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Abstract. In previous work of the author and others, max-plus methods have been explored for solution of first-order,
nonlinear Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs) and corresponding nonlinear control prob-
lems. Although max-plus basis expansion and max-plus finite-element methods provide computational-speed advantages,
they still generally suffer from the curse-of-dimensionality. Here we consider HJB PDEs where the Hamiltonian takes the
form of a (pointwise) maximum of linear/quadratic forms. The approach to solution will be rather general, but in or-
der to ground the work, we consider only constituent Hamiltonians corresponding to long-run average-cost-per-unit-time
optimal control problems for the development. We consider a previously obtained numerical method not subject to the
curse-of-dimensionality. The method is based on construction of the dual-space semigroup corresponding to the HJB PDE.
This dual-space semigroup is constructed from the dual-space semigroups corresponding to the constituent linear/quadratic
Hamiltonians. The dual-space semigroup is particularly useful due to its form as a max-plus integral operator with kernel
obtained from the originating semigroup. One employs repeated application of the dual-space semigroup to obtain the
solution. Here, we consider constituent Hamiltonians which contain linear and constant terms as well as purely quadratic
terms. This greatly expands the allowable class of problems. However, there are solution existence issues, and the error
bounds are more difficult.
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1. Introduction. The use of dynamic programming (DP) to solve nonlinear control problems leads
to the familiar DPE (dynamic programming equation). In the case of problems in continuous space/time
governed by finite-dimensional “deterministic” (or max-plus stochastic) dynamics, the DPE takes the
form of a Hamilton-Jacobi-Bellman partial differential equation (HJB PDE). In the infinite time-horizon
case, this is a PDE over a region in a space whose dimension is the dimension of the state variable in
the control problem. We remark that the solutions are generally nonsmooth, and the theory of viscosity
solutions yields the appropriate solution definition (c.f., [4], [10], [11], [12], [21]).

The difficulty lies in computing the solution of the HJB PDE. The most intuitive, and commonly
applied, approaches are grid-based (c.f., [4], [6], [14], [15], [16], [17], [21], [26] among many others), and
are subject to the curse-of-dimensionality (whereby the computational cost growth is very roughly on the
order of (2D)n where D is the required number of grid points per dimension, and more importantly, n is
the space dimension.

A recent development is the discovery of the curse-of-dimensionality-free methods exploiting semicon-
vex dual operators and max-plus linearity [31], [32], [34]. This approach has, so far, only been developed
for problems over the entire space. (For other max-plus-based methods developed for larger classes of
problems, see [1], [2], [20], [34], [36], [37].) In particular, it deals with HJB PDEs of the form

0 = −H̃(x, gradV ) ∀x ∈ IRn \ {0}, V (0) = 0(1.1)

where

H̃(x, gradV ) = max
m∈M

{Hm(x, gradV )}(1.2)

where M = {1, 2 . . .M}, and the Hm have computationally simpler forms. In particular, this has been
developed for long-run average-cost-per-unit-time problems where the Hm are quadratic forms.
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In [32], [34], the method was developed and the curse-of-dimensionality-free nature was made clear.
The Hm had the form

Hm(x, p) = (Amx)′p+ 1
2x

′Cmx+ 1
2p

′Σmp,(1.3)

where the Am, Cm and Σm were n× n matrices meeting certain conditions which guaranteed existence
and uniqueness of a solution within a certain class of functions. We refer to the Hm as the constituent
Hamiltonians. In [31], the convergence rate for the algorithm was obtained. In particular, it was shown
that there were two parameters, τ and T = Nτ such that the errors go to zero as T = Nτ → ∞ and
τ ↓ 0. Further, a relation between the relative T and τ rates was indicated. The errors in the solution
approximation are bounded in a form 0 ≤ Ṽ − V a ≤ ε(1 + |x|2) where Ṽ is the true solution and V a is
the computed approximation. Additionally, we had T = Nτ ∝ ε−1 and τ ∝ ε2, and so N ∝ ε−3. The
computational cost growth with n is only on the order of n3 (due to some matrix inverses). However, the
approach is subject to a curse-of-complexity, where the computational cost can grow like MN . Various
strategies are outlined in [31] for greatly attenuating this growth. In [30], a convex programming approach
to attenuating the growth was employed, and a problem over IR6 with M = 6 was solved in under an
hour on a typical desktop machine (with the more general Hm of (1.4) below). Nevertheless, this curse-
of-complexity attenuation remains an active research area.

It quickly became clear that the problem class given by (1.1), (1.2), (1.3) is quite restrictive. In
particular, the solutions are quadratic along lines through the origin. On the other hand, it is well-known
that any semiconvex function can be represented as a supremum of quadratic forms, and consequently,
approximated (although we do not use a specific metric here) by a maximum of quadratic forms. This
obviously holds true for Hamiltonians as well. However, the forms (1.3) are insufficient; we must expand
to Hm of the form

Hm(x, p) = 1
2x

′Dmx+ 1
2p

′Σmp+ (Amx)′p+ (lm1 )′x+ (lm2 )′p+ αm,(1.4)

where lm1 , l
m
2 ∈ IRn and αm ∈ IR. Although our interest here is on (numerical) solution of (1.1) with a

Hamiltonian given by (1.2), (1.4) for its own sake, the additional motivation that these will approximate
the very general class of HJB PDEs with semiconvex Hamiltonians, and so will eventually lead to approx-
imate solution of such, provides further motivation. (Initial results on the Hamiltonian approximation
question appear in [29].)

2. Problem class. In the general case, the consituent Hamiltonians, the Hm, still have correspond-
ing HJB PDE problems which take the form

0 = −Hm(x, gradV ) ∀x ∈ IRn \ {0}, V (0) = 0.(2.1)

These constituent Hamiltonians are associated, at least formally, with the following control problems.
The dynamics of the problems are affine, and are given by

ξ̇m = Amξm + lm2 + σmw, ξm
0 = x ∈ IRn(2.2)

where the nature of the (newly introduced) σm is specified just below. Let w ∈ W .
= Lloc

2 ([0,∞); IRk), and

we recall that Lloc
2 ([0,∞); IRk) = {w : [0,∞) → IRk :

∫ T

0 |wt|2 dt < ∞ ∀T < ∞}. The cost functionals
are

Jm(x, T ;w)
.
=

∫ T

0

Lm(ξm
t ) − γ2

2
|wt|2 dt,

.
=

∫ T

0

1
2 (ξm

t )′Dmξm
t + (lm1 )′ξm

t + αm − γ2

2
|wt|2 dt(2.3)

The associated value functions (which might not be finite) would be

V m(x) = sup
w∈W

sup
T<∞

Jm(x, T ;w).(2.4)
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Lastly, σm and γ are such that Σm = 1
γ2σ

m(σm)′.

We remark that a generalization of the second term in the integrand of the cost functional (in both
cases) to 1

2w
′Cmw with Cm symmetric, positive definite is not needed since this is equivalent to a change

in σm in the dynamics (2.2).

