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Abstract— Recently, a curse-of-dimensionality-free method
was developed for solution of Hamilton-Jacobi-Bellman par-
tial differential equations (HJB PDEs) for nonlinear control
problems, using semiconvex duality and max-plus analysis.The
curse-of-dimensionality-free method may be applied to HJB
PDEs where the Hamiltonian is given as (or well-approximated
by) a pointwise maximum of quadratic forms. Such HJB PDEs
also arise in certain switched linear systems. The method
constructs the correct solution of an HJB PDE from a max-
plus linear combination of quadratics. The method completely
avoids the curse-of-dimensionality, and is subject to cubic com-
putational growth as a function of space dimension. However,
it is subject to a curse-of-complexity. In particular, the number
of quadratics in the approximation grows exponentially with
the number of iterations. Efficacy of such a method depends
on the pruning of quadratics to keep the complexity growth
at a reasonable level. Here we apply a pruning algorithm
based on semidefinite programming. Computational speeds are
exceptional, with an example HJB PDE in six-dimensional
Euclidean space solved to the indicated quality in approximately
30 minutes on a typical desktop machine.

I. I NTRODUCTION

Dynamic programming is an extremely robust tool for
solving nonlinear optimal control problems. In the case of
deterministic optimal control, or in the case of deterministic
games where one player’s feedback is prespecified, the dy-
namic programming equation reduces to a Hamilton-Jacobi-
Bellman (HJB) PDE. The difficulty is that one must solve
the HJB PDE.

Various approaches have been taken to solving the HJB
PDE. The most common methods are grid-based methods
(c.f., [6], [7]). Although highly refined at this point, these
methods still suffer from the curse-of-dimensionality, asthe
number of grid points and computations grow exponentially
with the space dimension. However, in recent years, entirely
new classes of numerical methods for HJB PDEs have
emerged (c.f., [1], [2], [12], [15], [8]). These methods exploit
the max-plus linearity of the associated semigroup.

In the previous work of the first author [12], [14], a new
method based on above semigroup linearity was proposed
for certain nonlinear HJB PDEs, and this method was free
from the curse-of-dimensionality. In fact, the computational
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growth in state-space dimension is on the order ofn3.
However, there is exponential computational growth in a
certain measure of complexity of the Hamiltonian. Under
this measure, the minimal complexity Hamiltonian is the
linear/quadratic Hamiltonian – corresponding to solutionby
a Riccati equation. If the Hamiltonian is given as a pointwise
maximum of M linear/quadratic Hamiltonians, then one
could say the complexity of the Hamiltonian isM . Such
PDEs can also arise in switched linear systems.

The algorithm transforms the original problem to its max-
plus dual form, where the dual of the value function is
expressed as a max-plus sum, i.e., a pointwise maximum, of
certain quadratic functions. An infinite time-horizon problem
is considered, and as such, the value function is approxi-
mated by iterating a finite-horizon semigroup until a large
enough propagation horizon is reached. With the curse-of-
dimensionality-free method, this finite-horizon semigroup is
approximated by a semigroup whose semiconvex dual is
represented as a finite number of quadratic forms. The dual
of the approximate value at each iteration is stored as a set
of quadratic functions. Acting on this dual with the above
dual semigroup leads to a new approximation, where the
number of quadratics grows by a fixed factor (the number of
quadratics representing the approximate finite-horizon dual
semigroup) at each iteration. This is the curse-of-complexity.
To attenuate this computational growth, we develop a pruning
method based on semidefinite programming (SDP).

