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Abstract— Recently, a curse-of-dimensionality-free method growth in state-space dimension is on the orderndf
was developed for solution of Hamilton-Jacobi-Bellman par  However, there is exponential computational growth in a
tial differential equations (HJB PDEs) for nonlinear control certain measure of complexity of the Hamiltonian. Under

problems, using semiconvex duality and max-plus analysi§.he thi th inimal lexity Hamiltoni is th
curse-of-dimensionality-free method may be applied to HIB IS measure, the minimal compiexity Hamiitonian 1S the

PDEs where the Hamiltonian is given as (or well-approximate  linear/quadratic Hamiltonian — corresponding to solutiyn
by) a pointwise maximum of quadratic forms. Such HJB PDEs a Riccati equation. If the Hamiltonian is given as a poinéwvis

also arise in certain switched linear systems. The method maximum of A/ linear/quadratic Hamiltonians, then one

constructs the correct solution of an HJB PDE from a max- 4|4 say the complexity of the Hamiltonian i&. Such
plus linear combination of quadratics. The method completly PDE | L itched |i ¢
avoids the curse-of-dimensionality, and is subject to culsicom- S can also arise In switched linear systems.

putational growth as a function of space dimension. However ~ The algorithm transforms the original problem to its max-
it is subject to a curse-of-complexity. In particular, the number  plus dual form, where the dual of the value function is
of quadratics in the approximation grows exponentially with expressed as a max-plus sum, i.e., a pointwise maximum, of
the number of iterations. Efficacy of such a method depends g 5in quadratic functions. An infinite time-horizon plexin

on the pruning of quadratics to keep the complexity growth . . L .
at a reasonable level. Here we apply a pruning algorithm IS considered, and as such, the value function is approxi-

based on semidefinite programming. Computational speeds ar Mated by iterating a finite-horizon semigroup until a large
exceptional, with an example HJB PDE in six-dimensional enough propagation horizon is reached. With the curse-of-
Euclidean space solved to the indicated quality in approxirately  dimensionality-free method, this finite-horizon semigrds
30 minutes on a typical desktop machine. approximated by a semigroup whose semiconvex dual is
|. INTRODUCTION represented as a finite number of quadratic forms. The dual
Dynamic programming is an extremely robust tool forOlc the approximatg value a.t each itgration Is _stored as a set
?f quadratic functions. Acting on this dual with the above

solving nonlinear optimal control problems. In the case o . S
s : . .~ “dual semigroup leads to a new approximation, where the
deterministic optimal control, or in the case of deterntinis

h | 's feedback | ified. th dwumber of quadratics grows by a fixed factor (the number of
games Where one players feedback 1s prespecitied, e jl]adratics representing the approximate finite-horizoal du

namic programming equation reduces to a Hamilton-Jacohi- . . . - PP,
Bellman (HJB) PDE. The difficulty is that one must solv emigroup) at each iteration. This is the curse-of-coniplex

the HJB PDE. ®To attenuate this computational growth, we develop a paunin

Various approaches have been taken to solving the ngethOd based on semidefinite programming (SDP).

PDE. The most common methods are grid-based methods
(c.f., [6], [7]). Although highly refined at this point, thes
methods still suffer from the curse-of-dimensionality,ths The HJB PDEs we consider arise in infinite-horizon
number of grid points and computations grow exponentiallyionlinear optimal control problems, and their Hamiltorsian
with the space dimension. However, in recent years, eptirehre given as (or well-approximated by) pointwise maxima
new classes of numerical methods for HIB PDEs hawvst linear-quadratic functions. Note that pointwise maxima
emerged (c.f., [1], [2], [12], [15], [8]). These methods ®ip  of quadratic forms can approximate, arbitrarily closelyy a

Il. PROBLEM STATEMENT AND ASSUMPTIONS

the max-plus linearity of the associated semigroup. semiconvex function. More specifically, we consider
In the previous work of the first author [12], [14], a new _
method based on above semigroup linearity was proposed 0= —-H(z,VV)=— {?1230( M}{H’”(w,vv)} Q)
me{l,2,...,

for certain nonlinear HIB PDEs, and this method was free
from the curse-of-dimensionality. In fact, the computatb
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Assume there exist;, co < oo such that for any
e—optimal pairu®, w® for the H problem, one has
(A.w)

Hamiltonian H is associated with an optimal control
problem for switched linear systems. Let = {1,2,... M}.
The corresponding value function is wa”?Lz[0 <o+ ca|z|?