Prior to introduction of the assumptions, some discussion is in order. In the purely quadratic case
(with constituent Hamiltonians given by (1.3)) considered in [31], [32], [34], each of the constituent
Hamiltonians is associated with a linear/quadratic problem with finite value, and solvable via a Riccati
equation. However, in this more-general quadratic case, some of the constituent Hamiltonians might
be associated with problems which might not be reasonable. For example, the nominal stable point of
the dynamics might correspond to a state with negative running cost. Nonetheless, they may make a
significant contribution to the originating Hamiltonian, H̃ . To motivate the assumptions for this rather
general problem class, we return to the concept of H̃ being constructed so as to resemble some given
nonlinear control problem which has a (finite) solution. That is, we think of H̃ as being chosen to resemble

some given
˜̃
H. We suppose that problem

0 = − ˜̃H(x, gradV ), V (0) = 0(2.5)

has finite value, and that we are choosing H̃ to approximate
˜̃
H.

We make the following block of assumptions which we will refer to as Assumption Block (A.m)
throughout.

(A.m)

Assume there exists unique viscosity solution,
˜̃
V , to (2.5) in QK for some K ∈ (0,∞),

where QK = {φ : IRn → IR |φ is semiconvex, and 0 ≤ Φ(x) ≤ (K/2)|x|2 ∀x ∈ IRn}.
Assume that H̃(x, p) = maxm∈MHm(x, p) ≤ ˜̃

H(x, p) for all x, p ∈ IRn.
Assume there exists cA ∈ (0,∞) such that x′Amx ≤ −cA|x|2 for all x ∈ IRn and all
m ∈ M.
Assume H1(x, p) has coefficients satisfying the following: l11 = l12 = 0; α1 = 0; D1 is
positive definite, symmetric; and γ2/c2σ > cD/c

2
A, where cD is such that x′D1x ≤ cD|x|2

∀x ∈ IRn and cσ
.
= |σ1|.

Assume that system (2.2) is controllable in the sense that given x, y ∈ IRn and T > 0,
there exist processes w ∈ W and µ measurable with range in M, such that ξT = y when
ξ0 = x and one applies controls w, µ.

Note that the last assumption, the controllability assumption, is satisfied if there exists at least one
m ∈ M such that σm(σm)′ (which is n× n) has n positive eigenvalues. We will be making an additional
assumption, and that is:

(A.w)

Assume there exist c1, c2 <∞ such that for any ε–optimal pair, µε, wε for the H̃ problem,
one has

‖wε‖2
L2[0,T ] ≤ c1 + c2|x|2

for all ε ∈ (0, 1], all T <∞ and all x ∈ IRn.

Note that the behavior specified in (A.w) is proved in the purely quadratic case (c.f., [34], [40]) under
reasonable assumptions on the constituent-Hamiltonian matrices, but in this more general case, we assume
it instead.

There are two more assumptions that were used in the error estimates. The first of these assumptions
is that

(A.σ) σm = σ ∀m ∈ M.
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We do not use this assumption anywhere other than in the technical estimates of Section 6 (and, indirectly,
in the Combined Errors section, i.e. Section 8, that follows). The author was not able to show that the
assumption was necessary, but was unable to obtain the estimates of that section without it. Considering
this, we leave the m-dependence on σ in the other sections.

In the introduction, we note that one can approximate any semiconvex Hamiltonian arbitrarily well
by a pointwise maximum of quadratic “constituent” Hamiltonians. The restriction to m-independent σ
does not prevent approximation of any semiconvex Hamiltonian with bounded semiconvexity constant,
as the quadratic growth terms in the approximating functions may always be taken to be constant (c.f.
[34]). However, although this is not a theoretical limitation, it does pose a practical limitation, and so
one would prefer not to need this seemingly technical assumption. It should be noted that we have not
found this assumption to be necessary in our, admittedly small, set of tests; one should note that in the
six-dimensional example in [30], σ did depend on m.

There is one final technical assumption, this one is on the behavior of ε–optimal trajectories of the
system, in the general class of coercivity-type assumptions. Since this assumption requires objects which
have not been defined yet, and is used only in Section 7, we delay presentation of the assumption to the
top of that section. There are no more assumptions.

In order to show that the conditions are not vacuous (in fact, they seem to be rather general relative
to problems that might have finite value), we include a simple, one-dimensional example satisfying all
the assumptions. Let M = 2 and

H1(x, p) =
x2

2
+
p2

8
− xp,

H2(x, p) = x2 +
p2

8
− xp− 1.

Given that Σm = 1/4 in both cases, we may take σ = 1 and γ2 = 4 (so that σ2/(2γ2) = 1/8). It is
obvious that Assumptions (A.m) and (A.σ) are satisfied. We demonstrate that the other two are met.
Note that

∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt≤
∫ T

0

(ξε
t )2 dt− 2‖wε‖2

L2(0,T ),

which by (11.1) (in the proof of Lemma 4.3 in Appendix A),

≤ x2

cA
+
c2σ
c2A

‖wε‖2
L2(0,T ) − 2‖wε‖2

L2(0,T ) = x2 − ‖wε‖2
L2(0,T ),

for all T > 0 and x ∈ IRn. Comparing with w ≡ 0, where the payoff is then nonnegative, we see that
if wε is ε–optimal with ε ∈ (0, 1], one must have ‖wε‖2

L2(0,T ) ≤ 1 + x2. This yields (A.w). Lastly, by

this bound on wε and Lemma 4.3, noting that l12 = l22 = 0, one sees that
∫ T

0 |ξε
t |2 dt ≤ 2 + 3x2 for all

T, x. This implies that for large time, the trajectory stays near the origin (in an L2-sense), where H1

dominates. This yields (A.ξ) (of Section 7) with c3 = 1/4, and we do not include the details.

3. Overview of required development. The curse-of-dimensionality-free approach is as follows.
The solution to (1.1), (1.2), (1.4) is given by

lim
T→∞

S̃T [V0]

where S̃T is the associated semigroup, and V0 is some initialization (where V0 ≡ 0 is an acceptable
initialization). Fixing some time-discretization, τ , and considering T = Nτ (for T such that N is

an integer), one may approximate S̃T by
[
S̄τ

]N
where the exponent indicates repeated composition

and S̄τ [φ](x)
.
= maxm∈M Sm

τ [φ](x) where Sm
τ is the semigroup associated with constituent HJB PDE

0 = Hm(x, gradV ).
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As noted above, the errors are due to the finiteness of T = Nτ and the time-discretization, τ . Now,
the key to the curse-of-dimensionality-free aspect of the computations is in the means of computing the
S̄τ operator actions. The computational speed is achieved through the use of max-plus linearity and
semiconvex duality. We will not include those details which have been discussed elsewhere, but refer the
reader to [31], [32], [34] for such.

Instead, we briefly outline the concept. Suppose V0 is quadratic (or a max-plus sum of quadratics).
It has a semiconvex dual (defined in Section 9), a0, which is also a quadratic. In the case of quadratic
Hm, the semiconvex dual operators of the Sm

τ take the form of max-plus integral operators

B̂m
τ [a](x) = Bm

τ (x, ·) ⊙ a(·) =

∫ ⊕

IRn

Bm
τ (x, y) ⊗ a(y) dy = max

y∈IRn
{Bm

τ (x, y) + a(y)}

where the Bm
τ are quadratic forms. Further, Bτ , the kernel of the semiconvex dual of S̄τ , is the max-plus

sum of the Bm
τ , i.e.,

Bτ (x, y) =
⊕

m∈M

Bm
τ (x, y).