II. PROBLEM STATEMENT AND ASSUMPTIONS

The HJB PDEs we consider arise in infinite-horizon
nonlinear optimal control problems, and their Hamiltonians
are given as (or well-approximated by) pointwise maxima
of linear-quadratic functions. Note that pointwise maxima
of quadratic forms can approximate, arbitrarily closely, any
semiconvex function. More specifically, we consider

0 = −H̃(x,∇V ) = − max
m∈{1,2,...,M}

{Hm(x,∇V )} (1)

V (0) = 0 (2)

(i.e., with boundary conditionV = 0 at the origin) where
each of the constituent Hamiltonians has the form

Hm(x, p) = 1
2x

TDmx+ 1
2p

T Σmp+ (Amx)T p+ (lm1 )Tx

+(lm2 )T p+ αm, (3)

whereDm,Σm aren×n symmetric matrices,lm1 , l
m
2 ∈ IRn

andαm ∈ IR.



Hamiltonian H̃ is associated with an optimal control
problem for switched linear systems. LetM

.
= {1, 2, . . .M}.

The corresponding value function is

Ṽ (x) = sup
w∈W

sup
µ∈D∞

sup
T<∞

J̃(x, T ;w, µ)

= sup
w∈W

sup
µ∈D∞

sup
T<∞

∫ T

0

Lµt(ξt) −
γ2

2 |wt|
2 dt (4)

where
Lµt(x) = 1

2x
TDµtx+ (lµt

1 )Tx+ αµt ,

D∞ = {µ : [0,∞) → M : measurable},

W
.
= Lloc

2 ([0,∞); IRk),

and the state dynamics are given by

ξ̇ = Aµtξ + lµt

2 + σµtwt, ξ0 = x (5)

whereσm and γ are such thatΣm = 1
γ2σ

m(σm)T . Here
µt is a switching control which appears in addition to the
controlw.

To motivate the assumptions for this rather general prob-
lem class, we consider̃H as being constructed so as to
resemble some given nonlinear control problem which has a
(finite) solution. That is, we think of̃H as being chosen to
resemble some other Hamiltonian, which may correspond to
the originating object of interest. In particular, we suppose
that problem

0 = −
˜̃
H(x,∇V ), V (0) = 0 (6)

has finite value, and that we are choosingH̃ to approximate
˜̃
H . Let QK = {φ : IRn → IR |φ is semiconvex, and0 ≤
φ(x) ≤ (K/2)|x|2 ∀x ∈ IRn}. We may takeQK as the
domain of the semigroup. We make the following block of
assumptions.

Assume there exists unique viscosity solution,˜̃
V ,

to (6) inQK for someK ∈ (0,∞).
Assume thatH̃(x, p) = maxm∈MHm(x, p) ≤
˜̃
H(x, p) for all x, p ∈ IRn.
AssumeH1(x, p) has coefficients satisfying the
following: l11 = l12 = 0; α1 = 0; there existscA ∈
(0,∞) such thatx′A1x ≤ −cA|x|

2 ∀x ∈ IRn; D1

is positive definite, symmetric; andγ2/|σ1|2 >
cD/c

2
A, wherecD is such thatx′D1x ≤ cD|x|2

∀x ∈ IRn.
Assume that system (5) is controllable in the sense
that givenx, y ∈ IRn and T > 0, there exist
processesw ∈ W andµ measurable with range
in M, such thatξT = y when ξ0 = x and one
applies controlsw, µ

(A.m)

Note that the last of these assumptions, the controllability
assumption, is satisfied if there exists at least onem ∈
M such thatσm(σm)T (which is n × n) has n positive
eigenvalues.

Assume there existc1, c2 < ∞ such that for any
ε–optimal pair,µε, wε for theH̃ problem, one has

‖wε‖2
L2[0,T ] ≤ c1 + c2|x|

2

for all ε ∈ (0, 1], all T <∞ and allx ∈ IRn.

(A.w)

Note that the behavior specified in(A.w) is proved in the
purely quadratic case (c.f., [12]) under reasonable assump-
tions on the constituent-Hamiltonian matrices, but in this
more general case, we assume it instead. Lastly, we make
the following assumption.

