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Abstract— A stochastic control representation for solution of
the Schrödinger equation is obtained, utilizing complex-valued
diffusion processes. The Maslov dequantization is employed,
where the domain is complex-valued in the space variable. The
control problem is defined in terms of stationarity rather than
optimality. The notion of stationarity is utilized to relate the
Hamilton-Jacobi form of the dequantized Schrödinger equation
to its stochastic control representation. Convexity of the action
functional is not required, and there is no restriction on the
duration of the problem.

I. INTRODUCTION

Diffusion representations have long been utilized in the
study of Hamilton-Jacobi partial differential equations (HJ
PDEs). The bulk of such results apply to real-valued HJ
PDEs, that is, to HJ PDEs where the coefficients and solu-
tions are real-valued. The Schrödinger equation is complex-
valued, although generally defined over a real-valued space
domain, which presents difficulties for the development of
stochastic control representations. There is substantial ex-
isting work on the relation of stochastic processes to the
Schrödinger equation, cf. [11], [15], [24], [25], [28]. The
approach considered here is in the spirit of the Feynman path-
integral interpretation [6], [7], where in particular, one looks
at a certain action-based functional, S, where ψ = exp{ i~S}
and ~ denotes Planck’s constant. One seeks a representation
for S in the form of a value function for a stochastic control
problem where the action functional is the payoff, cf. [2], [3],
[6], [7], [10], [14], [19]. We note that this latter approach is
also sometimes employed in analysis of semiclassical limits,
cf. [1], [3], [10], [14].

An issue that arises in such approaches is that control has
traditionally considered classical optimization (minimization
or maximization) of some payoff. Implicit in that is an
assumption that the payoff is real valued. In [4], [22],
the authors consider a least-action approach to obtaining
fundamental solutions to two-point boundary value problems
(TPBVPs) for conservative dynamical systems. However,
that formulation induced duration limits on the problems
which could be addressed, where those limits were similar to
duration limits present in existing results on the Schrödinger
equation representation in terms of action, cf. [2], [3], [10].
We note that the duration limits are related to a loss of
convexity of the payoff as the time horizon is extended.
The least-action principle is a special case of the more
generally applicable stationary-action principle, where the
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latter is equivalent to the former when the action functional
is convex and coercive. Consequently and more recently, the
notion of “staticization” was introduced for such TPBVPs, in
which case one seeks a stationary point of the action over the
space of control inputs. The extension to stationarity removes
the restriction on problem duration. This yields a dynamic
program which takes the form of an HJ PDE in the case
of continuous-time/continuous-space processes, where these
were studied in the context of deterministic dynamics in [21],
[20], [23].

As staticization seeks points where the derivative of a
functional is zero, as opposed to optimization of the func-
tional, it is easily extended to the case of complex-valued
systems. The extension to stochastic dynamics is easily made
as well. Also, as staticization does not require the imposition
of duration limits on the problems, one can apply this
new tool to the stochastic-control representation problem for
the dequantized Schrödinger equation, and that is the topic
considered herein.

In order to clarify the details in the above, we recall the
Schrödinger initial value problem, given as

0 = i~ψt(s, x) + ~2

2m∆ψ(s, x)− ψ(s, x)V (x), (s, x) ∈ D,
(1)

ψ(0, x) = ψ0(x), x ∈ Rn, (2)

where m ∈ (0,∞) denotes mass, initial condition ψ0 takes
values in C, V denotes a known potential function, ∆ denotes
the Laplacian with respect to the space (second) variable,
D .

= (0, t) × Rn, and subscript t will denote the derivative
with respect to the time variable (the first argument of ψ here)
regardless of the symbol being used for time in the argument
list. We also let D .

= (0, t]×Rn. We consider what is some-
times referred to as the Maslov dequantization of the solution
of the Schrödinger equation (cf., [18]), which as noted above,
is S : D → C given by ψ(s, x) = exp{ i~S(s, x)}. Note that
ψt = i

~ψSt, ψx = i
~ψSx and ∆ψ = i

~ψ∆S − 1
~2ψ|Sx|2c

where for y ∈ Cn, |y|2c
.
= yT y =

∑n
j=1 y

2
j . (We remark that

notation | · |2c is not intended to indicate a squared norm; the
range is complex.) We find that (1)–(2) become

0 = −St(s, x) + i~
2m∆S(s, x) +H(x, Sx(s, x)), (3)

