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I. INTRODUCTION differential equation (HJB PDE) associated with the orgin
problem.

It is now well-known that many classes of determinis- The problem is now reduced to backward propagation
tic control problems may be solved by max-plus or minyy these approximating operators. The min-plus distriguti
plus (more generally, idempotent) numerical methods. &hegroperty is employed. A generalization of this distribetiv
methods include max-plus basis-expansion approaches [ploperty, applicable to continuum versions will be obtaine
[2], [6], [9], as well as the more recently developed cursethis will allow interchange of expectation over normal
of-dimensionality-free methods [9], [14]. It has recentlyrandom variables (and other random variables with range in
been discovered that idempotent methods are applicable o) with infimum operators. At each time-step, the solution
stochastic control and games. The methods are related to thgl be represented as an infimum over a set of quadratic
above curse-of-dimensionality-free methods for deteistim  forms. Use of the min-plus distributive property will allow
control. In particular, a min-plus based method was foungds to maintain that solution form as one propagates backward
for stochastic control problems [10], [15], and a min-maxn time. Backward propagation is reduced to simple standard
method was discovered for games [11]. sense linear algebraic operations for the coefficients én th

The first such methods for stochastic control were deepresentation. We also demonstrate that the assumptions o
veloped only for discrete-time problems. The key toolshe representation which allow one to propagate backward
enabling their development were the idempotent distribwsne step are inherited by the representation at the next step
tive property and the fact that certain solution forms ar@he difficulty with the approach is an extreme curse-of-
retained through application of the semigroup operater,(i. complexity, wherein the number of terms in the min-plus
the dynamic programming principle operator). In particula expansion grows very rapidly as one propagates. The com-
under certain conditions, pointwise minima of affine anglexity growth will be attenuated via projection onto a lowe
quadratic forms pass through this operator. As the operatgimensional min-plus subspace at each time step. At each
contains an expectation component, this requires apjglitat step, one desires to project onto the optimal subspacéveelat
of the idempotent distributive property. In the case of énit to the solution approximation. That is, the subspace is @t s
sums and products, this property looks like our standard priori. In the discrete-time case, it has been demonsirate
algebra distributive property; in the infinitesimal cadeisi that for some problem classes, this approach is substgntial
familiar to control theorists through notions of strategie superior to grid-based methods. Simple numerical examples
non-anticipative mappings and/or progressively measerralwith continuous-time dynamics will be examined with this
controls. Using this technology, the value function can baew approach.
propagated backwards with a representation as a pointwise
minimum of quadratic or affine forms. i o = )

Here, we will remove the severe restriction to discretestim e begin by defining the specific class of problems which
problems. This extension requires overcoming significaitill be addressed here. Let the dynamics take the form
technical hurdles. First, note that as these methods are dés = f(Es s, ps) ds + o(Es, us, p1s) dBs, (1)
related to the max-plus curse-of-dimensionality-freelrods n
of deterministic control, there will be a discretizationeov G=rel 2)
time, but not over space. We will first define a parameterizeghere f is measurable, with more assumptions on it to
set of operators, approximating the dynamic programminigllow. The v, andu, will be control inputs taking values in
operator. We obtain the solutions to the problem of backwaid c R? and M =]1, M[= {1,2,---, M}, respectively. In
propagation by repeated application of the approximatingractice, we often find it useful to allow both a continuum-
operators. These solutions are parameterized by the timelued control component and a finite set-valued compo-
discretization step size. Using techniques from the thebry nent, where the latter is used to allow approximation of
viscosity solutions, we show that the solutions converge tmore general nonlinear Hamiltonians, c.f. [9] for motigati
the viscosity solution of the Hamilton-Jacobi-Bellmantidr Also, {B., F.} is anl-dimensional Brownian motion on the
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probability space(2, F, P), where F, contains all theP- where
negligible elements off and o is ann x [ matrix-valued DV D2V

diffusion coefficient. We will be examining a finite time- H(@, DoV (t, ), D3V (8, 2))

_hc_>r_izor_1 formulation, with terminal time7", and will take — inf min {ltr(ooT(x,u,m)DiV(t,x))
initial time ¢ € [0, T7]. u€U meM

The payoff (to be minimized) will be b f(zu,m) - DaV (L 3) + l(x,u,m)}.