Assume there existT , c3 ∈ (0,∞) such that for
all x ∈ IRn, all ε ∈ (0, 1], and allµε, wε which
areε–optimal forṼ (i.e., such that̃J(x, µε, wε) ≥
Ṽ (x) − ε ), one has
∫ T

0

Lµε
t (ξε

t ) dt ≥ c3

∫ T

0

|ξε
t |

2
dt ∀T ≥ T

whereξ̇ε
t = Aµε

t ξε
t + l

µε
t

2 + σµε
twε

t , ξε
0 = x.

(A.ξ)

Note that these last two assumptions might be difficult to
verify. Easily verifiable assumptions appear in [12], [14],but
these generate a significantly smaller class of systems than
those for which these methods apply.

Now, define the operator

S̃T [φ] = sup
w∈W

sup
µ∈DT

∫ T

0

Lµt(ξt) −
γ2

2 |wt|
2 dt+ φ(ξT )

whereDT = {µ : [0, T ) → M : measurable}. Under the
above assumptions, a viscosity solution,Ṽ of (1),(2) exists,

satisfies0 ≤ Ṽ ≤
˜̃
V and is given byṼ = limT→∞ S̃T [V0]

for anyV0 ∈ QK such that0 ≤ V0 ≤ Ṽ , [13], [14].
In the max-plus algebra, addition and multiplication are

defined asa⊕b = max{a, b} anda⊗b = a+b, respectively.
It is well known thatS̃T forms a max-plus linear semigroup.

III. C URSE-OF-DIMENSIONALITY-FREE ALGORITHM

The key steps in the curse-of-dimensionality-free algo-
rithm developed in [14] are given below. Since we are inter-
ested in understanding how the curse-of-complexity arisesin
this algorithm, we shall sidestep the theoretical foundations
which are well covered in [14], [12], and focus on the
algorithmic flow.

A. Approximate propagation

Define the consituent-Hamiltonian semigroup operators as

Sm
τ [φ] = sup

w∈W

∫ τ

0

Lm(ξt) −
γ2

2 |wt|
2 dt+ φ(ξτ ).

Importantly, propagation of a quadraticφ by anSm
τ operator

can be reduced to solution of a differential Riccati equation.
Define the time-indexed operators

S̄τ [φ](x) = max
m∈M

Sm
τ [φ](x) =

⊕

m∈M

Sm
τ [φ](x).

Fix anyT <∞. Under the above assumptions, we have (c.f.,
[13])

lim
N→∞

{
ST/N

}N
[φ] = S̃T [φ]

where the supersciptN represents repeated application of
the operator,N times.



B. Duals of the semigroup operators

This algorithm uses the concept ofsemiconvex dual(c.f.,
[12]). For a functionφ which is uniformly semiconvex with
constantc, the semiconvex dual,a, is given by

a(z) = − max
x∈IRN

ψ(x, z) − φ(x), (7)

and the dual relationship is given by

φ(x) = max
z∈IRn

[ψ(x, z) + a(z)] (8)

whereψ(x, z) = (−c/2)|x− z|
2.

We may obtain the duals of theSm
τ operators,Bm

τ ,
and these are also max-plus linear semigroup operators. In
particular, they are max-plus integral operators with kernels

Bm
τ (x, z) = − max

y∈IRN
{ψ(y, x) − Sm

τ [ψ(·, z)](y)} .

Importantly, note that as theSm
τ [ψ(·, z)](y) are quadratic

functions, theBm
τ are quadratic functions. Each of these is

obtained only once, at the outset of the algorithm.

C. Dual space propagation and the curse-of-complexity

Once the kernelsBm
τ of the dual semigroup are obtained,

one can begin the iteration. One may begin with an initial
quadratic (in the dual space), say

a0(z) = â0(z) = (1/2)(z − ẑ)T Q̂(z − ẑ) + r̂.

Given approximation,ak at stepk, one obtains the next
iterate from

ak+1(z) =
⊕

m∈M

∫ ⊕

IRn

Bm
τ (z, y) ⊗ ak(y) dy

= max
m∈M

max
y∈IRn

[Bm
τ (z, y) + ak(y)].