(s, x) ∈ D,
S(0, x) = φ(x), x ∈ Rn, (4)

where H : Rn × Cn → C is the Hamiltonian given by
H(x, p) = −

[
1

2m |p|
2
c + V (x)

]
= stat
v∈Cn

{
vT p+ m

2 |v|
2
c − V (x)

}
, (5)



and stat will be defined in the next section. We look for
solutions in the space

S .
= {S : D → C |S ∈ C1,2

p (D) ∩ C(D)}, (6)

where C1,2
p denotes the space of functions which are con-

tinuously differentiable once in time and twice in space,
and which satisfy a polynomial-growth bound. We will find
it helpful to reverse the time variable, and hence we look
instead, and equivalently, at the HJ PDE problem given by

0 = St(s, x) + i~
2m∆S(s, x) +H(x, Sx(s, x)), (s, x) ∈ D,

(7)
S(t, x) = φ(x), x ∈ Rn. (8)

Working mainly with this last form, we will fix t ∈ (0,∞),
and allow s to vary in (0, t].

Recall that in semiclassical limit analysis, one views ~ as
a small parameter, and examines the limit as ~ ↓ 0. Applying
this in (7)–(8) yields an HJ PDE problem of the form

0 = St(s, x) +H(x, Sx(s, x)), (s, x) ∈ D, (9)
S(t, x) = φ(x), x ∈ Rn. (10)

Recalling the above-noted recent work on least-action and
stationary-action formulations of certain TPBVPs [4], [21],
[22], [20], [23], it was found that the associated HJ PDEs
for such problems also take the form (9)–(10). This was the
original motivation for the effort here, where we develop
a stationary-action based representation for the solution of
(7)–(8) (and consequently (1)–(2)). Due to the complex
multiplier on the Laplacian, this representation is in terms
of a stationary-action stochastic control problem with a
complex-valued diffusion coefficient.

The main contribution of this effort is that the use of
stationarity rather than optimization allows for the extension
of the stationary-action stochastic control representation to
arbitrary duration problems (Theorem 6). More specifically,
we demonstrate that solutions of (7)–(8) are given by (48),
where J~ and ξ· are given by (47) and (16), respectively.
Further, as this representation has a similar form to that of
the stationary-action value for the limit system, but where the
latter lacks the input diffusion term, one has the expectation
that this will provide a new tool for the study of semiclassical
limits.

In Section II, we recall the definitions necessary for
stationarity problems. In Section III, the underlying space
domain is extended from a space over the real field to a
space over the complex field. This necessitates several other
minor extensions, which are covered in the subsections. In
particular, some classical existence and uniqueness results for
stochastic differential equations (SDEs) are easily extended
to their complex-valued counterparts. In Section IV, the
main result of the paper, a stationarity-based stochastic-
control value function representation for the dequantized
Schrödinger equation, is obtained. More specifically, a veri-
fication result is obtained demonstrating that if a solution of
the HJ PDE over the “complexified” domain exists, then that
solution has the indicated representation.

II. STATIONARITY DEFINITIONS

Recall that classical systems obey the stationary action
principle, where the path taken by the system is that which
is a stationary point of the action functional. For this and
other reasons, as in the definition of the Hamiltonian given
in (5), we find it useful to develop additional notation
and nomenclature. Specifically, we will refer to the search
for stationary points more succinctly as staticization (in
analogy with minimization, and similarly to that, based on
the Latin “statica”). In particular, we make the following
definitions. Suppose (Y, | · |) is a generic normed vector
space over C with G ⊆ Y , and suppose F : G → C.
We say ȳ ∈ argstat{F (y) | y ∈ G} if ȳ ∈ G and either
lim supy→ȳ,y∈G\{ȳ} |F (y) − F (ȳ)|/|y − ȳ| = 0, or there
exists δ > 0 such that G∩Bδ(ȳ) = {ȳ} (where Bδ(ȳ) denotes
the ball of radius δ around ȳ). If argstat{F (y) | y ∈ G} 6= ∅,
we define the possibly set-valued stats operator by

stats
y∈G

F (y)
.
= stats{F (y) | y ∈ G}
.
=
{
F (ȳ)

∣∣ ȳ ∈ argstat{F (y) | y ∈ G}
}
.