The dual of V1 = S̄τ [V0] is

a1(y) =
⊕

m1∈M

Bm1

τ (y, ·) ⊙ a0(·) .
=

⊕

m1∈M

âm1

1 (y)

where each âm1

1 is a quadratic function (computed by analytical operations modulo a matrix inverse).
The dual of V2 = (S̄τ )2[V0], a2, has the form

a2(y)=
⊕

m2∈M

⊕

m1∈M

âm1,m2

2 (y)

where
âm1,m2

2 (y)= Bm2

τ (y, ·) ⊙ âm1

1 (·),

and we see that each âm1,m2

2 is also a quadratic; and similarly obtained. The dual of VN = (S̄τ )N [V0],
aN , is obtained similarly. Details on the algorithm implementation and on methods for attenuating the
curse-of-complexity appear in [30], [31]. We will briefly describe the minor modifications in the algorithm
implementation due to the presence of the lm1 , l

m
2 = 0, αm in Section 10.

There are four topics that must be addressed. First, we must obtain conditions under which we can
guarantee the solutions we seek to compute actually exist, and this is done in Section 4. The second,
and main, topic is the proof that Ṽ − (S̄τ )N [V0] goes to zero as N → ∞ and τ ↓ 0. While doing that,
we will also obtain specific error bounds as functions of these parameters. In particular, under certain
assumptions, we show that given ε > 0, there exist N, τ such that the error is less than ε(1 + |x|2)
over IRn. This appears in Sections 5–8. Next, in Section 9, we briefly demonstrate that the curse-of-
dimensionality-free method outlined above may be used to compute (S̄τ )N [V0]. Lastly, as noted just
above, we indicate the minor changes in the algorithm (the basic algorithm being discussed more fully in
[32], [34]) necessary for the more general Hm considered here, and this appears in Section 10.

4. Existence and semigroup limits. In this general-quadratic constituent Hamiltonian problem
class, there are several technical issues, including specifically the question of existence of the solution.
Recall that the HJB PDE problem of interest is

0 = −H̃(x, gradV )
.
= − max

m∈M
Hm(x, gradV ) x ∈ IRn \ {0},

V (0) = 0.(4.1)
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The corresponding value function is

Ṽ (x) = sup
w∈W

sup
µ∈D∞

J̃(x,w, µ)
.
= sup

w∈W
sup

µ∈D∞

sup
T<∞

∫ T

0

Lµt(ξt) −
γ2

2
|wt|2 dt(4.2)

where

Lµt(x) = 1
2x

′Dµtx+ (lµt

1 )′x+ αµt ,

D∞ = {µ : [0,∞) → M : measurable},

and ξ satisfies

ξ̇ = Aµtξ + lµt

2 + σµtwt, ξ0 = x.(4.3)

Let’s first prove the finiteness of Ṽ (x).

Theorem 4.1. For all x ∈ IRn, 0 ≤ Ṽ (x) ≤ ˜̃
V (x). Consequently, Ṽ (x) lies in QK .

Proof. If one had
˜̃
V (ξt) absolutely continuous with respect to time, then the following proof would

be greatly reduced. The central theme of the proof, neglecting this technical issue, is relatively straight-
forward once one uses the integral of the Hamiltonian as a tool. To handle the potential nonsmoothness

of
˜̃
V (ξε

t ), we consider a mollified seqeunce of functions, V δ ∈ C∞, approximating
˜̃
V . For δ > 0, let

gδ : IRn → [0,∞) be a one-parameter family of mollifiers, i.e., smooth functions such that gδ(x) = 0 for
all x 6∈ Bδ(0) and

∫
IRn g

δ(x) dx = 1 for all δ > 0. In particular, we take gδ(x) = δ−nḡ(x/δ) for some
appropriate ḡ. Let

V δ(x)
.
= [gδ ∗ ˜̃V ](x) =

∫

IRn

gδ(x− y)
˜̃
V (y) dy.

We introduce the finite time-horizon value function

W̃ (x, T ) = sup
w∈W

sup
µ∈D∞

∫ T

0

Lµt(ξt) −
γ2

2
|wt|2 dt

with ξ satisfying (4.3). Fix wε ∈ W , µε ∈ DT which are ε-optimal for W̃ (x, T ), and let ξε be the
corresponding trajectory with initial state ξε

0 = x. We have

W̃ (x, T )≤
∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+ ε

=

∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 + [Aµε
t ξε

t + l
µε

t

2 + σµε
twε

t ] · gradV δ(ξε
t )

−[Aµε
t ξε

t + l
µε

t

2 + σµε
twε

t ] · gradV δ(ξε
t ) dt+ ε,

which by the definition of H̃

≤
∫ T

0

H̃(ξε
t , gradV δ(ξε

t )) dt−
∫ T

0

[Aµε
t ξε

t + l
µε

t

2 + σµε
twε

t ] · gradV δ(ξε
t ) dt+ ε

where, for clarity, we note that gradV δ indicates the gradient of V δ rather than the δ-mollification of
some gradV , and by (A.m)

≤
∫ T

0

˜̃
H(ξε

t , gradV δ(ξε
t )) dt−

∫ T

0

ξ̇ε
t · gradV δ(ξε

t ) dt+ ε

=

∫ T

0

˜̃
H(ξε

t , gradV δ(ξε
t )) dt+ V δ(x) − V δ(ξε

T ) + ε.(4.4)
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(Note that if V δ could be replaced by
˜̃
V , then the right-hand side would be less than

˜̃
V (x) + ε by noting

˜̃
V (ξε

T ) ≥ 0, and this would lead us to our goal below. Additional effort is required due to the fact that
we needed to work with V δ instead.)

Recalling that
˜̃
V is assumed semiconvex, and consequently locally Lipschitz (c.f., [19]), it is easy to

see that given R̄ <∞ and ε ∈ (0, 1], there exists δ̄ > 0 such that

|V δ(y) − ˜̃
V (y)| ≤ ε, ∀ y ∈ BR̄.(4.5)

We now interject two lemmas. From [32], [34], we see that V 1 ∈ QK for K = Kδ
.
= (cAγ

2/c2σ)− δ for
δ > 0 sufficiently small. Using this and Assumption (A.w), one obtains the following lemmas essentially
exactly as in [40] (see also [34]). For completeness, we include sketches of the proofs in Appendix A.

Lemma 4.2. For any t <∞,

|ξε
t |2 ≤ e−cAt |x|2 +

2

c2A
sup
m

|lm2 |2 +
2c2σ
cA

‖wε‖2
L2(0,t).

Lemma 4.3. For any t <∞,

∫ t

0

|ξε
r |2 dr ≤

1

cA
|x|2 +

2

c2A
sup
m

|lm2 |2 t+
2c2σ
c2A

‖wε‖2
L2(0,t).