— . : forall e € (0,1], all T' < oo and allz € R™.
V(z) = sup sup sup J(z, Tyw, p) Note that the behavior specified {pl.w) is proved in the
T , purely quadratic case (c.f., [12]) under reasonable assump
= sup sup sup / LM (&) — Llw|*dt (4) tions on the constituent-Hamiltonian matrices, but in this
WEW p€Dos T<o0 JO more general case, we assume it instead. Lastly, we make

where the following assumption.
L (z) = 22" Do + (I8) Tz + o, Assume there exisT, c; € (0,00) such that for
Doo = {1 [0,00) — M : measurablé, all z € R™, all ¢ € (0,1], and all 4%, w* which

aree—optimal forV (i.e., such that/ (z, u°, w®) >

~ 7rloc . k
W—LQ ([0,00),]R )’ V(x)—a), one has

(A.£)
and the state dynamics are given by r . r
| ieaza [lgra vrer
E=AME U +otwy, & =u (5) ’ )

where£s = AMigs + 14 4 ghiwg, € = a.

Note that these last fwo assur‘rt1p§00ns might be difficult to

1 is a switching control which appears in addition to the/€fify- Easily verifiable assumptions appear in [12], [1a)t
these generate a significantly smaller class of systems than

control w. i
To motivate the assumptions for this rather general proktJhoSe for W.h'Ch these methods apply.
=~ Now, define the operator

lem class, we considef/ as being constructed so as to
resemble some given nonlinear control problem which has a &

T
~ - Bt _ 2 2
(finite) solution. That is, we think off as being chosen to Srl9] jg%ui“g/o LE(&e) = 7wl dt + o)

resem.bl_e some ot_her Hamﬂtoman, whlch_ may correspond WhereDT — {4 :[0,T) — M : measurablg. Under the
the originating object of interest. In particular, we sup@o , . . e .
that problem above assumptions, a viscosity solutidnof (1),(2) exists,
satisfies) < V < V and is given byl = limp_.o St[Vp]

for any Vy € Qk such thatd <V, <V, [13], [14].

In the max-plus algebra, addition and multiplication are
defined agi©b = max{a, b} anda®b = a+b, respectively.
It is well known thatSy forms a max-plus linear semigroup.

where o™ and v are such that™ = L™ (¢™)T. Here

0= —H@VV), V(0)=0 6)

has finite value, and that we are choosﬁgo approximate
H.let Qx = {¢ : R* — IR|¢ is semiconvex, and <

o(z) < (K/2)|z|? Vo € R"}. We may takeQy as the [1l. CURSE-OF-DIMENSIONALITY-FREE ALGORITHM
domain of the semigroup. We make the following block of The key steps in the curse-of-dimensionality-free algo-
assumptions. rithm developed in [14] are given below. Since we are inter-

ested in understanding how the curse-of-complexity aiises
to (6) in Qx for somels € (0, 0). th;]s_ ?]Igorlthm,”we shallds@esaef thiztheorzncf:al fourm‘aitlh
Assume thatfl (x,p) = maxmen H™(z,p) < which are well covered in [14], [12], and focus on the

~ algorithmic flow.
H(z,p) forall z,p € R".