If argstat{F (y) | y ∈ G} = ∅, statsy∈G F (y) is undefined.
We will also be interested in a single-valued stat operation.
In particular, if there exists a ∈ C such that statsy∈G F (y) =
{a}, then staty∈G F (y)

.
= a; otherwise, staty∈G F (y) is

undefined. At times, we may abuse notation by writing
ȳ = argstat{F (y) | y ∈ G} in the event that the argstat
is the single point {ȳ}. The following is immediate from the
above definitions.

Lemma 1: Suppose Y is a Hilbert space, with open set
G ⊆ Y , and that F : G → C is Fréchet differentiable at
ȳ ∈ G with Riesz representation Fy(ȳ) ∈ Y Then, ȳ ∈
argstat{F (y) | y ∈ G} if and only if Fy(ȳ) = 0.

For further discussion, we refer the reader to [21], [23].

III. EXTENSIONS TO THE COMPLEX DOMAIN

Various details of extensions to the complex domain must
be considered prior to the development of the representation.

A. Extended problem and assumptions

Although (1)–(2), (3)–(4) and (7)–(8) are typically given
as HJ PDE problems over D, as in Doss et al. [1], [2], [3] we
will find it convenient to change the domain to one where the
space components lie over the complex field. We also extend
the domain of the potential to Cn, i.e., V : Cn → C, and
we will abuse notation by employing the same symbol for
the extended-domain functions. Throughout, for k ∈ N, and
x ∈ Ck or x ∈ Rk, we let |x| denote the Euclidean norm.
Let DC

.
= (0, t)× Cn and DC = (0, t]× Cn, and define

SC
.
= {S : DC → C|S is continuous on DC, continuously

differentiable in time on DC, and (11)
holomorphic on Cn for all r ∈ (0, t] },

SpC
.
= {S ∈ SC | S satisfies a polynomial growth condition

in space, uniformly on (0, t] }. (12)



The extended-domain form of problem (7)–(8) is

0 = S̄t(s, x) + i~
2m∆S̄(s, x) +H(x, S̄x(s, x)), (s, x) ∈ DC,

(13)
S̄(t, x) = φ(x), x ∈ Cn. (14)

Throughout, we assume the following.

For each ~ ∈ (0, 1], there exists a solution, S̄ =
S̄~ ∈ SpC to (13)–(14). (A.0)

V, φ : Cn → C are holomorphic on Cn. Further,
there exists C0 < ∞ and q ∈ N such that
|Vxx(x)|, |φxx(x)| < C0(1+|x|2q) for all x ∈ Cn.

(A.1)

For each ~ ∈ (0, 1], there exists CS = C~
S <

∞ such that |S̄x(r, x)| ≤ CS(1 + |x|) and
|S̄xx(r, x)| ≤ CS(1 + |x|2q) for all (r, x) ∈ DC.

(A.2)

B. The underlying stochastic dynamics
We let (Ω,F , P ) be a probability triple, where Ω denotes

a sample space, F denotes a σ-algebra on Ω, and P denotes
a probability measure on (Ω,F). Let {Fs | s ∈ [0, t]} denote
a filtration on (Ω,F , P ), and let B· denote an F·-adapted
Brownian motion taking values in Rn. For s ∈ [0, t], let

Us
.
= {u : [s, t]× Ω→ Cn |u is F·-adapted, right-cts,

E
∫ t
s
|ur|m dr <∞ ∀m ∈ N }. (15)

We supply Us with the norm ‖u‖Us
.
=

maxm∈]1,M̄ [

[
E
∫ t
s
|ur|m dr

]1/m
, where M̄ ≥ 8q. We

will be interested in diffusion processes given by

ξr = ξ(s,x)
r = x+

∫ r

s

uρ dρ+
√

~
m

1+i√
2
B∆
r , (16)

where x ∈ Cn, s ∈ [0, t], u ∈ Us, and B∆
r

.
= Br − Bs for

r ∈ [s, t]. We will also be interested in the case where the
control input is generated by a state-feedback. In particular,
we will consider

ξ̄∗r = ξ̄∗,(s,x)
r

.
= x+

∫ r

s

(−1
m )S̄x(ρ, ξ̄∗,(s,x)

ρ ) dρ+
√

~
m

1+i√
2
B∆
r ,

(17)
where presuming for now existence and uniqueness of a
solution of (17), we may define the resulting u∗,(s,x) ∈ Us
given by

u∗,(s,x)
r (ω)