From Lemma 4.2, we see that there exists R̄ < ∞ such that ξε
T ≤ R̄ for all x ∈ B̄R, ε ∈ (0, 1] and

T <∞. Combining this with (4.5), we see that

|V δ(ξε
T ) − ˜̃

V (ξε
T )| ≤ ε ∀x ∈ B̄R, ε ∈ (0, 1] and T <∞.(4.6)

Combining (4.4), (4.5) and (4.6), one finds that for δ ≤ δ̄

W̃ (x, T ) ≤
∫ T

0

˜̃
H(ξε

t , gradV δ(ξε
t )) dt+

˜̃
V (x) − ˜̃

V (ξε
T ) + 3ε

for all x ∈ B̄R, ε ∈ (0, 1] and T <∞. Since
˜̃
V ≥ 0, this yields

W̃ (x, T ) ≤
∫ T

0

˜̃
H(ξε

t , gradV δ(ξε
t )) dt+

˜̃
V (x) + 3ε.(4.7)

We now interject one more lemma. The proof of this lemma is given in Appendix B.

Lemma 4.4. Given R̄ < ∞, ε̄ ∈ (0, 1], sequence δk ↓ 0 and finite set {yλ}Λ
λ=1 ⊂ B̄R̄, there exists a

subsequence, {δkκ} such that for all κ sufficiently large

inf
z∈∂˜̃V (yλ)

∣∣gradV δkκ(yλ) − z
∣∣ < ε̄ ∀λ ∈ {1, 2, . . .Λ}.

Recall that, since
˜̃
V is a viscosity solution of 0 = − ˜̃H(x, gradV ) with boundary condition V (0) = 0,

˜̃
H(x, z) ≤ 0 ∀ z ∈ ∂

˜̃
V (x), x 6= 0.(4.8)
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Note that, by the semiconvexity of
˜̃
V (which implies local Lipschitz behavior, c.f., [19]), there exists

R̄ < ∞ such that | gradV δ(y)| < R̄ for all y ∈ B̄R and all δ ∈ (0, 1). By the continuity of
˜̃
H , given

R, R̄ <∞, there exists ε2 > 0 such that

∣∣∣∣
˜̃
H(y1, z1) − ˜̃

H(y2, z2)

∣∣∣∣ <
ε

2T
(4.9)

for all y1, y2 ∈ B̄R and z1, z2 ∈ B̄R̄ such that |y1 − y2| < ε2 and |z1 − z2| < ε2. Also, by the compactness
of B̄R and B̄R̄, there exists finite set Y = {yλ}Λ

λ=1 ⊂ B̄R and sequence δk ↓ 0 such that

min
λ∈{1,2,...Λ}

[
|y − yλ| +

∣∣gradV δk(y) − gradV δk(yλ)
∣∣] < ε2 ∀ y ∈ B̄R, ∀k ∈ N.(4.10)

By (4.9) and (4.10), we may choose Y such that given any y ∈ B̄R, there exists yλ ∈ Y such that

∣∣∣∣
˜̃
H(y, gradV δk(y)) − ˜̃

H(yλ, gradV δk(yλ))

∣∣∣∣ <
ε

2T
∀ k ∈ N.(4.11)

Now choose subsequence δkκ such that Lemma 4.4 holds with ε̄ = ε2 and the finite set Y . Then, for any

yλ ∈ Y , there exists zλ ∈ ∂
˜̃
V (yλ) such that

∣∣gradV δkκ(yλ) − zλ
∣∣ < ε2

for any κ, which, by (4.9), implies

∣∣∣∣
˜̃
H(yλ, gradV δkκ(yλ)) − ˜̃

H(yλ, zλ)

∣∣∣∣ <
ε

2T
∀κ ∈ N.(4.12)

Combining (4.11) and (4.12), one sees that given y ∈ B̄R, there exists δ̄ = δkκ (actually any element of

the subsequence), yλ ∈ Y and zλ ∈ ∂
˜̃
V (yλ) such that

∣∣∣∣
˜̃
H(y, gradV δ̄(y)) − ˜̃

H(yλ, zλ)

∣∣∣∣ <
ε

T
.(4.13)

Then, by (4.8) and (4.13), for all y ∈ B̄R

˜̃
H(y, gradV δ̄(y)) <

ε

T
.(4.14)

Employing (4.14) in (4.7), one finds that

W̃ (x, T ) ≤ ˜̃
V (x) + 4ε.

Since this is true for all T ∈ (0,∞) and all ε ∈ (0, 1],

Ṽ (x) = sup
T<∞

W̃ (x, T ) ≤ ˜̃
V (x).(4.15)

On the other hand,

W̃ (x, T ) = sup
w∈W

sup
µ∈D∞

∫ T

0

Lµt(ξt) −
γ2

2
|wt|2 dt,

and by taking µ ≡ 1 and w ≡ 0
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≥
∫ T

0

L1(ξt) dt ≥ 0.

Consequently,
Ṽ (x) = sup

T<∞
W̃ (x, T ) ≥ 0.

In analogy with the results of [31], we would like to know whether S̃T [V ](·) converges to Ṽ (·) as T
goes to infinity. Unfortunately we haven’t been able to establish this for arbitrary V in QK but only for
the V under Ṽ . We will however see that this is sufficient to prove the convergence of the algorithm.

Theorem 4.5. Ṽ is the unique continuous solution of V = S̃T [V ] in the class QK for any T > 0. Ṽ

is also the unique viscosity solution of (4.1) in QK. Further, given any V ∈ QK such that 0 ≤ V ≤ Ṽ ,

limT→∞ S̃T [V ](x) = Ṽ (x) (uniformly on compact sets).

Proof. The first two assertions of the theorem are classical results of the theory of viscosity solutions,
and proofs can be found, respectively, in [34] and [40]. We turn to the last assertion.

Ṽ (x) = sup
w∈W

sup
µ∈D∞

sup
T<∞

∫ T

0

Lµt(ξt) −
γ2

2
|wt|2 dt

= sup
T<∞

S̃T [0](x).

However,

S̃T+∆T
[0](x) = S̃T [S̃∆T

[0](·)](x)

= sup
w∈W

sup
µ∈DT

{∫ T

0

Lµt(ξt) −
γ2

2
|wt|2 dt

+ sup
w1∈W

sup
µ1∈D∆T

∫ T+∆T

T

Lµ1

t (ξ1t ) − γ2

2
|w1

t |2 dt
}

where ξ1 is driven by w1
·−T , µ

1
·−T with initial condition ξ1T = ξT . By taking w1 ≡ 0 and µ1 ≡ 1 on [0,∆T ],

we see

≥ sup
w∈W

sup
µ∈DT

∫ T

0

Lµt(ξt) −
γ2

2
|wt|2 dt

= S̃T [0](x),

i.e., S̃T [0](x) is a monotonically increasing function of T . Consequently, we have,

lim
T→∞

S̃T [0](x) = Ṽ (x).

Further, for all V such that 0 ≤ V ≤ Ṽ we find,

Ṽ (x) = lim
T→∞

S̃T [0](x) ≤ lim
T→∞

S̃T [V ](x) ≤ lim
T→∞

S̃T [Ṽ ](x) = Ṽ (x),

which immediately yields the assertion.

Now we would like to compute Ṽ (x) with a discrete-time approximation. The idea is of course to

apply an approximation of S̃T to a function V ≤ Ṽ and to increase time towards infinity. We introduce
the approximating, discrete-time operator

S̄τ [φ](x)= sup
w∈W

max
m∈M

[∫ τ

0

Lm(ξm
t ) − γ2

2
|wt|2 dt+ φ(ξm

τ )

]
(x)

= max
m∈M

Sm
τ [φ](x)(4.16)
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where ξm satisfies (2.2).

