ̄∗r

,

which by (3.3) and (4.18),

=
d

dx

[
0
]

= 0. (4.19)

Substituting (4.19) into (4.17), we have∣∣Ξr∣∣ ≤ ∣∣∣S̄Tx (r, ξr)ur − S̄Tx (r, ξ̄∗r )ū∗r − [S̄xx(r, ξ̄∗r )ū∗r ]
T∆r − S̄Tx (r, ξ̄∗r )δr

∣∣∣
+K1

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 +m|δr|2 ∀ (r, ω) ∈ (s, t)× Ω,

which implies

E
∫ t

s

∣∣Ξr∣∣ dr ≤ m‖δ‖2Us +K1E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 dr

+ E
∫ t

s

∣∣∣S̄Tx (r, ξr)ur − S̄Tx (r, ξ̄∗r )ū∗r − [S̄xx(r, ξ̄∗r )ū∗r ]
T∆r − S̄Tx (r, ξ̄∗r )δr

∣∣∣ dr. (4.20)
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Now,

E
∫ t

s

∣∣∣S̄Tx (r, ξr)ur − S̄Tx (r, ξ̄∗r )ū∗r − [S̄xx(r, ξ̄∗r )ū∗r ]
T∆r − S̄Tx (r, ξ̄∗r )δr

∣∣∣ dr (4.21)

= E
∫ t

s

∣∣∣[S̄x(r, ξr)− S̄x(r, ξ̄∗r )
]T
δr+

[
S̄x(r, ξr)− S̄x(r, ξ̄∗r )− S̄xx(r, ξ̄∗r )∆r

]T
ū∗r

∣∣∣ dr.
Also, by Taylor’s Theorem and the assumptions,∣∣∣[S̄x(r, x)− S̄x(r, x̄)

]T
(u0 − ū0)

∣∣∣ ≤ Cs(1 + |x|2q + |x̄|2q
)
|x− x̄| |u0 − ū0|

and ∣∣∣S̄x(r, x)− S̄x(r, x̄)− S̄xx(r, x̄)(x− x̄)
∣∣∣ ≤ ĈS

2

(
1 + |x|2q + |x̄|2q

)
|x− x̄|2

for all x, x̄, u0, ū0 ∈ Cn and r ∈ (s, t). Applying these inequalities in (4.21), we have

E
∫ t

s

∣∣∣S̄Tx (r, ξr)ur − S̄Tx (r, ξ̄∗r )ū∗r − [S̄xx(r, ξ̄∗r )ū∗r ]
T∆r − S̄Tx (r, ξ̄∗r )δr

∣∣∣ dr
≤ E

∫ t

s

Cs
(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r| |δr| dr + E

∫ t

s

Ĉs

2

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 |ū∗r | dr

≤ CS

2 E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|δr|2 dr + CS

2 E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 dr

+ ĈS

2 E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|ū∗r | |∆r|2 dr. (4.22)

Now, using Hölder’s inequality,

E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|δr|2 dr ≤

{
1 +

[
2E
∫ t

s

|ξ̄∗r |4q + |ξ̄∗r + ∆r|4q dr
]1/2}

‖δ‖2Us

≤ C1

{
1 + ‖ξ̄∗‖2qXs

+
[
E
∫ t

s

|∆r|4q dr
]1/2}

‖δ‖2Us , (4.23)

for appropriate C1 = C1(q) <∞. Substituting (4.23) and (4.22) into (4.20) yields

E
∫ t

s

∣∣Ξr∣∣ dr ≤ {m+ C1CS

2

[
1 + ‖ξ̄∗‖2qXs

+
[
E
∫ t

s

|∆r|4q dr
]1/2]}

‖δ‖2Us

+ (K1 + CS

2 )E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 dr

+ ĈS

2 E
∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|ū∗r | |∆r|2 dr,

which by the definition of ū∗ and Assumption (A.2),

≤
{
m+ C1CS

2

[
1 + ‖ξ̄∗‖2qXs

+
[
E
∫ t

s

|∆r|4q dr
]1/2]}

‖δ‖2Us

+ C2E
∫ t

s

(
1 + |ξ̄∗r |4q + |ξ̄∗r + ∆r|4q

)
|∆r|2 dr,

for appropriate C2 = C2(C0, Cs, ĈS , q) <∞, and this is
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≤
{
m+ C1CS