.
= ˆ̄u(r, ξ̄∗,(s,x)(ω))

.
= (−1

m )S̄x(r, ξ̄∗,(s,x)
r (ω))

(18)
for all r ∈ [s, t] and ω ∈ Ω. For s ∈ [0, t], we let

Xs
.
= {ξ : [s, t]× Ω→ Cn | ξ is F·-adapted, right-cts,

E sup
r∈[s,t]

|ξr|m <∞ ∀m ∈ N }. (19)

We supply Xs with the norm ‖ξ‖Xs

.
=

maxm∈]1,M̄ [

[
E supr∈[s,t] |ξr|m

]1/m
.

It is natural to work with complex-valued state processes
in this problem domain. However, in order to easily apply
many of the existing results regarding existence, uniqueness
and moments, we will find it handy to use a “vectorized”
real-valued representation for the complex-valued state pro-
cesses. We begin from the standard mapping of the complex

plane into R2, denoted here by V00 : C → R2, with
V00(x)

.
= (y, z)T , where y = Re(x) and z = Im(x).

This immediately yields the mapping V0 : Cn → R2n

given by V0(y + iz)
.
= (yT , zT )T , where component-wise,

(yj , zj)
T = V00(xj) for all j ∈]1, n[ , where throughout,

for integer a ≤ b, we define ]a, b[= {a, a + 1, . . . b}. Also
in the interests of a reduction of cumbersome notation, we
will henceforth frequently abuse notation by writing (y, z)
in place of (yT , zT )T when the meaning is clear.

Given control process, u ∈ Us, we define its vectorized
analog by the isometric isomorphism, V : Us → Uvs , where
[V(u)]r

.
= (vTr , w

T
r )T and (vTr , w

T
r )T = V0(ur) for all r ∈

[s, t] and ω ∈ Ω, and where

Uvs
.
= {(v, w) : [s, t]× Ω→ R2n | (v, w) is F·-adapted,

right-cts, E
∫ t
s
|vr|m + |wr|m dr <∞ ∀m ∈ N}, (20)

‖u‖Uv
s

.
= max
m∈]1,M̄ [

[
E
∫ t
s
|vr|m + |wr|m dr

]1/m
. (21)

Again abusing notation, we also define the isometric isomor-
phism, V : Xs → X vs by [V(ξ)]r

.
= [V(η+iζ)]r

.
= (ηTr , ζ

T
r )T

for all r ∈ [s, t] and ω ∈ Ω, where

X vs
.
= {(η, ζ) : [s, t]× Ω→ R2n | (η, ζ) is F·-adapted,

right-cts, E sup
r∈[s,t]

[|ηr|m + |ζr|m] <∞ ∀m ∈ N }, (22)

‖(η, ζ)‖Xv
s

.
= max
m∈]1,M̄ [

[
E sup
r∈[s,t]

(|ηr|m + |ζr|m)
]1/m

. (23)

Under transformation by V , (16) becomes(
ηr
ζr

)
=

(
y
z

)
+

∫ r

s

(
vρ
wρ

)
dρ+

√
~
m

1√
2

(
In×n
In×n

)
B∆
r . (24)

We may decompose S̄ ∈ SC as

(R̄(r,V0(x)), T̄ (r,V0(x)))T
.
= V00(S̄(r, x)), (25)

where R̄, T̄ : D2
.
= (0, t] × R2n → R, and we also

let D2
.
= (0, t) × R2n. For later reference, it will be

helpful to recall some standard relations between derivative
components, which are induced by the Cauchy-Riemann
equations. For all (r, x) = (r, y + iz) ∈ (0, t) × Cn and
all j, k, ` ∈]1, n[, and suppressing the arguments for reasons
of space we have

Re[S̄xj ,xk
] = R̄yj ,yk = −R̄zj ,zk = T̄zj ,yk = T̄yj ,zk , (26)

Im[S̄xj ,xk
] = −R̄yj ,zk = −R̄zj ,yk = −T̄zj ,zk = T̄yj ,yk ,

(27)
Re[S̄xj ,xk,x`

] = R̄yj ,yk,y` = −R̄yj ,zk,z` = −R̄zj ,zk,y`
= −R̄zj ,yk,z` = T̄zj ,yk,y` = −T̄zj ,zk,z`
= T̄yj ,zk,y` = T̄yj ,yk,z` , (28)