With τ acting as a time-discretization step-size, let

Dτ
∞ =

{
µ : [0,∞) → M| for each n ∈ N ∪ {0}, there exists mn ∈ M

such that µ(t) = mn ∀ t ∈ [nτ, (n+ 1)τ)
}
,(4.17)

and for T = n̄τ with n̄ ∈ N define Dτ
T similarly but with domain [0, T ) rather than [0,∞). Let Mn̄

denote the outer product of M, n̄ times. Let T = n̄τ , and define

¯̄S
τ

T [φ](x) = max
{mk}

n̄−1

k=0
∈Mn̄

{
n̄−1∏

k=0

Smk
τ

}
[φ](x) = (S̄τ )n̄[φ](0)(4.18)

where the
∏

notation indicates operator composition, and the superscript in the last expression indicates

repeated application of S̄τ , n̄ times. We will be approximating Ṽ = limT→∞ S̃T [φ] by S̃T [φ] for some

large T . We will approximate S̃T [φ] by ¯̄S
τ

T [φ] for some small τ .

Let V
.
= limN→∞

¯̄S
τ

Nτ [0](x), where 0 denotes the zero-function.

Theorem 4.6. V satisfies

V = S̄τ [V ], V (0) = 0.

Further, 0 ≤ V 1 ≤ V ≤ Ṽ , and consequently, V ∈ QK.

Neglecting trivial changes, the proof is identical to that provided in [32]. Now we need to know that

by applying ¯̄S
τ

Nτ to an initial V with N going to infinity, we converge to the solution V .

Theorem 4.7. Given any V ∈ QK such that V ≤ V we have, limN→∞
¯̄S

τ

Nτ [V ](x) = V (x) for all
x ∈ IRn (uniformly on compact sets).

Proof. By definition,

V (x)= lim
N→∞

¯̄S
τ

Nτ [0](x)

which by the monotonicity of ¯̄S
τ

Nτ [·] and our assumption,

≤ lim
N→∞

¯̄S
τ

Nτ [V ](x) ≤ lim
N→∞

¯̄S
τ

Nτ [V ](x)

which by Theorem 4.6,
= V (x).

5. Error bounds and convergence. As indicated at the top of Section 3, there are two error
sources with this curse-of-dimensionality-free approach to solution of the HJB PDE. For concreteness, we

suppose that the algorithm is initialized with V
0

= V 1 (where V 1 is given by (2.4) with m = 1). Letting

T
.
= Nτ where N is the number of iterations, the first error source is S̃T

[
V

0
]
(x) − ¯̄S

τ

T

[
V

0
]
(x). This

is the error due to the time-discretization of the µ process over finite time-horizon T . The second error

source is Ṽ (x) − S̃T

[
V

0
]
(x). This is the error due to approximating the infinite time-horizon problem

by the finite-time horizon problem with horizon T . The total error is obviously the sum of these. We
begin the error analysis with the former of the two error sources in Section 6. Then, in Section 7, we
consider the latter, and in Section 8, the two are combined.
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6. Errors from time-discretization. We now obtain a bound on the difference between the action
of ¯̄S

τ

T and that of S̃T depending on the time-dscretization step-size, τ . Assumption (A.σ) which was given
in Section 2 will be used in obtaining this bound. Again, the author was not able to determine whether
the assumption is necessary, but needed it for technical reasons in the long proof to follow.

Theorem 6.1. There exists K̄13 <∞ such that for sufficiently small τ > 0,

0 ≤ S̃T [V 1](x) − ¯̄S
τ

T [V 1](x) ≤ K̄13(M + 1)4(1 + |x|2)(1 + T )τ

for all x ∈ IRn and T ∈ (0,∞).

Prior to proving this result, we will obtain a number of supporting results. Let µε, wε be ε–optimal
for S̃T [V 1](x), and again let ξε be the corresponding trajectory. The main issue here is the size of the
error induced by the substitution of some µε ∈ Dτ

T as an approximation of µε ∈ DT . Let ξ
ε

be the

trajectory driven by µε and wε (again with initial condition ξ
ε

0 = x). First, we indicate how we construct
µε from µε, and obtain a number of results about this approximation.

For any given τ > 0, we build µε
r from µε

r over [0, T ] in the following manner. Fix τ > 0. Let N t

be the largest integer such that N tτ ≤ t. For any Lebesgue measurable subset of IR, I, let L(I) be the
measure of I. For t ∈ [0, T ], m ∈ M, let

Im
t = {r ∈ [0, t) |µε

r = m}, Im

t = {r ∈ [0, t) |µε
r = m}

λm
t = L(Im

t ), λ̄m
t = L(Im

t ).
(6.1)

At the end of any time step, nτ , we pick one of the m ∈ M with the largest (positive) error so far
committed and we correct it, i.e., let

m̄ ∈ argmax
m∈M

{λm
nτ − λ̄m

(n−1)τ},(6.2)

and we set

µε
t = m̄ ∀ t ∈ [(n− 1)τ, nτ).(6.3)

Finally, we simply set µε
r ∈ argmaxm∈M{λm

t − λ̄m
Ntτ} for all r ∈ [N tτ, t]. Obviously, ∀n ∈ {1, · · · , N t}

the sum of the errors in measure is null, that is,

∑

m∈M

(λm
nτ − λ̄m

nτ ) =
∑

m∈M

λm
nτ −

∑

m∈M

λ̄m
nτ = nτ − nτ = 0.

With this construction, we find the following two results. As the proofs are identical to those in [31], we
do not include them.

Lemma 6.2. For any t ∈ [0, T ], and any m ∈ M, one has λm
t − λ̄m

t ≥ −τ .

Lemma 6.3. For any t ∈ [0, T ], and any m ∈ M, one has λm
t − λ̄m

t ≤ (M − 1)τ .

We now develop some more-delicate machinery, which will allow us to make fine estimates of the
difference between ξε

t and ξ
ε

t . For each m we divide Im
t into pieces Ĩm,t

k of length τ as follows. Let

K̂t
m = max{k ∈ N ∪ {0} | ∃ integer n ≤ t/τ s.t. λ̄m

nτ = kτ}. Then, for k ≤ K̂t
m, let nm,t

k
.
= min{n ∈

N∪{0} | λ̄m
nτ = kτ} and Ĩm, t

k = [(nm,t
k −1)τ, nm,t

k τ ]. LetKt
m
.
=]1, K̂t

m[ where for any integersm ≤ n, ]m,n[

denotes {m,m+ 1, . . . , n}. Loosely speaking, we will now let Ĩm,t
k denote the subset of Im

t of measure τ ,

corresponding to Ĩm, t
k . More specifically, we define Ĩm,t

k as follows. Introduce the functions Φm,t
k (r) which
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are monotonically increasing (hence measurable) functions (that will match Ĩm, t

k = [(nm,t
k − 1)τ ;nm,t

k τ ]

with Ĩm,t
k ) given by

Φm,t
k (r)= inf

{
ρ ∈ [0, t] |λm

ρ = (k − 1)τ + [r − (nm,t
k − 1)τ ]

}

= inf
{
ρ ∈ [0, t] |λm

ρ = r + (k − nm,t
k )τ

}
,

where, in particular, we take Φm,t
k (r) = t if there does not exist ρ ∈ [0, t] such that λm

ρ = r+ (k−nm,t
k )τ .