Assume there exists unique viscosity solutih,

Assume H'(z, p) has coefficients satisfying the A. Approximate propagation

following: I} = 1 = 0; o' = 0; there exists:4 € Define the consituent-Hamiltonian semigroup operators as
(0,00) such that’ A'x < —calz|? Vo € R™; D* T )

is positive definite, symmetric; ang?/|o?[2 > (A7) Sl = sup [ L™(&) — Flwel? dt + o(&r).

cp/c%, wherecp is such thate’ D'z < cp|z|? wew o

Vo € IR™. Importantly, propagation of a quadraticby an .S operator

can be reduced to solution of a differential Riccati equatio

Assume that system (5) is controllable in the sense i o
Define the time-indexed operators

that givenz,y € IR™ andT > 0, there exist

processesy € W and . measurable with range S, [¢](z) = max ST'[¢](z) = @ S™[¢](x).
in M, such that{;y = y when¢, = x and one meM meM
applies controlso, y Fix anyT < oco. Under the above assumptions, we have (c.f.,
13
Note that the last of these assumptions, the controllybilit[ D lim {ET N}N 6] = §T[¢]
assumption, is satisfied if there exists at least omec N—oo /

M such thate™(o™)T (which is n x n) hasn positive where the superscipV represents repeated application of
eigenvalues. the operator)N times.



B. Duals of the semigroup operators V. PRUNING ALGORITHMS

This algorithm uses the concept &émiconvex dug(c.f., In the above curse-of-dimensionality-free algorithm, at
[12]). For a functiong which is uniformly semiconvex with stepk, @* is represented as a max-plus sum of quadratics.
constantc, the semiconvex duak, is given by Let us index the elements of this sum by integérs 7

alz) = — m?%w(x’z) — $(2), @) (rather than by the sequencgs;}*_,). That is, we have
and the dual relationship is given by a*(z) = P af(2)
€Tk
p(z) = max [¥(z, z) + a(2)] (8) where we let eacid¥ be given in the form
zelR™
where(z, z) = (—c/2)|x — z|*. @ (z) =ai(z) = 2" Az + 2b] 2 + ¢

We may obtain the duals of théT" operators,B", where we delete the superscripfor simplicity of notation
and these are also max-plus linear semigroup operators.d8re and in the sequel.
particular, they are max-plus integral operators with k&n  Recall that we are reducing computational cost by pruning

B™(z,2) = — max {¢(y,z) — S™[1h(-, 2)](y)} . quadratics ¢;) which do not contribute to the solution
yeRy approximation (not achieving the maximum at anye

Importantly, note that as th&™[¢ (-, z)](y) are quadratic IR™). Consequently, we want to determine whether #He
functions, theB* are quadratic functions. Each of these igjuadratic contributes to the pointwise maximum. In other
obtained only once, at the outset of the algorithm. words, we need to determine whether there is a region where
it is greater than all other quadratics. Rixc Z*. We need
to check the feasibility of the following inequalities. Ths,
\{ve want findz such that

C. Dual space propagation and the curse-of-complexity

Once the kernel®! of the dual semigroup are obtained,
one can begin the iteration. One may begin with an initi

quadratic (in the dual space), say 2TAP 2 4+ 22T0P P > 2T A2 + 2270 4 ¢ Vi#p. (9)
@(z) =a"(2) = (1/2)(z = 2)7Q(z — 2) + T~ Alternatively, we consider the problem:
Given approximationg® at stepk, one obtains the next Minimize G(z,v) =v  subject to (10)
iterate from 2T(A; — Ap)z 4+ 227 (b —b,) + (ci —¢p) < v Vi #p.
—k+1 _ m
@ (z) = @ B (2,9) ©T" (y) dy Then, the minimum value of, 7, is the minimum amount
meM . e by which thep!" quadratic needs to be raised in order to
= max 7!1161%%);[37 (z,9) +a"(y)]- contribute to the max-plus sum. # > 0, thenp'" quadratic