T
J(t,z,u,pn) =E {/ U(&s, us, i) ds+ xp(gT)} (3) SinceV (¢, z) is quadratically growing om, i.e., there exists
t K > 0 such that
where
U(x) = inf {gr(z,2r)}, (4) V(t2) < KL+ [2), (t2) €[0,T)x RB", (7)
z2r€ZL

V(t,x) is the unique viscosity solution in such class (c.f.
where [ and thegr are measurable, anZ;,dz; ) is a [5D).

separable metric space. The value function is To approximate the viscosity solution of (6) by discrete-
time stochastic control problems, we introduce a family of
V(t,z) = inf J(t, x,u., 1), (5) parameterized operatofd; . }:<, defined by
u,eut,u.eﬂt
Fy = inf {l(zu, —t
rad(e) = of (@ u,m)(s—1)

wherelt, (resp.ﬂt) is the set ofF;-progressively measur-
able controls, taking values il (resp.M), such that there ~ TE[@(@+/f(z,u,m)(s—t)+o(z,u,m)(Bs—Bi))]}.  (8)

exists a strong solution to (1), (2). . See [3] for general viscosity techniques for approximation

We will assume that the given data in the dynamics angf second order PDEs under strong assumptionsahet
the payoff satisfy the following conditions: {to =0 < t; < --- < ty = T} be a partition of[0, T
(A1) U is compact. with the step siz&;.; —t; = T/N (i = 0,1,--- ,N —1).
(A2) There existl, K > 0 such that for any:, o/ ¢ R®, We define a discrete-time value functidf¥ (¢, z) ((t,z) €
w o €U, m,m €M, [0,T] x IR™) associated withry recursively backward in

time:
|f(x,u,m)—f(x/,u’,m/)|+ ||cr(a:,u,m)—cr(ar/,u/,m/)|| VN(t ) \I/(.I'), t:T7.I'€ Rn’ (9)
€T )=
< Llz —2'[ + L(1+ 2| + [2"])(Ju — '] + [m —m/]), ’ Fite o VN(tigr, ) (@), t: <t <tiy1,z€ R

_ ! | < / o
|l($,u,m) l(w , U ,gn )l —/ 2L(1 + |$|/+ |$C |)|«T /1' | where Ft,ti+1VN(ti+1’ )(x) is Ft,ti+1¢(17) with ¢() —
LA+ |27 + [ ) (|u = w'] + m —m]), VN(tiy1,-). Under (A1)—(A3), we can obtain the uniform
|f(z,u,m)[ + |lo(z,u,m)|| < K(1+[z|), estimates o N (¢, z).
[l(x,u,m)] < K(1+ |z[?). Proposition 2.1: Suppose that (A1)—(A3) hold. There ex-
ists K > 0, which does not depend on partitiary, such
(A3) There existL, K > 0 such that for any, 2/ € R", that forz,2’ € R", t,s € [0,T], N=1,2,---,

|U(z) — ()| < L1+ |z| + |2/]) |z — 2], VNt z) = VNt 2)| < K(1+ 2|+ [2]) ]z — 2],
W (2)] < K(1+|af?). V(@) = VN (s,2)] < K1+ 2]t = 5['/2.
- This proposition can be shown in a straightforward way.

Itis seen tha¥/ (¢, z) can be characterized as the viscosity>"'c€ the full argument is tedious, we omit the proof.

solution of the HIB PDE associated with (1), (2), (3) (see ~S @ corollary of Proposition 2.1, we have

. H Nk
[7] for such discussion). Indeetl,(¢, ) satisfies the dynamic  Corollary 2.2: There exists a subsequen¢®™™ (¢, z)}
programming principle (DPP) and a continuous functioW (¢, z) on [0, 7] x IR"™ such that

V Nk (t, 2) converges tdV (¢, z) uniformly on each compact
set of [0, T] x IR™ as N, — cc.