We note that the Φm,t
k (r) are translations by part. Then, (neglecting the point r = t which has measure

zero anyway) Ĩm,t
k = Φm,t

k (Ĩm, t

k ).

We also define Ĩm, t

f as the last part of Im

t , with length L(Ĩm, t

f ) ≤ τ , and Ĩm,t
f as the last part

of Im
t not corresponding to an interval of length τ of Im

t . That is, Ĩm, t

f = Īm
t \

⋃
k∈Kt

m
Ĩm, t

k and

Ĩm,t
f = Im

t \⋃k∈Kt
m
Ĩm,t

k .

Define

Φm,t,+
k (r) =

{
Φm,t

k (r) if Φm,t
k (r) ≥ r,

r otherwise,
, Φm,t,−

k (r) =

{
Φm,t

k (r) if Φm,t
k (r) ≤ r,

r otherwise.

We need to evaluate the distance |Φm,t
k (r) − r| for r in [(nm,t

k − 1)τ, nm,t
k τ ]. The following two lemmas

also appear in [31], and so we do not include the proofs.

Lemma 6.4. For all m ∈ M, Φm,t,+
k (r) < nm,t

k+2τ + (r − nm,t
k τ) for all r ∈ [(nm,t

k − 1)τ, nm,t
k τ ] and

k ∈]1, K̂t
m−2[, and Φm,t,−

k (r) > nm,t
k−Mτ+(r−nm,t

k τ) for all r ∈ [(nm,t
k −1)τ, nm,t

k τ ] and k ∈]M+1, K̂t
m[.

Lemma 6.5. Suppose f(·) is nonnegative and integrable over [0, T ]. For any t ∈ [0, T ] and any
m ∈ M,

∑

k∈Kt
m

[∫ nm,t

k
τ

(nm,t

k
−1)τ

∫ Φm,t

k
(r)

r

f(ρ) dρ dr

]
≤ min{M, 2}τ

∫ t

0

f(r) dr.

Now we demonstrate some results indicating simple forms for the matrizants corresponding to the
differential equations defining our dynamics. Consider first the linear, homogeneous systems

˙̂
ξt = Aµε

t ξ̂t,(6.4)

˙̂̄
ξt = Aµε

t ˆ̄ξt.(6.5)

By the simple form of µε as constant on segments [kτ, (k+1)τ), we have that for any x ∈ IRn, the solution

of (6.5) with ˆ̄ξ0 = x is

ˆ̄ξt = exp

[∫ t

0

Aµε
r dr

]
x.(6.6)

Let the solution of (6.4) with ξ̂0 = x be ξ̂t. One has

ξ̂t = Ψ(t, 0)x(6.7)

where Ψ is the matrizant of the system. In Appendix C, we prove:

Theorem 6.6. Ψ(t, 0) = exp
[∫ t

0
Aµε

r dr
]

for all t ∈ [0,∞), that is,

ξ̂t = exp

[∫ t

0

Aµε
r dr

]
x
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for all 0 ≤ t ≤ T <∞ and all x ∈ IRn.

Now, fix δ > 0 (used in the definition of Kδ – see the discussion just above Lemma 4.2). Fix any
T <∞ and x ∈ IRn. Let ε = (ε̂/2)(1 + |x|2). We have

S̃T [V 1](x) −
[∫ T

0

Lµε
t (ξε

t) −
γ2

2
|wε

t |2 dt+ V 1(ξε
T )

]
≤ ε =

ε̂

2
(1 + |x|2)(6.8)

where ξε satisfies (4.3) with inputs wε, µε.

By (6.6), Theorem 6.6 and standard results for nonhomogeneous linear systems, one has

ξε
t = exp

[∫ t

0

Aµε
r dr

]
x+

∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
l
µε

r

2 dr +

∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
σµε

rwε
r dr(6.9)

ξ
ε

t = exp

[∫ t

0

Aµε
r dr

]
x+

∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
l
µε

r

2 dr +

∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
σµε

rwε
r dr.(6.10)

Theorem 6.7. |ξε
t − ξ

ε

t | ≤ K̄4(M + 1)2
√

1 + |x|2 τ for all 0 ≤ t ≤ T < ∞, for proper choice of K̄4

independent of x ∈ IRn, τ ∈ (0, 1] and ε ∈ (0, 1] (i.e., ε̂ ∈ (0, 2/(1 + |x|2)]).
Proof. First, using (A.σ) in (6.9) and (6.10), one has

|ξε
t − ξ

ε

t | ≤
∣∣∣∣exp

[∫ t

0

Aµε
r dr

]
− exp

[∫ t

0

Aµε
r dr

]∣∣∣∣ |x|

+

∣∣∣∣
∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
l
µε

r

2 dr −
∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
l
µε

r

2 dr

∣∣∣∣

+

{∫ t

0

∣∣∣exp
[∫ t

r

Aµε
ρ dρ

]
σ − exp

[∫ t

r

Aµε
ρ dρ

]
σ
∣∣∣
2

dr

}1/2

‖wε‖L2(0,t).(6.11)

Consider the first term on the right in (6.11). Using Lemmas 6.2 and 6.3, one finds

∣∣∣∣
∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

∣∣∣∣ =

∣∣∣∣
∑

m

λm
t A

m −
∑

m

λ̄m
t A

m

∣∣∣∣ ≤
∑

m

∣∣λm
t − λ̄m

t

∣∣∣∣Am
∣∣ ≤M2Aτ,

where A
.
= maxm∈M |Am|. Using this bound and the Mean Value Theorem (on ex), we find that, for

τ ∈ (0, 1],

∣∣∣∣1 − exp
[∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

]∣∣∣∣ =

∣∣∣∣e
0 − exp

[∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

]∣∣∣∣(6.12)

≤
∣∣∣∣
∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

∣∣∣∣ exp

{
max

t∈[0,T ]

∣∣∣∣
∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

∣∣∣∣
}

≤ β1
τ(6.13)

where

β1
τ = M2 max

m
|Am|

[
exp{M2 max

m
|Am|}

]
τ
.
= M2A

[
exp{M2A}

]
τ(6.14)

independent of t ≥ 0.