—k i does not contribute to the max-plus sum, and hence it can
If @ has the forma®(z) = @(nye cms a{m} (=) pe pruned without consequence.idf< 0, it implies that
where eachii,, ,« is a quadratic form, them"*" takes quadratic contributes to the max-plus sum, and moreover it
the form is |7| above the pointwise maximum of all other quadratics
"t (2) = @ Gl k+1(2) at some point. In this cas¢y| can serve as some measure
Hmayiz of contribution of thept" quadratic to the value function —
useful for over-pruning.
where thea{ et are also quadratic. Consequently, the
computations réduce to obtaining the coefficients of theé% Pairwise pruning
quadratics at each step, and these computations are anaBefore undertaking the pruning using semidefinite pro-
lytic (modulo matrix inverses). This is the reason that th@ramming, pairwise pruning is used. This is a simple, fast
computational growth in the space dimension is only cubi@nd effective technique, which checks between all pairs
However note that the number of quadratics comprising tHf quadratic basis functions, and prunes those which are
@* grows by a factor of\/ at each iteration — hence the cOmpletely dominated by another. Let = A; — A;,,
curse-of-complexity. It has been noted that quite typjcall ® = bi, — bi,, ¢ = ¢i, — ciy, and defineQ(z) = 2" Az +
most of the quadratics do not contribute to the value (a2’ 2 + ¢. ThenQ is nonnegative everywhere if and only if
they never achieve the maximum at any poit.and may be the homogeneous guadratic form is nonnegative everywhere.
pruned wihtout consequence. However, over-pruning, saviffurther, Q(t='z) > 0 for all z € R™ and allt # 0 is
only a limited number of quadratics at each iteration, hagduivalent 0Q(z,t) = 2T Az + 2Tz + ct? > 0 for all
proven to be an excellent computational technique. We now€ R" and allt € IR. This latter statement is true if and
proceed to discuss the use of semidefinite programming a®aly if .
means of pruning the constituent quadratics, &h k4 [ c b } =0, (11)
Lastly, note that once one has propagated su C|ently far b A
(say k = K steps), the value function approximation isi.e., nonnegative definite. Thig quadratic can be pruned if
recovered fronz” via (8). (11) is true. This pairwise pruning reduces the computation

{mi}kijMk*l



effort of the semidefinite pruning by getting rid of obvioysl Thus, dual problem (14) can be reposed as
dominated quadratics.

max ((A) = max((A) = maxmin > | Xigi(2)

B. Shor's semidefinite relaxation based SDP i
The problem of evaluating an individual quadraiig(z) = max {¢:(< ZM%(Z) vz b (16)
for pruning, (10), can be rephrased as below. §£t) = AESCER e

ai(z) —ap(z) for all i # p. Then,a, can be pruned if
Suppose that quadratigg z) are specified by parametets,
n;liun {v: v—aq(z) >0 Vi} >0. (12) b, andé;. Then, using linear superposition and result (11),

’ the condition{ < >, A\ig;(2) ¥z from (16) can be posed as
Introducing the slack variables,;, (and lettingu = {u;}) following linear matrix inequality:
we see thati, can be pruned if > Y

;i NiCi — i Ai0;

inunqi {viv—qz) - u;? =0 Vi} > 0. (13) ){Ié?gxg {C : { lz:i \ib; S N4 ] = 0} - (47
Let fi(z, v,u) = v—g;(z)—us2. Since thef; are zero only on Note that if the maximal value, ¢ satisfies¢ > 0, then
the constraint set, we can add thaiweighted combination the minimalv value in (12),7, is greater thar, and thus
to the objective function without changing its value, wherdositive. This indicates that the quadratig,, needs to be

\ € R#T"-1 That is, raised byw units before it can contribute to the max-plus
sum. Hence it can be pruned.gf< 0, then its “prunability”
min {v: v —¢(2) —u®> =0 Vi} is not conclusive, ag is a lower bound fow, and the gap
s is not guaranteed to be zero. Nevertheless, it does give us a
. working indication of the importance of the quadratic, ginc
= - Aifi : i =0 . 2 . '
B {V 21: ifilzvu): filz ) } ¢ < 0 indicates that the!" quadratic has to come down by

at least|¢| units, before it is dominated by the convex hull

> min {1/ — Z Nifi(z,v, u)} =¢(N). of the rem:_;tining quadratics. o _
ot i An additional way to develop intuition for result (17) is

Note that in the last f the d in f inimization i as follows. The above test evaluates f{fé quadratica,,
nc? E) ngir Itrr]1e ceonasstraicr):tn;et iutotrr?sl\r/]vhgiemslggztlazign 'Swhich can be pruned if = 0 satisfies the inequality in (16).