Im[S̄xj ,xk,x`
] = −R̄yj ,yk,z` = −R̄yj ,zk,y` = R̄zj ,zk,z`

= −R̄zj ,yk,y` = −T̄zj ,yk,z` = −T̄zj ,zk,y`
= −T̄yj ,zk,z` = T̄yj ,yk,y` . (29)

One may also easily verify that with R̄, T̄ given by (25) and
(yT , zT )T = V0(x),

V00(|S̄x(r, x)|2c) =

(∑n
j=1 R̄

2
yj (r, y, z)− R̄2

zj (r, y, z)∑n
j=1−2R̄yj (r, y, z)R̄zj (r, y, z)

)



=

(∑n
j=1 T̄

2
zj (r, y, z)− T̄ 2

yj (r, y, z)∑n
j=1 2T̄yj (r, y, z)T̄zj (r, y, z)

)
.

(30)

Further, given u0 ∈ Cn, s ∈ [0, t] and x ∈ Cn with
(yT , zT )T

.
= V0(x),

V0

(
argstat
u0∈Cn

[ n∑
j=1

S̄xj (r, x)u0
j + m

2 |u
0|2c
])

= 1
m

(
−R̄y(r, y, z)
R̄z(r, y, z)

)
= 1

m

(
−T̄z(r, y, z)
−T̄y(r, y, z)

)
. (31)

Using the above, we see that under transformation V , (17)
becomes(

η∗r
ζ∗r

)
=

(
y
z

)
+

∫ r

s

1
m

(
−R̄y(ρ, η∗ρ, ζ

∗
ρ )

R̄z(ρ, η
∗
ρ, ζ
∗
ρ )

)
dρ

+
√

~
m

1√
2

(
In×n
In×n

)
B∆
r

=

(
y
z

)
+

∫ r

s

−1
m

(
T̄z(ρ, η

∗
ρ, ζ
∗
ρ )

T̄y(ρ, η∗ρ, ζ
∗
ρ )

)
dρ

+
√

~
m

1√
2

(
In×n
In×n

)
B∆
r . (32)

Throughout, concerning both real and complex stochastic
differential equations, typically given in integral form such as
in (32), solution refers to a strong solution, unless specifically
cited as a weak solution.

Lemma 2: Let s ∈ [0, t), x ∈ Cn, u ∈ Us, (y, z) = V0(x)
and (v, w) = V(u). There exists a unique solution, (η, ζ) ∈
X vs , to (24), and a unique solution, (η∗, ζ∗) ∈ X vs , to (32).

Lemma 2 is easily obtained from minor extensions of well-
known existing results (specifically, [16, Theorem II.6.1] ;
and [13, Theorem IV.1.1] or [27, Theorem V.38)]), and in the
interests of space, we do not include the proof. The following
is also straightforward, cf. [26].

Lemma 3: Let s ∈ [0, t), x ∈ Cn, u ∈ Us, (yT , zT )T =
V0(x) and (v, w) = V(u). ξ ∈ Xs is a solution of (16) if and
only if V(ξ) ∈ X vs is a solution of (24). Similarly, ξ̄∗ ∈ Xs
is a solution of (17) if and only if V(ξ̄∗) ∈ X vs is a solution
of (32).

Combining Lemmas 2 and 3, one has:

Lemma 4: Let s ∈ [0, t), x ∈ Cn and u ∈ Us. There exists
a unique solution, ξ ∈ Xs, to (16), and a unique solution,
ξ̄∗ ∈ Xs, to (17).

C. A relationship among the solutions
By the Cauchy-Riemann equations and (26)–(27),

|S̄x|2c =

n∑
j=1

R̄2
yj − R̄

2
zj + 2iT̄yj T̄zj , (33)

∆S̄ =

n∑
j=1

T̄yj ,zj − iR̄yj ,zj . (34)

Let (
V R(V0(x)), V I(V0(x))

)T .
= V00(V (x)), (35)

(
φR(V0(x)), φI(V0(x))

)T .
= V00(φ(x)), (36)

for all x ∈ Cn. Substituting (33)–(36) into (13), and
separating the real and imaginary parts, we have

0 = R̄t − ~
2m

n∑
j=1

R̄yj ,zj − 1
2m

n∑
j=1

(
R̄2
yj − R̄

2
zj

)
− V R, (37)