V(t,z)= inf _ EU l(ir,ur,ur)dT+V(S,€s)}, To relate the limit with the unique viscosity solu-
u. €l . EMe ¢ . tion of (6), we note that the infinitesimal generator of
0<t<s<T, zeR" {F; .} is H. More precisely, we can show that for any

. . . _ . . smooth functionp(t, x) with bounded?p/0t2, §%¢/0x;0t,
By using the notion of viscosity solutions, it can be ShOW'B%/axiax»axk 830/ dx;0z;0t (i, k =1,2,-- ,n)
that V (¢, z) is a viscosity solution of ! ! e o

oV Fiiinpt+ A, ) (x) — ot z)
5T H(x, D,V (t,z), D2V (t,z)) =0in (0,T) x R", 5 A
V(T,z) = ¥(x), (6) - a—f + H(z, Dyp(t, ), D3p(t, x)) (A — 0+). (10)



The convergence is uniform on each compact s€0df] x  From (9),

R". N/ ~ o N/, (N) Y2
By using arguments similar to those regarding stability VEEn, 2n) = Fyy o0 VIt ) (@),

of viscosity solutions and combining them with uniquenesgsing the property thak} ,(¢+c) = F, o¢+c for any scalar
results for viscosity solutions, we can relate the disctiete ., we have
stochastic control value with the viscosity solution of.(6) N (V) Nt .

Theorem 2.3:Under (A1)—(A3),V ¥ (t,x) converges to a 0= Ft”N.,tEZ{(V (tive, ) = V7 (v, 28))(@N).
viscosity solution of (6) asV — oo uniformly on each
compact set of[0,7] x IR". The limit of V¥ (¢,z) is
the unique viscosity solutiony (¢, z), among the class of

Since F; s is monotone aanN,:%N) is a global maximum
point of V¥ (¢, ) — +(t,z), we can see that

solutions satisfying (7). 0<F, t<N>(l/1(tz(-f1)7 ) = Y(tn, En))(EN)
The following proof is in the class of viscosity solution R P
proofs. Readers mainly interested in the developmentsein th =1I; t“"”/’( z+1v )(@n) = (N, En).

vein of min-plus analysis, might reasonably choose to skiph,s we have
this argument on a first reading. 1 .

Proof: Let W (t,z) be a limit of V¥ (¢,z) in Corollary 0 < —z5—— { . tuvﬂﬂ( M) - ¢(tzv,ffzv)}-
2.2. We use the full sequence &f(¢,z) for simplicity biy1 — N
of notation. We will only proveW(t,z) is a viscosity Note that 02/0t%, 0%/0tdx;, 03 /0x;0x;0x), and
subsolution of (6). The supersolution part can be proved 63+ /9tdz;0x; are bounded. Therefore, if we take the limit
a similar way. Let(t,2) € (0,T) x IR™ be a maximum point as N — oo, we have from (10)

of W(t,z) — @(t,z) on Bs(t, ) with W (t,&) = ¢(f,2). o R .
We may suppose théf, 2) is a strict local maximum point. 0< E(t’j) + H(2, Doy)(t, ), D3ap(t, 2)).
Note that from Proposition 2.1 with (A2) and (A3), there . .
exists K > 0 independent ofV such that Sincep(t,z) = y(t,z) on Bys(t, ),
VNt 2) < K1+ [t =1 + |z — 2]?), 0< E(t’ ) + H(&, Dop(t, &), D3p(i, 7).
(W(t,2)| < K+ [t — > + |z — &%) HenceW (t,z) is a viscosity subsolution of (6).

Lastly, we note thatWW(t,z) is the unique viscosity
solution of (6) satisfying (7) by the comparison theorem
of [5, Theorem 2.1]. Thereford/™ (¢, z) converges to the

For a givenK > K, by modifying ¢(¢,z) outside of
a neighborhood of(Z, ), we can have a smoott(t, )
satisfying the following conditions:

unigue viscosity solution of (6). [ ]
W(t,x) < o(t,x) if (t,z) # ({,2), W(i,2) = ¢(i,2), I1l. M IN-PLUS DISTRIBUTIVE PROPERTY
Y(t,z) = ¢(t,x) on Bss(t, ), We will use an infinite version of the min-plus distribu-
Y(t,x) = K(1+ |t — > + |z — £|%) on Bs(£, 2)°. tive property to move a certain infimum from inside an

expectation operator to outside. It will be familiar to caht

Take a maximum pointt v, #n) of V¥ (t,z) -4 (¢t,2) on  and game theorists who often work with notions of non-
Bs(t,%). SinceVN (¢, z) converges tdV (¢, z) uniformly on  anticipative mappings and strategies.
Bs(t,2) and(, 1) is a global maximum point ofV (¢, ) — Recall that the min-plus algebra is the commutative semi-
»(t, x), field on Rt = IR U {400} given by