2

[
1 + ‖ξ̄∗‖2qXs

+
[
E
∫ t

s

|∆r|4q dr
]1/2]}

‖δ‖2Us

+ C3E
∫ t

s

(
|∆r|2 + |ξ̄∗r |4q|∆r|2 + |∆r|4q+2

)
dr, (4.24)

for appropriate C3 = C3(C0, CS , ĈS , q) <∞.
Next one should note some simple estimates. First, using Hölder’s inequality,

E
∫ t

s

|∆r|2 dr = E
∫ t

s

∣∣∣ ∫ r

s

δρ dρ
∣∣∣2 dr ≤ (t− s)E

∫ t

s

|δρ|2 dρ
.
= (t− s)‖δ‖22

≤ (t− s)‖δ‖2Us , (4.25)

where we let ‖·‖p denote the p-norm for p ∈ [1,∞). Similarly, with Hölder’s inequality
and some simple calculations,

E
∫ t

s

|∆r|4q+2 dr = E
∫ t

s

∣∣∣ ∫ r

s

δρ dρ
∣∣∣4q+2

dr ≤ (t− s)4q+2E
∫ t

s

|δρ|4q+2 dρ

= (t− s)4q+2‖δ‖4q+2
4q+2 ≤ (t− s)4q+2‖δ‖4q+2

Us , (4.26)

and

E
∫ t

s

|∆r|4q dr ≤ (t− s)4q‖δ‖4qUs . (4.27)

Next,

E
∫ t

s

|ξ̄∗r |4q|∆r|2 dr ≤
[
E
∫ t

s

|ξ̄∗r |8q
]1/2[

E
∫ t

s

∣∣∣ ∫ t

s

δρ dρ
∣∣∣4 dr]1/2

≤ (t− s) ‖ξ̄∗‖4qXs

[
E
∣∣∣ ∫ t

s

δρ dρ
∣∣∣4]1/2 ≤ (t− s)5/2 ‖ξ̄∗‖4qXs

[
E
∫ t

s

|δρ|4 dρ
]1/2

≤ (t− s)5/3 ‖ξ̄∗‖4qXs
‖δ‖2Us . (4.28)

Substituting (4.25)–(4.28) into (4.24), one finds

E
∫ t

s

∣∣Ξr∣∣ dr ≤ {m+ C1CS

2

[
1 + ‖ξ̄∗‖2qXs

+ t2q‖δ‖2qUs
]}
‖δ‖2Us

+ C3

[
‖δ‖2Us + t5/3‖ξ̄∗‖4qXs

‖δ‖2Us + t4q+2‖δ‖4q+2
Us

]
≤ C4

[
1 + t4q+2 +

(
1 + t5/3

)
‖ξ̄∗‖4qXs

][
‖δ‖2Us + ‖δ‖4q+2

Us

]
, (4.29)

for appropriate choice of C4 = C4(C0, CS , ĈS , q) <∞. Substituting (4.29) into (4.13)
yields ∣∣J~(s, x, ū∗)− J~(s, x, u)

∣∣ ≤ C‖δ‖2Us ,
for ‖δ‖Us ≤ 1 and appropriate choice of C = C(t, x, C0, Cs, Ĉs, q) <∞. By definition,
this implies that ū∗ = argstatu∈Us J

~(s, x, u), where uniqueness of the argstat is
guaranteed by Assumption (A.3).