If ak has the formak(z) =
⊕

{mi}k
i=1

∈Mk âk
{mi}k

i=1

(z)

where eacĥa{mi}k
i=1

is a quadratic form, thenak+1 takes
the form

ak+1(z) =
⊕

{mi}
k+1
i=1

∈Mk+1

âk+1

{mi}
k+1
i=1

(z)

where theâk+1

{mi}
k+1
i=1

are also quadratic. Consequently, the

computations reduce to obtaining the coefficients of these
quadratics at each step, and these computations are ana-
lytic (modulo matrix inverses). This is the reason that the
computational growth in the space dimension is only cubic.
However, note that the number of quadratics comprising the
ak grows by a factor ofM at each iteration — hence the
curse-of-complexity. It has been noted that quite typically,
most of the quadratics do not contribute to the value (as
they never achieve the maximum at any point,z), and may be
pruned wihtout consequence. However, over-pruning, saving
only a limited number of quadratics at each iteration, has
proven to be an excellent computational technique. We now
proceed to discuss the use of semidefinite programming as a
means of pruning the constituent quadratics, theâk

{mi}
k+1
i=1

.
Lastly, note that once one has propagated sufficiently far

(say k = K steps), the value function approximation is
recovered fromaK via (8).

IV. PRUNING ALGORITHMS

In the above curse-of-dimensionality-free algorithm, at
stepk, ak is represented as a max-plus sum of quadratics.
Let us index the elements of this sum by integersi ∈ Ik

(rather than by the sequences{mi}
k
i=1). That is, we have

ak(z) =
⊕

i∈Ik

âk
i (z)

where we let eacĥak
i be given in the form

âk
i (z) = âi(z) = zTAiz + 2bTi z + ci

where we delete the superscriptk for simplicity of notation
here and in the sequel.

Recall that we are reducing computational cost by pruning
quadratics (̂ai) which do not contribute to the solution
approximation (not achieving the maximum at anyz ∈
IRn). Consequently, we want to determine whether thepth

quadratic contributes to the pointwise maximum. In other
words, we need to determine whether there is a region where
it is greater than all other quadratics. Fixp ∈ Ik. We need
to check the feasibility of the following inequalities. That is,
we want findz such that

zTApz + 2zT bp + cp ≥ zTAiz + 2zT bi + ci ∀i 6= p. (9)

Alternatively, we consider the problem:

Minimize G(z, ν)
.
= ν subject to (10)

zT (Ai −Ap)z + 2zT (bi − bp) + (ci − cp) ≤ ν ∀i 6= p.

Then, the minimum value ofν, ν̄, is the minimum amount
by which thepth quadratic needs to be raised in order to
contribute to the max-plus sum. If̄ν > 0, thenpth quadratic
does not contribute to the max-plus sum, and hence it can
be pruned without consequence. Ifν̄ < 0, it implies that
quadratic contributes to the max-plus sum, and moreover it
is |ν̄| above the pointwise maximum of all other quadratics
at some point. In this case,|ν̄| can serve as some measure
of contribution of thepth quadratic to the value function –
useful for over-pruning.

A. Pairwise pruning

Before undertaking the pruning using semidefinite pro-
gramming, pairwise pruning is used. This is a simple, fast
and effective technique, which checks between all pairs
of quadratic basis functions, and prunes those which are
completely dominated by another. LetA = Ai1 − Ai2 ,
b = bi1 − bi2 , c = ci1 − ci2 , and defineQ(z) = zTAz +
2bT z + c. ThenQ is nonnegative everywhere if and only if
the homogeneous quadratic form is nonnegative everywhere.
Further,Q(t−1z) ≥ 0 for all z ∈ IRn and all t 6= 0 is
equivalent toQ̂(z, t)

.
= zTAz + 2tbT z + ct2 ≥ 0 for all

z ∈ IRn and all t ∈ IR. This latter statement is true if and
only if [

c bT

b A

]
� 0, (11)

i.e., nonnegative definite. Thei2 quadratic can be pruned if
(11) is true. This pairwise pruning reduces the computational



effort of the semidefinite pruning by getting rid of obviously
dominated quadratics.