(In,@n) = (,2) (N — o0). a ® b= min{a,b}, a®b=a+0b,

SinceVN(t,z) < K(1+ [t — i[> + [z — 2[*) and K > K, c.f, [4], [8], [9]. The distributive property is, of course
we have for(t, z) € Bs(t, %),
(@11 @ a12)® (a1 Pase) = a1,1 Qa1 Pai ®azs
VN(ta z) = Y(to) < K(1+[t— £|2 + |z — jlz) Dai2 ®az1 D a2 ®az2.

[ 712 12
— KA+t =1 + |z — 2[7) By induction, one finds that for finite index sefs=|1, I[=

—(K - K)(1+4%) <0. {1,2,---, I} andJ =]1,J[={1,2,--- ,J},
Then, sincemaxg_; (VY —¢) — maxg ; ,(W —¢) =
" (t,2) Bs(t,2) N o
0, (tn, ) is a global maximum point oF ~ (¢, z) — (¢, x) R [Dai|= D |Qaisl:
for large N. €1 |jeT {jitiezeg! LieT

Modify the notation inty to 7y = {t(N) 0< t(N) whereJ! = [I,cz J, the set of ordered sequences of length

. < t<N> = T} so as to indicate the dependence ®n I of elements of7. Alternatively, we may write this as

SmcetN — 1€ (0,T), there exists such that
mina; ;| = min a;j; | -
Z [JGJ J} {jitiezeT! [Z 7 ]

N) _ N
tz(' )St <t =y s

i+1-



In this latter form, one naturally thinks of the sequences Let ¢ > 0. By (11) and the Dominated Convergence
{ji}icz as mappings fronZ to 7, i.e., as mappings or Theorem, there exist®; < co such that

strategies.
When we move to the infinite version of the distributive /7 h(w,z) dP(w) < e. (14)
property, some technicalities arise. One version of such [Br, (O]
appeared in [10]. However, the assumptions in that reselt aFurther, by (12), there exist8; < oo such that
too restrictive for the class of problems we are considering .
Instead, we generalize that result to: /[§R2 ol inf [h(w, 2)] dP(w) > —e. (15)

Theorem 3.1:Let (Z, dz) be a separable metric space and

(W, dw) be a separable Banach space with Borel s
Let p be a finite measure ofiV, B), and letD = p(W).

Let h : W x Z — IR be Borel measurable. Suppose there

existsz € Z such that

/ h(w, Z) dP(w) < o0 (11)
w

and suppose for given > 0, there existsk < oo such that

/ inf h(w, z) dP(w) > —e. (12)
(Br(0))° z€Z

Let R = max{R;, R2}. By assumption, there exists =

§(R,e) > 0 such that

|h(w, z) — h(w, 2)| < € (16)

forall z € Z and allw, w € Br(0) such thatly (w, w) < 4.
By the separability o#V, there existdw; }ienv € Br(0)

such that{J,. y Bs(wi;) 2 Bg(0). For eachi € IN, let

z; € Z be such that

We next follow a standard continuity-type argument. ket

Also, suppose that givea > 0 and R < oo, there exists Bjs(w;), and suppose

d > 0 such thaih(w, z) — h(w, z)| < e for all z € Z and all

w,w € Br(0) such thatdy, (w,w) < §. Lastly, we suppose

that eitherZ is countable or(w, z) is continuous ore for

h(w, z;) > ianh(w, z) + 4e. (18)
z€

Then,

eachw € W (where of course, the former supposition can

be embedded within the latter, but that is less illumingting

Then,

/ inf h(w, z) dP(w) = inf
W

inf inf Wh(w,é(w)) dP(w),

whereZ = { : W — Z| Borel measurablé.
Proof: For the measurability ofnf.cz h(w, z), note
that fora € IR,