It may be worth noting the following, which reflects the uniqueness implied by
the above representation.
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Corollary 4.4. In addition to (A.0)–(A.3), assume the conditions of Theorem
4.1. There exists a unique solution S̃ ∈ SpC to (3.3)–(3.4), where S̃ = S~. There

also exists a solution, Ŝ ∈ S, to (1.7)–(1.8), given by Ŝ(r, y) = S~(r,V−1
0 ((yT , 0)T ))

for all (r, y) ∈ D. Lastly, any other solution in S to (1.7)–(1.8) cannot be extended
holomorphically to a solution of (3.3)–(3.4) in SpC.

Proof. The existence of S̃ follows from Assumption (A.0), and the uniqueness
follows from Theorem 4.1. Let Ŝ be as given in the corollary statement. Note that

Ŝt(r, y) = S̄t(r, y + i0) ∀ (r, y) ∈ D. (4.30)

Also, by the Cauchy-Riemann equations, for (r, y) ∈ D, and the fact that Ŝ agrees
with S̄ on D,

|S̄x(r, y + i0)|2c =

n∑
j=1

[
R̄2
yj − T̄

2
yj + 2iR̄yj T̄yj

]
=

n∑
j=1

[
R̂2
yj − T̂

2
yj + 2iR̂yj T̂yj

]
=

n∑
j=1

(Ŝyj (r, y))2 = |Ŝy(r, y)|2c , (4.31)

where we take (R̄(r,V0(x)), T̄ (r,V0(x)))T = V00(S̄(r, x)) for all (r, x) ∈ DC and
(R̂(r, y), T̂ (r, y))T = V00(Ŝ(r, y)) for all (r, y) ∈ D. Similarly, using (3.16), (3.17),

∆S̄(r, y + i0) =

n∑
j=1

S̄xj ,xj (r, y + i0) =

n∑
j=1

[
R̄yj ,yj (r, y + i0) + iT̄yj ,yj (r, y + i0)

]
=

n∑
j=1

[
R̂yj ,yj (r, y + i0) + iT̂yj ,yj (r, y + i0)

]
= ∆Ŝ(r, y) (4.32)

for all (r, y) ∈ D. Then, by (3.3) and (4.30)–(4.32),

Ŝt(r, y) + i~
2m∆Ŝ(r, y) +H(y, Ŝy(r, y))

= S̄t(r, y + i0) + i~
2m∆S̄(r, y + i0) +H(y + i0, S̄x(r, y + i0)) = 0 (4.33)

for all (r, y) ∈ D. That Ŝ also satisfies the terminal condition is obvious, and we see
that Ŝ is a solution of (1.7)–(1.8).

Regarding the last assertion, recall that if two holomorphic functions on Cn agree
on {x = y + iz ∈ Cn | z = 0}, then they agree on all of Cn (cf. [14]). Noting the
uniqueness of S̃ = S~ yields the assertion.

Remark 4.5. The results concerning Ŝ in Corollary 4.4 also extend to (1.1)–
(1.2) and (1.3)–(1.4) in the obvious ways.

5. Existence. The results of Sections 3–4 were conditioned on an assumption of
existence of a solution to (3.3)–(3.4). However, for this class of systems, one can use
simple complex-analysis equivalences to reduce the question of existence of a solution
of the complex HJ PDE problem to that of existence of a solution of a real HJ PDE
problem. In this section, we drop the earlier assumptions.

Theorem 5.1. Suppose V, φ are holomorphic on Cn. Suppose also that R ∈
C1,3(D2) ∩ C(D2) satisfies (3.25)–(3.27). Then, there exists T ∈ C1,3(D2) ∩ C(D2)
satisfying (3.26)–(3.28) such that for each s ∈ (0, t], T (s, ·, ·) is a harmonic conjugate
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of R(s, ·, ·). Further, letting S(s, x) = V−1
00 (R(s,V0(x)), T (s,V0(x))) for all (s, x) ∈

DC, S satisfies (3.3)–(3.4).