' ) P Lets now substitutey; (z) = a;(2) — @ in (16). We see
R"v e R,uc R*T"~1, Also, we see thag()\) is a lower @i(2) = ai(2) - ap(z) in (16)

thata b dif f
bound for the minimum in (13). We wish to maximize lower ata, can be pruned if for soma € 5
bound({()\) by varying\. Consequently, the dual problem is

max  ((A). (14)

K—-1
0< > Ngi(2) =Y _Ndi(z) —ap(z)  VzeR",
A€ R#TF -1 ‘

i#p
Next, we narrow the search for the optimaby considering Or equivalently,
the following arguments. IF")\; # 1, thenVz, u - -
[c,, bp}jZAl{ci b} (18)
¢(A) < min (1 - Z /\i) v+ Z)‘i (gi(z) +u?) = —o0. by Ap iz bi A

Hence, for a finite lower bound, it is fruitful to restrict Thus, if the convex hull of remaining quadratics intersects

such thatd~ \; = 1. This makes the objective independenthe semidefinite cone of quadratics greater thgnthena,,

of v. Now, if \; < 0, for somej, then for allz and all can be pruned.

{ui:i#34}, In our context, the substantial benefits of Shor’s relaxatio
are that it accommodates both concave and convex quadrat-
ics, calculates an importance/quality metric and give®arcl

) < ngln Z)\i(ﬁ(z) + Z/\zuf + /\j“? =7 analytical frameworlffor analycjsis 0}:‘ pruning. O?le efficient
’ i i way to implement the above scheme is to prune all but the

Hence, we may further restrict the domain Xp > 0, Vi. quadratics lying on the periphery of t_he convex hull, and

Thus, A lies within the simplexS, 3" A; = 1 and\; > 0 Vi. then to eva}luaFe_ each vertex quadratic one by one by the

Note, also, that this makes the objective function indepand above semidefinite program (17). A seeming drawback of

of u;, since the above minimum with respectupis always this alg_orlthm _|s_that it gives the optlmum_Dnspac_e, and not
achieved ati; — 0. Consequently z, making it difficult to assign locally weighted importance.

That is, we might choose to assign more importance to the
C(N) = minz)\iqi(Z) V) € S. (15) Quadratics which are vital near origin than those far from it
= = The next method helps us do precisely that.



C. Schur complement-based SDP A generic semi-definite prograf is given by

In this method, we again aim to solve (10) without N
resorting to dual relaxation schemes. It is based on foiigwi Py= min { cTn: Ay + anAj >0,|nll, <R

well-known Schur’s complement lemma, which can be found neRy e
in [4] —
Lemma 4.1:Let where the A; are symmetric matrices with\/ diagonal
B COT blocks of sizek; x k;, i = 1,... M. We say that)® is an
E= ( cC D ) e—optimal solution if

N
Inlla < R, Ao+ Y n5A; > —el, "' < Py +e.

Jj=1

be a symmetric matrix witk x k block B, andi x | block
D. Assume thatB is positive definite. TherE is positive
semi-definite if and only ifD — CB~'C7 is positive semi-

definite. In [4], the authors derive the computational complexity of
Now starting form (10), if we definel; = 4; — 4,, b; =  obtaining such am°.
b, — b, and¢; = ¢; — ¢, and assume that; > 0, then (10) _ 1/2

can be rephrased as: M
P C(P.e)= O [ 1+ k (21)
Minimize G(z,v) =v  subject to (29) 1
2TA2+2T0,+¢6 <v Vi £ p. M M
N|N*+ND K k| D
By Lemma 4.1, this is equivalent to the following linear + 21: ! +21: ¢ (P )
matrix inequality (LMI).
9,Th 1 & 7 where D(P,¢) depends on the specific problem data (as
[ —(22"bi +¢) +v jfl } =0 Yi#p indicated by theP in the argument as well a3. Using this
o ' expression, we can obtain an upper bound for the arithmetic