B. Shor’s semidefinite relaxation based SDP

The problem of evaluating an individual quadraticâp(z)
for pruning, (10), can be rephrased as below. Letqi(z) =
âi(z) − âp(z) for all i 6= p. Then,âp can be pruned if

min
z,ν

{ν : ν − qi(z) ≥ 0 ∀i} ≥ 0. (12)

Introducing the slack variables,ui, (and lettingu = {ui})
we see that̂ap can be pruned if

min
z,ν,u

{
ν : ν − qi(z) − ui

2 = 0 ∀i
}
≥ 0. (13)

Let fi(z, ν, u) = ν−qi(z)−ui
2. Since thefi are zero only on

the constraint set, we can add theirλ-weighted combination
to the objective function without changing its value, where
λ ∈ IR#Ik−1. That is,

min
z,ν,u

{
ν : ν − qi(z) − ui

2 = 0 ∀i
}

= min
z,ν,u

{
ν −

∑

i

λifi(z, ν, u) : fi(z, ν, u) = 0

}

≥ min
z,ν,u

{
ν −

∑

i

λifi(z, ν, u)

}
.
= ζ(λ).

Note that in the last form, the domain for minimization is
no longer the constraint set, but the whole space, i.e.,z ∈
IRn, ν ∈ IR, u ∈ IR#Ik−1. Also, we see thatζ(λ) is a lower
bound for the minimum in (13). We wish to maximize lower
boundζ(λ) by varyingλ. Consequently, the dual problem is

max
λ∈IR#Ik−1

ζ(λ). (14)

Next, we narrow the search for the optimalλ by considering
the following arguments. If

∑
λi 6= 1, then∀z, u

ζ(λ) ≤ min
ν

(
1 −

∑
λi

)
ν +

∑
λi

(
qi(z) + u2

i

)
= −∞.

Hence, for a finite lower bound, it is fruitful to restrictλ
such that

∑
λi = 1. This makes the objective independent

of ν. Now, if λj < 0, for somej, then for all z and all
{ui : i 6= j},

ζ(λ) ≤ min
uj


∑

i

λiqi(z) +
∑

i6=j

λiu
2
i + λju

2
j


 = −∞

Hence, we may further restrict the domain toλi ≥ 0, ∀i.
Thus,λ lies within the simplexS,

∑
λi = 1 andλi ≥ 0 ∀i.

Note, also, that this makes the objective function independent
of ui, since the above minimum with respect toui is always
achieved atui = 0. Consequently,

ζ(λ) = min
z

∑

i

λiqi(z) ∀λ ∈ S. (15)

Thus, dual problem (14) can be reposed as

max
λ

ζ(λ) = max
λ∈S

ζ(λ) = max
λ∈S

min
z

∑

i

λiqi(z)

= max
λ∈S,ζ∈IR

{
ζ : ζ ≤

∑

i

λiqi(z) ∀z

}
. (16)

Suppose that quadraticsqi(z) are specified by parameters̄Ai,
b̄i and c̄i. Then, using linear superposition and result (11),
the conditionζ ≤

∑
i λiqi(z) ∀z from (16) can be posed as

following linear matrix inequality:

max
λ∈S,ζ

{
ζ :

[ ∑
i λic̄i − ζ

∑
i λib̄

T
i∑

i λib̄i
∑

i λiĀi

]
� 0

}
. (17)

Note that if the maximalζ value, ζ̄ satisfiesζ̄ ≥ 0, then
the minimalν value in (12),ν̄, is greater than̄ζ, and thus
positive. This indicates that the quadratic,âp, needs to be
raised byν̄ units before it can contribute to the max-plus
sum. Hence it can be pruned. Ifζ̄ < 0, then its “prunability”
is not conclusive, as̄ζ is a lower bound for̄ν, and the gap
is not guaranteed to be zero. Nevertheless, it does give us a
working indication of the importance of the quadratic, since
ζ̄ < 0 indicates that thepth quadratic has to come down by
at least|ζ̄| units, before it is dominated by the convex hull
of the remaining quadratics.