0 = T̄t − ~
2m

n∑
j=1

T̄yj ,zj − 1
m

n∑
j=1

T̄yj T̄zj − V I , (38)

on D2, and, of course,
R̄(t, y, z) = φR(y, z) ∀ (y, z) ∈ R2n, (39)

T̄ (t, y, z) = φI(y, z) ∀ (y, z) ∈ R2n. (40)

Proposition 5: Let S̄ ∈ SC and R̄, T̄ satisfy (25) for all
(r, x) ∈ DC. If S̄ satisfies (13)–(14), then R̄, T̄ satisfy (37)–
(40). Alternatively, if R̄, T̄ ∈ C1,2(D2;R)∩C(D2;R) satisfy
(37)–(40), and S̄ ∈ SC is given by (25), then S̄ satisfies (13)–
(14).

Proof: The first assertion follows by simple algebraic
substitution, using the Cauchy-Riemann equations and (26)–
(27). Now, suppose R̄, T̄ ∈ C1,2(D2;R) ∩ C(D2;R) satisfy
(37)–(40), and let S̄ be given by (25). We will show that
R̄, T̄ satisfy the Cauchy-Riemann relations, and hence that
S̄ ∈ SC. After that, one may again use simple algebraic
substitutions to verify the final assertion.

Differentiating (37) with respect to yk, and (38) with
respect to zk, yields

R̄t,yk = ~
2m

n∑
j=1

R̄yj ,zj ,yk+ 1
m

n∑
j=1

(
R̄yj R̄yj ,yk − R̄zj R̄zj ,yk

)
+ V Ryk , (41)

T̄t,zk = ~
2m

n∑
j=1

T̄yj ,zj ,zk + 1
m

n∑
j=1

(
T̄zj T̄yj ,zk + T̄yj T̄zj ,zk

)
+ V Izk . (42)

Applying the Cauchy-Riemann equations and (26)–(29) in
(41) and (42), with a little work one finds

T̄t,zk = R̄t,yk ∀ (s, y, z) ∈ D2, ∀k ∈]1, n[ . (43)

Also note that as φ is holomorphic,

R̄yk(t, y, z) = φRyk(y, z) = φIzk(y, z) = T̄zk(t, y, z) (44)

for all y, z ∈ Rn. By the Fundamental Theorem of Calculus,

T̄zk(s, y, z) = T̄zk(t, y, z)−
∫ t

s

T̄t,zk(σ, y, z) dσ,

which by (43),(44),
= R̄yk(s, y, z) ∀ (s, y, z) ∈ D2, ∀k ∈]1, n[. (45)

Similarly, one obtains

T̄yk(s, y, z) = −R̄zk(s, y, z) ∀ (s, y, z) ∈ D2, ∀k ∈]1, n[.
(46)

By (45),(46), the Cauchy-Riemann conditions are satisfied.



IV. THE VERIFICATION

We will obtain a verification result demonstrating that a
solution of (7)–(8) is the stationary value of the expectation
of the action functional on process paths satisfying (16).

For s ∈ (0, t) and ~ ∈ (0, 1], we define payoff J~(s, ·, ·) :
Rn × Us → C by

J~(s, x, u)
.
= E

{∫ t

s

m
2 |ur|

2
c − V (ξr) dr + φ(ξt)

}
, (47)

where ξ satisfies (16) with input u ∈ Us and initial state
x ∈ Rn. The stationary value, S~ : D → C, is given by

S~(s, x)
.
= stat
u∈Us

J~(s, x, u) ∀ (s, x) ∈ D. (48)

We assume throughout Section IV that

argstatu∈Us J
~(s, x, u) is single-valued for all

(s, x) ∈ D. (A.3)

This is the last assumption. We remark that one may want to
weaken this assumption to uniqueness in some prespecified
subset of D, but leave that additional complication to a later
effort. The main result of the section is:

Theorem 6: Let ~ ∈ (0, 1]. Suppose S̄ ∈ SpC sat-
isfies (13)–(14), and there exists ĈS < ∞ such that
|S̄xxx(r, x)|, |S̄txx(r, x)|, |S̄xxxx(r, x)| ≤ ĈS(1 + |x|2q) for
all (s, x) ∈ DC. Then, S̄(s, x) = S~(s, x) for all (s, x) ∈
DC.