Note that if 4; - 0, Vi # p, then (19) is equivalent to the complexity of the pruning algorithms. Assuming the worst

LMI given by case scenario where no quadratic gets pruned, we find the
S - complexity of testing one quadratic for pruning as follows.
min {,, : [ —227bi -Gt Z ] -0 Vi 7gp} _ For the Schur complement pruning of (20), we have
2 z A7 [zT v]T. HenceN = n + 1. Further, the number of block

(20) g ) ~
If the minimal v value, 7 satisfiesz > 0, then the quadratic LMIs is I = #1. — 1. T.hUSM 1, andky = ks
—~ . . ; = n + 1. Substituting these into (21), we obtain the
a, can be pruned without consequence. If it is negative, theif” .
! . . . . complexity as
|7| serves as a metric of importance @f(z), as it says

that at some point, a, is at least|7| higher than all other C(P,e)= O1) (1 +I(n+ 1))1/2 (n+1)3
quadraticsv and thez at which it occurs can be combined to 14 2(n+1)(I —1)]D(P,e) 22)

create a new importance metric catered to region of interest

For example|7|/(14|z|?) ensures tighter error bounds nearand we see that the complexity growsras® and I'-5.

origin than far from it. For the Shor semidefinite relaxation approach, we apply
However, the assumptioml; = 0 Vi # p is overly a similar analysis, and find that the complexity grows as

restrictive, as it only enables comparison with quadratics®® and I3-5. Note that these computational cost growth

more convex tharu,, as we simply drop the inequalities rates as a function of space dimensian,are poorer than

for which this does not hold. This also ensures conservatitke cubic growth of the basic algorithm. However, they are

pruning. To do a tighter pruning, it is advisable to rankstill tremendously helpful for real-world problems, anckth

the quadratics in the increasing order of lowest eigengluecurse-of-dimensionality is still very far off.

before pruning.

If A; = 0 instead of IfA; = 0, then the above LMI can VI. | MPORTANCE-BASED OVER-PRUNING
be modified to use a linear transformation 4f using its Both the Shor’s relaxation and the Schur complement
nonzero singular values. pruning schemes generate importance metrics for unpruned

qguadratics. This is very useful in controlling the comptexi
growth according to an error tolerance, region of interest,
Since our aim is to reduce the curse-of-complexity withouand/or computational limits. Currently, we set a bourn(d)
letting go of our freedom from the curse-of-dimensionalityfor the number of quadratics which will remain after over-
it is worthwhile to discuss the computational overhead inpruning at thek*" step. The algorithm keeps only thgk)
volved in these pruning methods. They are polynomial igquadratics,a’ with the highest values according to our
both dimensionality and the number of quadratic functionsneasure of importance. However, there does not yet exist
In particular, we retain our freedom from the curse-ofa theory which allows us to map the importance measure of
dimensionality. a quadratic at step to an error bound in the approximation

V. COMPUTATIONAL COMPLEXITY



at the terminal step. Further, a bound on the errors induged b For the second Hamiltoniad/2, we let

over-pruning ofmultiple quadratics is obviously a necessary A,
additional step. Regardless, application of these methasds
proven extremely fruitful, as can be seen in the example

below.

VII. SIX-DIMENSIONAL, SIX-HAMILTONIAN EXAMPLE

v ~I > 0 0
A2 = | ~T Ay O |, ¥2=|0 % 0
’}/I 0 Ab 0 0 Eb
Dy, 0 0
D2=| 0 D, 0 |, as=-04.
0 0 D

We applied the curse-of-dimensionality-free method to the For the third HamiltonianH?, we let

following problem over/R® with six constituent quadratic 0
Hamiltonians. Note that the problem was tweaked to exhibit 43 — | ;7 4, 0o |, 3= 0 X 0
sufficiently complex and interesting behavior, such that¢h 0

is interaction amongst dimensions, and each operator is
important somewhere in the domain. Hence the following D3 _

data yields a reasonably rich problem.