An additional way to develop intuition for result (17) is
as follows. The above test evaluates thepth quadraticâp,
which can be pruned ifζ = 0 satisfies the inequality in (16).
Lets now substituteqi(z) = âi(z) − âp(z) in (16). We see
that âp can be pruned if for someλ ∈ S

0 ≤
K−1∑

i

λiqi(z) =
∑

i6=p

λiâi(z) − âp(z) ∀ z ∈ IRn,

or equivalently,

[
cp bTp
bp Ap

]
�

∑

i6=p

λi

[
ci bTi
bi Ai

]
. (18)

Thus, if the convex hull of remaining quadratics intersects
the semidefinite cone of quadratics greater thanâp, then âp

can be pruned.
In our context, the substantial benefits of Shor’s relaxation

are that it accommodates both concave and convex quadrat-
ics, calculates an importance/quality metric and gives a clean
analytical framework for analysis of pruning. One efficient
way to implement the above scheme is to prune all but the
quadratics lying on the periphery of the convex hull, and
then to evaluate each vertex quadratic one by one by the
above semidefinite program (17). A seeming drawback of
this algorithm is that it gives the optimum inλ space, and not
z, making it difficult to assign locally weighted importance.
That is, we might choose to assign more importance to the
quadratics which are vital near origin than those far from it.
The next method helps us do precisely that.



C. Schur complement-based SDP

In this method, we again aim to solve (10) without
resorting to dual relaxation schemes. It is based on following
well-known Schur’s complement lemma, which can be found
in [4]

Lemma 4.1:Let

E =

(
B CT

C D

)

be a symmetric matrix withk × k blockB, andl × l block
D. Assume thatB is positive definite. ThenE is positive
semi-definite if and only ifD −CB−1CT is positive semi-
definite.

Now starting form (10), if we definēAi = Ai −Ap, b̄i =
bi − bp and c̄i = ci − cp, and assume that̄Ai ≻ 0, then (10)
can be rephrased as:

Minimize G(z, ν)
.
= ν subject to (19)

zT Āiz + 2zT b̄i + c̄i ≤ ν ∀i 6= p.

By Lemma 4.1, this is equivalent to the following linear
matrix inequality (LMI).

[
−(2zT b̄i + c̄i) + ν zT

z Ā−1
i

]
� 0 ∀i 6= p

Note that if Āi ≻ 0, ∀i 6= p, then (19) is equivalent to the
LMI given by

min
z,ν

{
ν :

[
−2zT b̄i − c̄i + ν zT

z Ā−1
i

]
� 0 ∀i 6= p

}
.

(20)
If the minimalν value,ν̄ satisfiesν̄ ≥ 0, then the quadratic
âp can be pruned without consequence. If it is negative, then
|ν̄| serves as a metric of importance ofâp(z), as it says
that at some pointz, âp is at least|ν̄| higher than all other
quadratics.̄ν and thez at which it occurs can be combined to
create a new importance metric catered to region of interest.
For example,|ν̄|/(1+ |z|2) ensures tighter error bounds near
origin than far from it.

However, the assumption̄Ai ≻ 0 ∀i 6= p is overly
restrictive, as it only enables comparison with quadratics
more convex than̂ap, as we simply drop the inequalities
for which this does not hold. This also ensures conservative
pruning. To do a tighter pruning, it is advisable to rank
the quadratics in the increasing order of lowest eigenvalues,
before pruning.

If Āi � 0 instead of IfĀi ≻ 0, then the above LMI can
be modified to use a linear transformation ofĀi using its
nonzero singular values.