The proof of Theorem 6 follows a somewhat similar
path as that in the stationary-action dynamic programming
equation results of [21], [23]. However, the stochastic and
complex-valued aspects of the problem at hand introduce
substantial difficulties not present in those results. We begin
with two lemmas. The proofs are technical but relatively
straightforward, and are not included.

Lemma 7: Let s ∈ [0, t), x ∈ Cn, ~ ∈ (0, 1] and u ∈ Us.
Let ξ ∈ Xs be given by (16). Suppose S̄ ∈ SpC satisfies (13)–
(14). Let ū∗ = ū∗,(s,x), ξ̄∗ = ξ̄∗,(s,x) be given by (17)-(18).
Then,

S̄(s, x) = E
{∫ t

s

−S̄t(r, ξr)− S̄Tx (r, ξr)ur

− i~
2m∆S̄(r, ξr) dr + φ(ξt)

}
and

S̄(s, x) = E
{∫ t

s

−S̄t(r, ξ̄∗r )− S̄Tx (r, ξ̄∗r )ū∗r

− i~
2m∆S̄(r, ξ̄∗r ) dr + φ(ξ̄∗t )

}
.

Lemma 8: Let ~ ∈ (0, 1], and suppose that S̄ ∈ SpC
satisfies (13)–(14). Then, S̄(s, x) = J~(s, x, ū∗,(s,x)) for all
(s, x) ∈ DC, where ū∗,(s,x) is given by (17)-(18) with S̄ in
place of S.

Note that Lemma 7 only implies that the solution of HJ
PDE problem (13)–(14) satisfies a specific complex-valued
version of Itô’s formula. After that, Lemma 8 shows that the

solution of (13)–(14) is the payoff under the control that is
asserted to be the stationary control. It remains to show that
this control does indeed achieve an argstat of the payoff.
That last step is accomplished in the remaining proof of
Theorem 6. Only an outline of the long, rather technical,
proof is included.

Proof: [outline of the proof of Theorem 6.] Fix (s, x) ∈
DC. Let L(x, v)

.
= m

2 |v|
2
c − V (x) for all x, v ∈ Cn. For

compactness of nontation, let ξ̄∗ = ξ̄∗,(s,x) and ū∗ = ū∗,(s,x).
By Lemma 8,

S̄(s, x) = E
{∫ t

s

L(ξ̄∗r , ū
∗
r) dr + φ(ξ̄∗t )

}
= J~(s, x, ū∗).

(49)
It remains to be shown the ū∗ is the argstat over Us of
J~(s, x, ·).

Let u ∈ Us and δ
.
= u − ū∗ ∈ Us. Let ξ ∈ Xs be the

trajectory generated by u, i.e., the solution of (16), and let
∆

.
= ξ− ξ̄∗ ∈ Xs, where we note that ∆r =

∫ r
s
δρ dρ for all

(r, ω) ∈ [s, t]× Ω. By (49),

J~(s, x, ū∗) = S̄(s, x) = E{S̄(t, ξt)}
+
[
S̄(s, x)− E{S̄(t, ξt)}

]
,

which by Lemma 7 and (14),

= E{φ(ξt)}+ E
{∫ t

s

L(ξr, ur) dr

}
+ E

{∫ t

s

−L(ξr, ur) dr − S̄t(r, ξr)− S̄Tx (r, ξr)ur

− i~
2m∆S̄(r, ξr) dr

}
. (50)

Using (13) and the Cauchy-Riemann equations, (50) yields∣∣J~(s, x, ū∗,(s,x))− J~(s, x, u)
∣∣

≤ E
{∫ t

s

∣∣L(ξ̄∗r , ū
∗
r)− L(ξr, ur) + S̄t(r, ξ̄

∗
r )− S̄t(r, ξr)

+ S̄Tx (r, ξ̄∗r )ū∗r − S̄Tx (r, ξr)ur

+ i~
2m [∆S̄(r, ξ̄∗r )−∆S̄(r, ξr)]

∣∣ dr}
.
= E

{∫ t

s

∣∣Ξr(ω)
∣∣ dr}. (51)