Ac vl ol I

o

~I 0 A 0

D. 0 0
0 D. 0 |, az=0.
0 0 D.

We shall specify the matrices in terms of the following

building blocks for the dynamics:

-1 .5
A“_[.l —1]’ Ap = Aa,
-1 .5
Ac—Am Ad—|:3 _1:|a
-1 5
Ae_Aaa Aj_|: 1 _1:|3
0.27 -.01
Y, = 0.4 x { ol 0o } . N, =043,
Y. = Y., Yy = 0.4%,,
Ye = Y, S =045,

and the following building blocks for the payoff functions:

For the fourth HamiltonianH*4, we let

Ag ~I ~AI ¢ 0 0
At = | 4T Ay 0 |, =10 %; 0
'yI 0 Ad 0 0 Ed
D; 0 0
DY=| 0 Dg 0 |, as=-04.
0 0 Dy
For the fifth Hamiltonian H?®, we let
Ae I AI . 0 0
A= | 4T A, 0 |, Y= 0 % 0
’}/I 0 Ae 0 0 Ee
D, 0 0
DP=| 0 D, 0 |, az=0.
0 0 D,

For the sixth HamiltonianH®, we let

(15 2 _ (1.5 2 Ay NI Al X 0 0
D“_{z 1.5}’ Dy=14-1"4 1.5]’ AS=1| I Ay 0 |, =0 % 0
r v 0 A 0 0 %
D, =14 0.2 1.5 7 Dy=12. 1.6 0 ’ f S
1.5 0.2 0 0 D 0 0
C 6 __ —
D@_M'[m 0.3]’ Dr=13-1 1.6} 0 0 Dy
For this example, we let the time-discretization step-size
We will use a parameter to adjust the interaction in thge - — (.2, and propagation was carried out with the

dynamics across the dimensions, and this wilhbe —0.1.
Now we are ready to define each of the Hamiltonians. Weg threshold was set heuristically fo(k) = 20 + 6k. That
need to specify parameters for the dynamids X, /») and
the payoff O, l1, ). For the example below; = 0 and " step. In this test25 iteration steps were carried out in

Iz = 0 for all the Hamiltonians. The remaining parametergo minutes, yielding a rather accurate solution in a compact

are as follows.
For the first HamiltonianH!, we let

A, ~I AT
Al=| ~I A, 0 |, Xt=
vl 0 A,
D, 0 0
D' = 0 D, 0 |, a;=0.
0 0 D,

Shor’s semidefinite relaxation based pruning. The overprun

is, a maximum ofL(k) quadraticsa?, were retained at the

domain in all six dimensions. This computation-time is for
an Apple mac desktop, from roughly 2005. Slices of statistic
for this value function along the 1-2 axes are shown in the
accompanying figures. The backsubstitution error depends
on the propagation as well as the time-discretization. The
theoretical error bounds in [13] are of the forfil + |z|?)
(over the entire space) where | 0 as the number of
propagation steps goes to infinity and time-discretizatjon

to zero, with the required relative rates being discussed in
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the reference. However, we found that, when looking only[s] w.H. Fleming and W.M. McEneaney, “A max-plus based aiiion for
over a compact sub-domain, the component of the error due an HJB equation of nonlinear filtering”, SIAM J. Control angtn.

. 38 (2000), 683-710.
t.O ,the number of propagat!on steps went to zero af,ter ?9] V.N. Kolokoltsov and V.P. Maslovidempotent Analysis and Its Appli-
finite number of steps, leaving only the error due to time-  cations, Kluwer (1997).

discretization. That is, the error reduction on a compalbt su[10] G-L-I Litvinov, Vl.P. bMa_slov and Gh.P. Shﬁiz, “Idenlﬁpoteﬁmctional
domain saturated after a sufficient number of iterationgewer ~ ~naysis: An Algebraic Approach”, Mathematical Note9, No. 5

(2001), 696-729.
performed. [11] V.P. Maslov, “On a new principle of superposition fortibpization

problems”, Russian Math. Survey$2 (1987) 43-54.
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