L3 > — : > .
{we W,Zuelgh(w, z) > at rjz{w e Wih(w,z) > a}

h(w;, z;) > h(w, z) —
which by (16),
> h(w, z;) — €,
which by (18),
> Znelg h(w, z) + 3e.

|h(wi, 2i) — h(w, 2i)],

(19)
Let 25, € Z be such that

h(w, z5) < ;relgh(w, z) + €. (20)
Combining (19) and (20), one has

hw;, z;) > h(w, z5)) + 2¢,

If Z is countable, the measurability is immediate. For general

Z, we shall show that for some countal#té c Z,

ﬂ{w e Wih(w,z) > a} = m {w e W;h(w,z) > a}.
z€Z ze2

Take a countable dense sBt of Z. Let w € W satisfy
h(w,z) > « for any z € Z'. Suppose that(w, 2) < « for
someZ € Z. Sinceh(w, z) is continuous orz and Z’ is
dense, there exists € Z’ such thath(w, z) < «, which is
a contradiction. Therefore we have

ﬂ {we W;h(w,z) > a} C ﬂ{w e W;h(w, z) > a}.
z€2/ zeZ

The opposite inclusion is obvious.
Now, for any z, € Z, [, h(w,Zo(w))dP(w) >
Sy infzez[h(w, 2)] dP(w), and so

ini{/ h(w, Zo(w)) dP(w)} 2/ inf [A(w, 2)] dP(w).
zeZ w w z€Z

(13)
We now proceed to prove the reverse.

which by (16) again,

> h(w;, z;,) + € > inf h(w;, 2) + &,
z€Z

which contradicts (17). Therefore,

h(w, z;) < ianh(w, z) + 4e, (21)
zZ€

for all w € Bs(w;) and alli € IN.

Now Iet_Dl = Bs(w1) N Bg(0) and, for allk > 1, Dy, =
(Bs(wr)NBR(0))\U; ., Di. Note that{ Dy, } e v is disjoint
and Br(0) = ;e Di- Definez® : W — Z given by

if we Dy,

25(“’) = {fk if c [U D']C - B c
z w sen Dil¢ = Br(0)°.

Then, z¢ is well-defined and measurable. Further,

/ h(w, 25 (w) dP(w)
w

- /U h(w, 5 (w)) dP(w) + /[U

ien Di

which by (21) and (22),

(22)

h(w, 25 (w)) dP(w),

i€EN D¢



<[ s adaporf g

i€N Di]
which by (14) and the assumption thB{WW) = D < oo,
<(4D+1)e+ ing[h(w, 2)] dP(w)
zE

ic i

= (4D + 1)e + /W Zirelg[h(w, 2)] dP(w)

“Jo

which by (15),

< (4ﬁ+2)5+/
w

inf [h(w, 2)] dP(w),
L lbt )P )

Zuelg[h(w, 2)] dP(w).
Since this is true for alk > 0,

inf { /W h(w, Z(w) dP(w)} < /W inf [h(w, 2)] dP(w).

3eZ zeZ

IV. DISTRIBUTED DYNAMIC PROGRAMMING

whereZ, =U x M x Zkﬂ and forx € R™ andz € Z,

g (z, 2) :/ I(x,u,m)A
w
+ 911cv+1 (x + fA(:v, Uy My W), Zt1 (w)) dPa(w). (26)

Consequently, the general form of (23) will be inherited
from V¥ (t441,-) to V¥ (#,-), and one can propagate back-
ward in this manner indefinitely. This is what we referred to
above as the IDDPP.

In order to make this program rigorous, we have to verify
two results. The first is to find a sufficient condition on
g,iv+1(:v, z) under which we can apply Theorem 3.1 at (24).