It remains to show that∣∣J~(s, x, ū∗,(s,x))− J~(s, x, u)
∣∣ ≤ C‖δ‖2Us ,

for an appropriate C <∞ on a sufficiently small ball.
Using Taylor’s theorem and the assumed bounds on deriva-

tives, one finds∣∣Ξr∣∣ ≤ ∣∣∣− Vx(ξ̄∗r )∆r +mū∗rδr + S̄tx(r, ξ̄∗r )∆r

+ S̄xx(r, ξ̄∗r )ū∗r∆r + S̄x(r, ξ̄∗r )δr +
[
S̄x(r, ξr)ur

− S̄x(r, ξ̄∗r )ū∗r − S̄xx(r, ξ̄∗r )ū∗r∆r − S̄x(r, ξ̄∗r )δr
]

+ i~
2m (∆S̄)x(r, ξ̄∗r )∆r

∣∣∣+K1

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2

+m|δr|2 ∀ (r, ω) ∈ (s, t)× Ω, (52)



for appropriate K1 = K1(C0, ĈS , ~,m) <∞.
Next, using Lemma 1, one shows

mū∗r + S̄x(r, ξ̄∗) = 0. (53)

Next, note that

− Vx(ξ̄∗r ) + S̄tx(r, ξ̄∗) + S̄xx(r, ξ̄∗r )ū∗r + i~
2m (∆S̄)x(r, ξ̄∗)

=
∂

∂x

[
− V (x) + S̄t(r, x) + S̄x(r, x)v

+ i~
2m S̄xx(r, x)

]∣∣∣∣
x=ξ̄∗x, v=ˆ̄u(r,ξ̄∗r )

(54)

where the partial derivative notation indicates that the deriva-
tive is taken only over explicitly appearing arguments. Re-
calling definitions (18), one has

ˆ̄u(r, x) = −1
m S̄x(r, x) = argstat

v∈Cn

[
L(x, v) + S̄x(r, x)v

]
,

(55)
for all (r, x) ∈ DC. Working with (54), and applying (55),
one finds

− Vx(ξ̄∗r ) + S̄tx(r, ξ̄∗) + S̄xx(r, ξ̄∗r )ū∗r + i~
2m (∆S̄)x(r, ξ̄∗)

= 0. (56)

Substituting (53) and (56) into (52), we have∣∣Ξr∣∣ ≤ ∣∣∣S̄x(r, ξr)ur − S̄x(r, ξ̄∗r )ū∗r − S̄xx(r, ξ̄∗r )ū∗r∆r

− S̄x(r, ξ̄∗r )δr

∣∣∣+K1

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2

+m|δr|2 ∀ (r, ω) ∈ (s, t)× Ω,

which implies∣∣J~(s, x, ū∗,(s,x))− J~(s, x, u)
∣∣ = E

∫ t

s

∣∣Ξr∣∣ dr
≤ m‖δ‖2Us +K1E

∫ t

s

(
1 + |ξr|2q + |ξ̄∗r |2q

)
|∆r|2 dr

+ E
∫ t

s

∣∣∣S̄x(r, ξr)ur − S̄x(r, ξ̄∗r )ū∗r − S̄xx(r, ξ̄∗r )ū∗r∆r

− S̄x(r, ξ̄∗r )δr

∣∣∣ dr.
Then, working with the assumptions, and using Taylor’s
theorem, the definition of ū∗r and various Hölder inequalities,
one eventually obtains∣∣J~(s, x, ū∗,(s,x))− J~(s, x, u)

∣∣ ≤ C‖δ‖2Us ,
for ‖δ‖Us ≤ 1 and appropriate choice of C =

C(t, x, C0, Cs, Ĉs, q) < ∞. By definition, this implies that
ū∗ = argstatu∈Us J

~(s, x, u), where uniqueness of the
argstat is guaranteed by Assumption (A.3).

It may be worth noting the following, which reflects the
uniqueness implied by the above representation.

Corollary 9: In addition to (A.0)–(A.3), assume the con-
ditions of Theorem 6. There exists a unique solution S̃ ∈ SpC
to (13)–(14), where S̃ = S~. There also exists a solution,
Ŝ ∈ S, to (7)–(8), given by Ŝ(r, y) = S~(r,V−1

0 ((yT , 0)T ))
for all (r, y) ∈ D. Lastly, any other solution in S to (7)–(8)

cannot be extended holomorphically to a solution of (13)–
(14) in SpC.

Remark 10: The results concerning Ŝ in Corollary 9 also
extend to (1)–(2) and (3)–(4) in the obvious ways.
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