Let y ∈ IRn. Define Ft = exp
[∫ t

s A
µε

r dr
]
. Then, using Assumption block (A.m),

d

dt
[y′F ′

tFty] = 2y′
[
F ′

tA
µε

tFt

]
y = 2(Fty)

′Aµε
t (Fty) ≤ −2cA

[
y′F ′

tFty
]
.
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Solving this ordinary differential inequality, one finds y′F ′
tFty ≤ |y|2e−2cA(t−s). Since this is true for all

y ∈ IRn, we have
∣∣∣∣exp

[∫ t

s

Aµε
r dr

]∣∣∣∣ ≤ e−cA(t−s) ∀ t ≥ s ≥ 0.(6.15)

By (6.13) and (6.15)
∣∣∣∣exp

[∫ t

s

Aµε
r dr

]
− exp

[∫ t

s

Aµε
r dr

]∣∣∣∣ ≤ β1
τe

−cA(t−s) ∀ t ≥ s ≥ 0.(6.16)

We now turn to the third term on the right-hand side of (6.11). Note that

{∫ t

0

∣∣∣exp
[∫ t

r

Aµε
ρ dρ

]
σ − exp

[∫ t

r

Aµε
ρ dρ

]
σ
∣∣∣
2

dr

}1/2

≤
{∫ t

0

∣∣∣∣exp
[∫ t

r

Aµε
ρ dρ

]
− exp

[∫ t

r

Aµε
ρ dρ

]∣∣∣∣
2

|σ|2 dr
}1/2

which, by using (6.16),
≤ β1

τ cσ(2cA)−1/2.(6.17)

Combining this with Assumption (A.w), we have

{∫ t

0

∣∣∣exp
[∫ t

r

Aµε
ρ dρ

]
σ − exp

[∫ t

r

Aµε
ρ dρ

]
σ
∣∣∣
2

dr

}1/2

‖wε‖L2(0,t) ≤ β1
τ cσ(2cA)−1/2

√
c1 + c2|x|2.(6.18)

The second term on the right-hand side of (6.11) requires substantially more work. Clearly,
∣∣∣∣
∫ t

0

e

∫
t

r
A

µε
ρ dρ

l
µε

r

2 dr −
∫ t

0

e

∫
t

r
A

µε
ρ dρ

l
µε

r

2 dr

∣∣∣∣≤
∣∣∣∣
∫ t

0

e

∫
t

r
A

µε
ρ dρ

(l
µε

r

2 − l
µε

r

2 ) dr

∣∣∣∣(6.19)

+

∣∣∣∣
∫ t

0

(e

∫
t

r
A

µε
ρ dρ − e

∫
t

r
A

µε
ρ dρ

)l
µε

r

2 dr

∣∣∣∣ .

First we note that, using (6.16), the second term on the right-hand side of (6.19) satisfies the bound
∣∣∣∣
∫ t

0

(e

∫
t

r
A

µε
ρ dρ − e

∫
t

r
A

µε
ρ dρ

)l
µε

r

2 dr

∣∣∣∣ ≤ max
m∈M

{|lm2 |}β
1
τ

cA
.(6.20)

Now we turn to the first term on the right-hand side of (6.19). The approach will be similar to
that used for some estimates in [31]. First, we introduce a shorthand notation which will also be helpful
conceptually. For any given t ∈ [0, T ], let

ζr
.
= e

∫
t

r
A

µε
ρ dρ

, and ζ̄r
.
= e

∫
t

r
A

µε
ρ dρ

.(6.21)

Note that ζ and ζ̄ satisfy terminal value problems

ζ̇ = Aµε
rζ, ζt = I(6.22)

and
˙̄ζ = Aµε

r ζ̄ , ζ̄t = I.(6.23)

Using these, one sees that the first term on the right-hand side of (6.19) takes the form |At| where

At
.
=

∫ t

0

ζr(l
µε

r

2 − l
µε

r

2 ) dr =
∑

m∈M

{∫

Im
t

ζrl
m
2 dr −

∫

I
m

t

ζrl
m
2 dr

}
.(6.24)
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Using the earlier definitions, one finds that (6.24) becomes

At =
∑

m∈M

Am
t(6.25)

where each

Am
t =




∑

k∈Kt
m

[∫

Ĩm,t

k

ζrl
m
2 dr −

∫ nm,t

k
τ

(nm,t

k
−1)τ

ζrl
m
2 dr

]


+

∫

Ĩm,t

f

ζrl
m
2 dr −

∫

Ĩ
m, t
f

ζrl
m
2 dr

=



l

m
2

∑

k∈Kt
m

[∫ nm,t

k
τ

(nm,t

k
−1)τ

ζΦm,t

k
(r) − ζr dr

]


+lm2

[∫

Ĩm,t

f

ζr dr −
∫

Ĩ
m, t
f

ζr dr

]

.
=



l

m
2

∑

k∈Kt
m

[∫ nm,t

k
τ

(nm,t

k
−1)τ

ζΦm,t

k
(r) − ζr dr

]
+ Em

t .(6.26)

For ease of notation on the next few lines, in the case of b < a and any integrable f(t), we let
∫ b

a
f(t) dt

denote
∫ a

b f(t) dt. Note that

∣∣∣ζΦm,t

k
(r) − ζr

∣∣∣=
∣∣∣∣∣

∫ Φm,t

k
(r)

r

ζ̇ρ dρ

∣∣∣∣∣

which by (6.21)

=

∣∣∣∣∣

∫ Φm,t

k
(r)

r

Aµε
ρζρ dρ

∣∣∣∣∣ ≤ A

∫ Φm,t

k
(r)

r

|ζρ| dρ.(6.27)

However, by (6.21) and (6.15), |ζρ| ≤ e−cA(t−ρ). Employing this in (6.27) yields

∣∣∣ζΦm,t

k
(r) − ζr

∣∣∣ ≤ Ae−cAt

∣∣∣∣∣

∫ Φm,t

k
(r)

r

ecAρ dρ

∣∣∣∣∣ .(6.28)

Substituting (6.28) into (6.26) yields

|Am
t | ≤ |lm2 |Ae−cAt


 ∑

k∈Kt
m

∫ nm,t

k
τ

(nm,t

k
−1)τ

∣∣∣∣∣

∫ Φm,t

k
(r)

r

ecAρ dρ

∣∣∣∣∣ dr


 + Em

t .(6.29)

Employing Lemma 6.5 on the sum on the right-hand side of (6.29), one finds

|Am
t |≤ |lm2 |Ae−cAt min{M, 2}τ

∫ t

0

ecar dr + Em
t

≤ K̄1(M + 1)2τ + Em
t(6.30)

for proper choice of K̄1 <∞ independent of 0 ≤ t ≤ T <∞ and m ∈ M.
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Now, let Nt = max{n ∈ N ∪ {0} |nτ ≤ t}. Then, note that by Lemma 6.3 one has λm
Ntτ ≤

λ̄m
Ntτ

+ (M − 1)τ , and so

λm
t − λ̄m

Ntτ ≤Mτ

which implies L(Ĩm,t
f ) ≤Mτ . Also, by the definition of Ĩm, t

f , L(Ĩm, t

f ) ≤ t−Ntτ ≤ τ . Then, noting that
|ζr| ≤ 1 for all 0 ≤ r ≤ t, one sees that

|Em
t |=

∣∣∣∣∣l
m
2

[∫

Ĩm,t

f

ζr dr −
∫

Ĩ
m, t
f

ζr dr

]∣∣∣∣∣
≤ max

m∈M
|lm2 |(M + 1)τ(6.31)

for all m ∈ M. Combining (6.25), (6.26), (6.30) and (6.31), one finds that there exists K̄2 <∞ such that

|At| ≤ K̄2τ(6.32)

for all 0 ≤ t ≤ T <∞.

Then, combining (6.19), (6.20), the definition of At and (6.32), one finds that there exists K̄3 < ∞
such that

∣∣∣∣
∫ t

0

e

∫
t

r
A

µε
ρ dρ

l
µε

r

2 dr −
∫ t

0

e

∫
t

r
A

µε
ρ dρ

l
µε

r

2 dr

∣∣∣∣ ≤ K̄3τ(6.33)

for all 0 ≤ t ≤ T < ∞. Finally, by combining (6.11), (6.16), (6.18), (6.33) and Assumption (A.w), one
has

|ξε
t − ξ

ε

t | ≤ β1
τ |x| + K̄3τ + β1

τ cσ(2cA)−1/2
√
c1 + c2|x|2(6.34)

which yields the desired result.