Proposition 4.1:1n addition to (A1) and (A2), we suppose
that Z41 and gp, , (z, z) satisfy the following:

()41 (Zr41,dz,,,) is a bounded and closed subset of a
separable Banach spagg; where metrialz, , is induced

by normH ’ HXk+1 of Xk-‘rl'

(i) 41 There existsC' > 0 such that for any:,z’ € IR",

2 € Zry1,

lgR1 (2, 2) < C(1 + |=?),

We will use the above infinite-version of the min-plus g (2, 2) — g, (2, 2)] < O+ |z| + |2|)|z — /).
distributive property in conjunction with the dynamic pro- "' R )
gramming principle of Section II. This will yield what we (i) anThere existal’ > 0 such that for any:, 2" € Zj. 41,
refer to as an idempotent distributed dynamic programming € R,
gggtr:(i)r;sh(lDethkPg, which is the basis of the numerical |g{€\’+1(x,z) —gziv+1($72/)| < C(1+|$|2)dzk+l (z,2).

wi .
Recall our discrete-time value functiol,” (5, z) given Then (25) holds.

by (9) fort;, € my andxz € IR™. Suppose that at timey 1,

one has representation

VN(t;Hl,x): inf g,ivﬂ(x,z), (23)

2E2ZKk41

where (Zy41,dz,,,) is a separable metric space. Le

Secondly, in order to repeatedly apply Theorem 3.1, we
need to show that properties ;(i);,—(iii) .. ; on g,iVH are
inherited by theglY given by (26).

Proposition 4.2: Suppose thatZy,1,dz,.,) and g, :

R™ x Zj41 — IR satisfy (i}, ,—(ii) ;. Let X = RP x

R x LYW, BY (1 4 |w|*) Pa(dw); Xj.+1) be a product of

ting gN(z,2) = gr(z,2) and Zy = Z,, we see that the Banach spaces with the norm

VN(ty,xz) = VN(T,x) = ¥(z) has this form. Then the

dynamic program of (8), (9) witd\ = T'/N becomes

2120, = ful + |m]| + /W 12041 () | 2, (1 + |w]*) P ()

wherez = (u,m, Zx11) € &. Under (Al) and (A2),Z;, =
UXxMx Zyi1 C X andgl : R" x Z, — IR given by
(26) satisfy (i),—(iii) -

Finally, we obtain the IDDPP.

Theorem 4.3:In addition to (A1) and (A2), suppose that
(Z7,dz;) andgr : IR x Zp — IR satisfy the following:
(i-T) (Z7,dz,) is a bounded and closed subset of a separable
Banach space’;. where metricdz; is induced by the norm

V¥(t,r) = inf min {l(x,u,m)A—i—E[ inf  gpyq (2

uweU meM 2EZj 41

+ f (@, u,m)A + o, u,mw, 2) |}

= inf min inf
uweU meM Jyy 2€Zk41

—l—fA(:v,u,m,w),z)} dPa(w), (24)

[l(:v, u, m)A + gﬁrl (x

: of X7.
where f2(z,u, m,w) = f(z,u,m)A + o(z,u,m)w, Pais . 2T . , "
the measure corresponding to a normal random variable OJgFT)Z/There existsC' > 0 such that for anyz, 2" € R”,
IR! with mean zero and covariancel, and W = R'. Z €47,

We will use the min-plus distributive property of Theorem
3.1 to move the infimum ove#,,; outside the integral.
Letting

lgr(z, 2)| < C(1 + |2|),
lgr(z,2) — gr(a’, 2)| < C( + |z + |2/])|x — 2|

(ii-T) There existsC' > 0 such that for anyz, 2’ € Z7,
z € R",

lgr(2,2) = gr(z, 2] < C(1+ o)z, (2, ).

Letting Zy = Z, andgN (z, 2) = gr(z, 2), (25) with (26)
holds fork=N—-1,N —-2,---,0.

Zis1 = {Zks1: W — Zi41 | Borel measurablé,
we will have

VN(tk, x) = ian g,iv(ac, z), (25)
FASVA™



V. QUADRATIC FORMS

We will give an example where a quadratic structure i§XiSts becaus®™

Here we note than(z) is positive and therefor@;,(z) !
is positive andQ+1(Zk+1(w)) is non-

retained in course of the IDDPP. Consider the following'€gative. More generally, in practice, we use quadratics in

particular case:
f(@,u,m) = A"x + 0™ (u), o(x,u,m) =

fomy = o2+ Lo

2
where, for eachn € M, A™ is ann x n matrix, Q" is
ann x n positive-definite symmetric matrixz™ € IR™ and
b™(-), o™ (-), " (:) are R™-valued,n x | matrix-valued,R-
valued Lipschitz continuous functions on a compact $et
of IRP, respectively.