V. COMPUTATIONAL COMPLEXITY

Since our aim is to reduce the curse-of-complexity without
letting go of our freedom from the curse-of-dimensionality,
it is worthwhile to discuss the computational overhead in-
volved in these pruning methods. They are polynomial in
both dimensionality and the number of quadratic functions.
In particular, we retain our freedom from the curse-of-
dimensionality.

A generic semi-definite programP is given by

P0 = min
η∈IRN



c

T η : A0 +

N∑

j=1

ηjAj ≥ 0, ||η||2 ≤ R





where theAj are symmetric matrices with̃M diagonal
blocks of sizeki × ki, i = 1, . . . M̃ . We say thatηε is an
ε–optimal solution if

‖ηε‖2 ≤ R, A0 +
N∑

j=1

ηε
jAj ≥ −ǫI, cT ηε ≤ P0 + ǫ.

In [4], the authors derive the computational complexity of
obtaining such anηε.

C(P , ǫ) = O(1)


1 +

fM∑

1

ki




1/2

(21)

·N


N2 +N

fM∑

1

k2
i +

fM∑

1

k3
i


D(P , ǫ)

where D(P , ǫ) depends on the specific problem data (as
indicated by theP in the argument as well asǫ). Using this
expression, we can obtain an upper bound for the arithmetic
complexity of the pruning algorithms. Assuming the worst
case scenario where no quadratic gets pruned, we find the
complexity of testing one quadratic for pruning as follows.

For the Schur complement pruning of (20), we haveη =
[zT ν]T . HenceN = n + 1. Further, the number of block
LMIs is I

.
= #Ik − 1. ThusM̃ = I, andk1 = k2 = . . . =

km = n + 1. Substituting these into (21), we obtain the
complexity as

C(P , ǫ) = O(1) (1 + I(n+ 1))
1/2

(n+ 1)3

· [1 + 2(n+ 1)(I − 1)]D(P , ǫ), (22)

and we see that the complexity grows asn4.5 andI1.5.
For the Shor semidefinite relaxation approach, we apply

a similar analysis, and find that the complexity grows as
n3.5 and I3.5. Note that these computational cost growth
rates as a function of space dimension,n, are poorer than
the cubic growth of the basic algorithm. However, they are
still tremendously helpful for real-world problems, and the
curse-of-dimensionality is still very far off.

VI. I MPORTANCE-BASED OVER-PRUNING

Both the Shor’s relaxation and the Schur complement
pruning schemes generate importance metrics for unpruned
quadratics. This is very useful in controlling the complexity
growth according to an error tolerance, region of interest,
and/or computational limits. Currently, we set a boundL(k)
for the number of quadratics which will remain after over-
pruning at thekth step. The algorithm keeps only theL(k)
quadratics,âk

i with the highest values according to our
measure of importance. However, there does not yet exist
a theory which allows us to map the importance measure of
a quadratic at stepk to an error bound in the approximation



at the terminal step. Further, a bound on the errors induced by
over-pruning ofmultiple quadratics is obviously a necessary
additional step. Regardless, application of these methodshas
proven extremely fruitful, as can be seen in the example
below.

VII. S IX -DIMENSIONAL , SIX-HAMILTONIAN EXAMPLE

We applied the curse-of-dimensionality-free method to the
following problem overIR6 with six constituent quadratic
Hamiltonians. Note that the problem was tweaked to exhibit
sufficiently complex and interesting behavior, such that there
is interaction amongst dimensions, and each operator is
important somewhere in the domain. Hence the following
data yields a reasonably rich problem.