Proof. Let T (t, ·, ·) = φI(·, ·). Then, by (3.27), T (t, ·, ·) is a complex conjugate
of R(t, ·, ·), and satisfies (3.28). Now we begin the construction of T for s ∈ (0, t).
Recalling that there is a free constant in the harmonic conjugate, for each s ∈ (0, t),
we let

T (s, 0, 0)
.
= T (t, 0, 0)−

∫ t

s

− 1
m

n∑
j=1

Ryj (ρ, 0, 0)Rzj (ρ, 0, 0)

+ ~
2m

n∑
j=1

Ryj ,yj (ρ, 0, 0) + V I(0, 0) dρ

.
= T (t, 0, 0)−

∫ t

s

[
− 1

m

n∑
j=1

RyjRzj + ~
2m

n∑
j=1

Ryj ,yj + V I
]
(ρ, 0, 0) dρ, (5.1)

which implies that for all s ∈ (0, t),

Tt(s, 0, 0) =
[
− 1

m

n∑
j=1

RyjRzj + ~
2m

n∑
j=1

Ryj ,yj + V I
]
(s, 0, 0), (5.2)

which by the Cauchy-Riemann equations and (3.16)–(3.17),

=
[

1
m

n∑
j=1

TyjTzj + ~
2m

n∑
j=1

Tyj ,zj + V I
]
(s, 0, 0), (5.3)

which implies that (3.26) is satisfied at (s, 0, 0) for all s ∈ (0, t).

By the Cauchy-Riemann equations and (6.2), for all (s, y, z) ∈ D2 and all k ∈
]1, n[ ,

Tt,zk = Rt,yk = ~
2m

n∑
j=1

Ryj ,zj ,yk + 1
m

n∑
j=1

[RyjRyj ,yk −RzjRzj ,yk ] + V Ryk , (5.4)

which by the Cauchy-Riemann equations and (3.16)–(3.19),

= ~
2m

n∑
j=1

Tyj ,zj ,zk + 1
m

n∑
j=1

[TzjTyj ,zk + TyjTzj ,zk ] + V Izk

=
d

dzk

{
~

2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
}
. (5.5)

For z1 ∈ R, let ẑ1(z1)
.
= (z1, 0, 0 . . . 0)T ∈ Rn, and note that for s ∈ (0, t),

Tt(s, 0, ẑ
1(z1)) = Tt(s, 0, 0) +

∫ z1

0

Tt,z1(s, 0, ẑ1(ζ)) dζ, (5.6)

which by (5.5),
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= Tt(s, 0, 0) +

∫ z1

0

d

dz1

{[
~

2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, 0, ẑ1(ζ))

}
dζ

= Tt(s, 0, 0) +
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, 0, ẑ1(z1))

−
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, 0, 0),

which by (5.3),

=
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, 0, ẑ1(z1)),

which implies that (3.26) is satisfied at (s, 0, ẑ1(z1)) for all s ∈ (0, t) and z1 ∈ R.
Proceeding from here similarly, first for z2 and then z3 and so on, yields finally

Tt(s, 0, z) =
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, 0, z) ∀ s ∈ (0, t), z ∈ Rn.

We now proceed to integrate along the y-components. First, for k ∈ ]1, n[ , differ-
entiating (3.25) with respect to zk, we have

Rt,zk = ~
2m

n∑
j=1

Ryj ,zj ,zk + 1
m

n∑
j=1

[RyjRyj ,zk −RzjRzj ,zk ] + V Rzk , (5.7)

which by the Cauchy-Riemann equations and (3.16)–(3.19),

= − ~
2m

n∑
j=1

Tyj ,zj ,yk − 1
m

n∑
j=1

[TzjTyj ,yk + TyjTzj ,yk ]− V Iyk

= − d

dyk

{
~

2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
}
. (5.8)

By the Cauchy-Riemann equations and (5.8), we have

Tt,yk = −Rt,zk =
d

dyk

{
~

2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
}
. (5.9)