Let (Z7,dz;) be a bounded and closed subset of
separable Banach space. We supposedhatiR" x Z). —
IR is a quadratic form on:

1 T 1

5@ = 2r(2)"Qr() (@ — () + er(2),
where Q7 (), zr(-), and ¢r(-) are n x n nonnegative-
definite symmetric matrix-valuedi™-valued, andR-valued
bounded Lipschitz continuous functions &#., respectively,
i.e., there existd. > 0 such thatz, 2’ € Z7,,

1Qr(2)[l + zr(2)] + [er(2)] < L,

= Qr(Z) + |zr(2) — 27(2")] + |er(2) — er(2)]|
< Ldg; (2,2').

gT(Ia Z) =

1Qr(2)

Under these assumptions, we can verify the conditions
Theorem 4.3, and we havwé” (¢, z) described by quadratic

‘rNt — inf N
( kax) zlenZk 9k (I,Z),

o (5,2) = 5 — k() Qu()(w — k(2)) + gen(2),
where fork = N, we letZy = Z, Qv = Qr, 2§y =

rr, ey =cp. Fork =N —1,---,0, Z, Qk, Tk, ci are

recursively determined backward in
Z=U X M X Zpy (27)

and forz = (u,m, Zx41) € Zg,

Q) =@+ T+ 470 | Qus(in (w))dPs (w)

(I + A™A),
zu(2) = —Qu(z) 7 — QT + (1 + A™A)T
/ Q1 i (w)) (6™ (u)A + 0™ (w)w

— k41 (241 (w))) dPA( w)}
cx(2) =zrr1(2)" Qr(z )karl() @™)"Q" (2)F" +2" (u)
/ w)A+o" (w)w—xp 41 (Zpr1 (w) ))TQkJrl (Zkt1(w))

V™ () A+0" (u)w—zp 41 (Zrg1(w))) dPa(w
4 e (G (w)dPaw)
w

the formgy (z, 2) = 327 Qr(2)x + b} (2)x + cx(2), which
avoids the inverse, but for reasons of space we do not include
the details.

The key to this class of methods lies in the repeated
projection of the solution down onto a low-dimensional (min
plus) subspace. Importantly, the subspace is chosen at each
step so as to minimize the error induced by this projection.
One sees in (27) that after one step of the IDDPP, the/set
will have the cardinality of the continuum even in the case
whereZ; is finite. Consequently, the projection down to a
Jinite-dimensional subspace is a critical step. We will use a
approach analogous to that in [12], and very briefly discuss
this below.

Each quadratic form is defined by the triple of its coef-
ficients, and we let = 77 = (Qx(2), bi(2), ci(2)). Let T
denote the set of all possible such triples. One first defines
a relaxed partial order ot by o < 7 if

Gle](z) dm glr(z) dn(z)

R" R"

(z) < V7 ell,

where G[7](-) denotes the quadratic function induced by
coefficientst and II is a set of probability measures on
IR™. With this ordering, we reduce the optimal projection
problem to minimization of a decreasing, convex functional
ever a cornice structure [12]. In particular, the apprdpria
cornice structure is the upward cone (according to theglarti
order) of the convex hull of}, = {7,,(z) | z € Zy} CT.One
can show that the optimal projection onto Andimensional
min-plus subspace reduces to selection of a finite subset
of Ti. One further shows that this selection problem can
be reduced to optimization of a submodular functional on
a domain of sets. One may then employ, for example, a
greedy algorithm for (suboptimal) selection relative t@ th
submodular criterion, and we note that there exists extensi
literature regarding error bounds for such algorithms in
relation to submodular criteria.

Lastly, we note that there are two sources of error. The first
is that induced by the time-discretization (see Sectiarnte
second is due to the projection operation. Both need to be
estimated in order to develop a clear sense of the approach.
Based on the results in the discrete-time stochastic [1Q], [
[15] and continuous-time deterministic [9], [13] cases, we
have positive expectations here.
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