We shall specify the matrices in terms of the following
building blocks for the dynamics:

Aa =

[
−1 .5
.1 −1

]
, Ab = Aa,

Ac = Aa, Ad =

[
−1 .5
.3 −1

]
,

Ae = Aa, Af =

[
−1 .5
.1 −1

]
,

Σa = 0.4 ×

[
0.27 −.01
−.01 0.27

]
, Σb = 0.4Σa,

Σc = Σa, Σd = 0.4Σa,

Σe = Σa, Σf = 0.4Σa,

and the following building blocks for the payoff functions:

Da =

[
1.5 .2
.2 1.5

]
, Db = 1.4 ·

[
1.5 .2
.2 1.5

]
,

Dc = 1.4 ·

[
0.2 1.5
1.5 0.2

]
, Dd = 1.2 ·

[
1.6 0
0 0

]
,

De = 1.1 ·

[
0.3 1.5
1.5 0.3

]
, Df = 1.3 ·

[
0 0
0 1.6

]
.

We will use a parameter to adjust the interaction in the
dynamics across the dimensions, and this will beγ = −0.1.
Now we are ready to define each of the Hamiltonians. We
need to specify parameters for the dynamics (A, Σ, l2) and
the payoff (D, l1, α). For the example below,l1 = 0 and
l2 = 0 for all the Hamiltonians. The remaining parameters
are as follows.

For the first Hamiltonian,H1, we let

A1 =



Aa γI γI
γI Aa 0
γI 0 Aa


 , Σ1 =




Σa 0 0
0 Σa 0
0 0 Σa




D1 =



Da 0 0
0 Da 0
0 0 Da


 , α1 = 0 .

For the second Hamiltonian,H2, we let

A2 =



Ab γI γI
γI Ab 0
γI 0 Ab


 , Σ2 =




Σb 0 0
0 Σb 0
0 0 Σb




D2 =



Db 0 0
0 Db 0
0 0 Db


 , α2 = −0.4 .

For the third Hamiltonian,H3, we let

A3 =



Ac γI γI
γI Ac 0
γI 0 Ac


 , Σ3 =




Σc 0 0
0 Σc 0
0 0 Σc




D3 =



Dc 0 0
0 Dc 0
0 0 Dc


 , α3 = 0.

For the fourth Hamiltonian,H4, we let

A4 =



Ad γI γI
γI Ad 0
γI 0 Ad


 , Σ4 =




Σd 0 0
0 Σd 0
0 0 Σd




D4 =



Dd 0 0
0 Dd 0
0 0 Dd


 , α4 = −0.4 .

For the fifth Hamiltonian,H5, we let

A5 =



Ae γI γI
γI Ae 0
γI 0 Ae


 , Σ5 =




Σe 0 0
0 Σe 0
0 0 Σe




D5 =



De 0 0
0 De 0
0 0 De


 , α5 = 0.

For the sixth Hamiltonian,H6, we let

A6 =



Af γI γI
γI Af 0
γI 0 Af


 , Σ6 =




Σf 0 0
0 Σf 0
0 0 Σf




D6 =



Df 0 0
0 Df 0
0 0 Df


 , α6 = −0.4 .

For this example, we let the time-discretization step-size
be τ = 0.2, and propagation was carried out with the
Shor’s semidefinite relaxation based pruning. The overprun-
ing threshold was set heuristically toL(k) = 20 + 6k. That
is, a maximum ofL(k) quadratics,̂ak

i , were retained at the
kth step. In this test,25 iteration steps were carried out in
30 minutes, yielding a rather accurate solution in a compact
domain in all six dimensions. This computation-time is for
an Apple mac desktop, from roughly 2005. Slices of statistics
for this value function along the 1-2 axes are shown in the
accompanying figures. The backsubstitution error depends
on the propagation as well as the time-discretization. The
theoretical error bounds in [13] are of the formε(1 + |x|2)
(over the entire space) whereε ↓ 0 as the number of
propagation steps goes to infinity and time-discretizationgo
to zero, with the required relative rates being discussed in
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the reference. However, we found that, when looking only
over a compact sub-domain, the component of the error due
to the number of propagation steps went to zero after a
finite number of steps, leaving only the error due to time-
discretization. That is, the error reduction on a compact sub-
domain saturated after a sufficient number of iterations were
performed.
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