For y1 ∈ R, let ŷ1(y1)
.
= (y1, 0, 0 . . . 0)T ∈ Rn, and note that for s ∈ (0, t) and z ∈ Rn,

Tt(s, ŷ
1(y1), z) = Tt(s, 0, z) +

∫ y1

0

Tt,y1(s, ŷ1(η), z) dη,

which by (5.9),

= Tt(s, 0, z) +

∫ y1

0

d

dy1

{[
~

2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, ŷ1(η), z)

}
dη

= Tt(s, 0, z) +
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, ŷ1(y1), z)

−
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, 0, z),

which by (3.26),
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=
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, ŷ1(y1), z),

which implies that (3.26) is satisfied at (s, ŷ1(y1), z) for all s ∈ (0, t), y1 ∈ R and
z ∈ Rn. Proceeding from this along each component of y, one finally obtains

Tt(s, y, z) =
[

~
2m

n∑
j=1

Tyj ,zj + 1
m

n∑
j=1

TyjTzj + V I
]
(s, y, z) ∀ (s, y, z) ∈ D2, (5.10)

which is (3.26). By construction, T has the indicated smoothness. Lastly, by Propo-
sition 3.4, one obtains the assertions concerning S.

Remark 5.2. As S obtained in Theorem 5.1 is holomorphic in x for each s ∈ (0, t]
(and hence C∞ in the space variable), noting that R, T are related to S by (3.15), one
immediately sees that R, T are C1,∞(D2) ∩ C(D2).

The analogous result to Theorem 5.1, where one supposes existence of a solution
to (3.26)–(3.28) rather than (3.25)–(3.27) is obtained similarly, and the redundant
proof is omitted. The result is as follows.

Theorem 5.3. Suppose V, φ are holomorphic on Cn. Suppose also that T ∈
C1,3(D2) ∩ C(D2) satisfies (3.26)–(3.28). Then, there exists R ∈ C1,3(D2) ∩ C(D2)
satisfying (3.25)–(3.27) such that for each s ∈ (0, t], T (s, ·, ·) is a harmonic conjugate
of R(s, ·, ·). Further, letting S(s, x) = V−1

00 (R(s,V0(x)), T (s,V0(x))) for all (s, x) ∈
DC, S satisfies (3.3)–(3.4).
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6. Appendix A.

Proof of Lemma 3.1. The case of (3.14) is trivial, and we consider only
(3.22). By Assumption (A.2) and standard results (cf. [19] Theorem II.6.1; [5]),
we have existence of a weak solution up to explosion time, τ = τ(ω)

.
= inf

{
r ∈

[s, t]
∣∣ |(η̄∗r , ζ̄∗r )| 6∈ R2n

}
. Let such a weak solution be denoted as probability space

(Ω̂, F̂ , P̂ ), filtration {F̂r | r ∈ [s, t]}, F̂·-adapted Brownian motion B̂·, and process
(η̄∗· , ζ̄

∗
· ). By (A.2) and standard results (cf. [19] Lemma II.5.2 and Corollary II.5.12;

[9] Section III.5 and Appendix D), there exists C1 = C1(CS , q) < ∞ such that
E
{

supr∈[s,t] |(η̄∗r , ζ̄∗r )|2q
}
≤ C1(1 + |(y, z)|2q). Consequently, for almost every ω ∈ Ω̂,

there exists C2 = C2(ω,CS , q) <∞ such that

|(η̄∗r , ζ̄∗r )|2q ≤ C2[1 + |(y, z)|2q] ∀ r ∈ [s, t], (6.1)

which implies τ = t a.s.

Suppose there exist two weak solutions with the same probability space, filtration
and filtration-adapted Brownian motion, but possibly different state processes, say
(η̄∗· , ζ̄

∗
· ) and (η̂∗· , ζ̂

∗
· ). Using (3.22) and Assumption (A.2), we find that there exists

C3 = C3(CS , q) <∞ such that
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∣∣(η̄∗r , ζ̄∗r )− (η̂∗r , ζ̂
∗
r )
∣∣ ≤ C3

∫ r

s

(
1 + |η̄∗ρ|2q+ |ζ̄∗ρ |2q+ |η̂∗ρ|2q+ |ζ̂∗ρ |2q

)
·
∣∣(η̄∗ρ, ζ̄∗ρ )− (η̂∗ρ, ζ̂

∗
ρ )
∣∣ dρ,

and noting (6.1), we see that ∃ C4 = C4(ω,CS , q, |(y, z)|) <∞ such that this is

≤ C4

∫ r

s

∣∣(η̄∗ρ, ζ̄∗ρ )− (η̂∗ρ, ζ̂
∗
ρ )
∣∣ dρ.

Applying Gronwall’s inequality to this, we find that (η̄∗· , ζ̄
∗
· ) = (η̂∗· , ζ̂

∗
· ) a.s., i.e., that

we have pathwise uniqueness. Then, by [15], Theorem IV.1.1, we see that there exists
a unique strong solution.

Remark 6.1. Alternatively, one may apply [30] Theorem V.38, to imply existence
of a solution up to explosion time, τ , and then use (6.1) to imply that τ = t a.s.
However, [30] does not make use of the substantial structure evident in (3.22), and
with an eye to possible later efforts with less well-behaved drift terms but identical
diffusion coefficients, we have used the slightly longer approach of the above proof.

6.1. Proof of Proposition 3.4. The first assertion follows by simple algebraic
substitution, using the Cauchy-Riemann equations and (3.16)–(3.17). Now, suppose
R̄, T̄ ∈ C1,2(D2;R) ∩ C(D2;R) satisfy (3.25)–(3.28), and let S̄ be given by (3.15).
We will show that R̄, T̄ satisfy the Cauchy-Riemann relations, and hence that S̄ ∈
SC. After that, one may again use simple algebraic substitutions to verify the final
assertion.

Differentiating (3.25) with respect to yk, and (3.26) with respect to zk, yields

R̄t,yk = ~
2m

n∑
j=1

R̄yj ,zj ,yk + 1
m

n∑
j=1

(
R̄yj R̄yj ,yk − R̄zj R̄zj ,yk

)
+ V Ryk , (6.2)

T̄t,zk = ~
2m

n∑
j=1

T̄yj ,zj ,zk + 1
m

n∑
j=1

(
T̄zj T̄yj ,zk + T̄yj T̄zj ,zk

)
+ V Izk . (6.3)

Applying the Cauchy-Riemann equations and (3.16)–(3.19) in (6.3), one finds

T̄t,zk = ~
2m

n∑
j=1

R̄yj ,zj ,yk + 1
m

n∑
j=1

(
R̄yj R̄yj ,yk − R̄zj R̄zj ,yk

)
+ V Ryk ,

which by (6.2),

= R̄t,yk ∀ (s, y, z) ∈ D2, ∀k ∈ ]1, n[ . (6.4)

Also note that as φ is holomorphic,

R̄yk(t, y, z) = φRyk(y, z) = φIzk(y, z) = T̄zk(t, y, z) ∀ y, z ∈ Rn. (6.5)

By the Fundamental Theorem of Calculus,

T̄zk(s, y, z) = T̄zk(t, y, z)−
∫ t

s

T̄t,zk(σ, y, z) dσ,

which by (6.4),(6.5),
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= R̄yk(s, y, z) ∀ (s, y, z) ∈ D2, ∀k ∈ ]1, n[ . (6.6)

Similarly, one obtains

T̄yk(s, y, z) = −R̄zk(s, y, z) ∀ (s, y, z) ∈ D2, ∀k ∈ ]1, n[ . (6.7)

By (6.6),(6.7), the Cauchy-Riemann conditions are satisfied.
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