Now that we have a bound on |ξε
t − ξ

ε

t |, we turn to the main problem of the section, that of proving
Theorem 6.1. Note that

∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+ V 1(ξε
T ) −

[∫ T

0

Lµε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt+ V 1(ξ
ε

T )

]

= 1
2

∫ T

0

ξε
tD

µε
t ξε

t − ξ
ε

tD
µε

t ξ
ε

t dt+

∫ T

0

(l
µε

t

1 )′ξε
t − (l

µε
t

1 )′ ξ
ε

t dt

+

∫ T

0

αµε
t − αµε

t dt+ 1/2(ξε
T )′P 1ξε

T − 1/2(ξ
ε

T )′P 1ξ
ε

T(6.35)

where we use the fact that V 1(x) = 1
2x

′P 1x for appropriate positive definite P 1. Note that the first
integral term on the right-hand side in (6.35) is

∫ T

0

(ξε
t )′
(
Dµε

t −Dµε
t

)
ξε
t + (ξε

t )′Dµε
t ξε

t − (ξ
ε

t )
′Dµε

t ξ
ε

t dt

=

∫ T

0

(ξε
t )′
(
Dµε

t −Dµε
t

)
ξε
t dt+

∫ T

0

(ξε
t + ξ

ε

t )
′Dµε

t (ξε
t − ξ

ε

t ) dt.(6.36)

Now, with c̄D
.
= maxm∈M |Dm|,

∣∣∣∣∣

∫ T

0

(ξε
t + ξ

ε

t )
′Dµε

t (ξε
t − ξ

ε

t ) dt

∣∣∣∣∣ ≤
∫ T

0

∣∣∣(ξε

t − ξε
t + 2ξε

t )
′Dµε

t (ξε
t − ξ

ε

t )
∣∣∣ dt
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≤ c̄D

∫ T

0

|ξε
t − ξ

ε

t |2 + 2|ξε
t ||ξε

t − ξ
ε

t | dt

which by Theorem 6.7

≤ c̄D

{
K̄2

4 (M + 1)4(1 + |x|2)τ2T + 2K̄4(M + 1)2
√

1 + |x|2 τ
∫ T

0

|ξε
t | dt

}

which, by using a Holder inequality, Lemma 4.3 and Assumption (A.w),

≤ c̄D

{
K̄2

4(M + 1)4(1 + |x|2)τ2T + 2K̄4(M + 1)2
√

1 + |x|2 τ
√
T

[√
2

cA
|x|

+
2

cA
max
m∈M

|lm2 |
√
T +

√
2cσ
cA

√
c1 + c2|x|2

]}

≤ K̄5(M + 1)4(1 + |x|2)(1 + T )τ(6.37)

where K̄5 is independent of x ∈ IRn, T ∈ [0,∞), τ ∈ (0, 1] and ε ∈ (0, 1].

We have obtained a bound on the second integral term on the right-hand side of (6.36). Now we
turn to the first integral term on the right-hand side. This section of the proof, from here through (6.42),
is nearly identical to the analogous estimate in the proof of Theorem 6.1 of [31]. It is also very similar,
in technique, to the approach used to bound |ξε

t − ξ
ε

t | just above (but with T replacing t). Due to this
redundancy, only the main steps will be indicated.

One first finds that
∣∣∣∣∣

∫ T

0

(ξε
t )′
(
Dµε

t −Dµε
t

)
ξε
t dt

∣∣∣∣∣≤
∑

m∈M

{
∑

k∈KT
m

∣∣∣∣∣

∫ nm,T

k
τ

(nm,T

k
−1)τ

(ξε
Φm,T

k
(t)

)′Dmξε
Φm,T

k
(t)

− (ξε
t )′Dmξε

t dt

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ĩm,T

f

(ξε
t )′Dmξε

t dt−
∫

Ĩ
m, T
f

(ξε
t )′Dmξε

t dt

∣∣∣∣∣

}
.(6.38)

However, note that

∣∣∣(ξε
Φm,T

k
(t)

)′Dmξε
Φm,T

k
(t)

− (ξε
t )′Dmξε

t

∣∣∣=
∣∣∣∣∣

∫ Φm,T

k
(t)

t

2(ξε
r)

′Dm[Aµε
rξε

r + l
µε

r

2 + σwε
r ] dr

∣∣∣∣∣

where the l
µε

r

2 term did not appear in the analogous estimate in [31]. Using Assumption Block (A.m),
this is

≤
∫ Φm,T

k
(t)

t

K̄6

[
|ξε

r |2 + |wε
r |2 + 1

]
dr(6.39)

where

K̄6 = c̄D max

{
2A+ 2, c2σ, max

m∈M
|lm2 |2

}
,

and we note that the only new term, as compared with the analogous inequality in the proof of Theorem
6.1 of [31], is the “+1” term in the integrand. Combining (6.38) and (6.39), one has

∣∣∣∣∣

∫ T

0

(ξε
t )′
(
Dµε

t −Dµε
t

)
ξε
t dt

∣∣∣∣∣

≤
∑

m∈M

{
∑

k∈KT
m

[∫ nm,T

k
τ

(nm,T

k
−1)τ

∫ Φm,T

k
(t)

t

K̄6

(
|ξε

r |2 + |wε
r |2 + 1

)
dr

]
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+

∣∣∣∣∣

∫

Ĩm,T

f

(ξε
t )′Dmξε

t dt−
∫

Ĩ
m, T
f

(ξε
t )′Dmξε

t dt

∣∣∣∣∣

}
,

which by Lemma 6.5,

≤M min{M, 2}K̄6

∫ T

0

(
|ξε

r |2 + |wε
r |2 + 1

)
dr τ

+
∑

m∈M

∣∣∣∣∣

∫

Ĩm,T

f

(ξε
t )′Dmξε

t dt−
∫

Ĩ
m, T
f

(ξε
t )′Dmξε

t dt

∣∣∣∣∣ ,

which by Assumption (A.w) and Lemma 4.3,

≤ K̄7(M + 1)2(1 + |x|2)(1 + T )τ +
∑

m∈M

∣∣∣∣∣

∫

Ĩm,T

f

(ξε
t )′Dmξε

t dt−
∫

Ĩ
m, T
f

(ξε
t )′Dmξε

t dt

∣∣∣∣∣(6.40)

for proper choice of K̄7 independent of x ∈ IRn, T ∈ [0,∞) and τ ∈ [0, 1). The last term in (6.40) is
handled in the same way as the corresponding term in the proof of Theorem 6.1 of [31], and we do not
repeat the details here. One obtains

∣∣∣∣∣

∫ T

0

(ξε
t )′
(
Dµε

t −Dµε
t

)
ξε
t dt

∣∣∣∣∣ ≤ K̄8(M + 1)2(1 + |x|2)(1 + T )τ,(6.41)

for proper choice of K̄8 independent of x ∈ IRn, T ∈ [0,∞) and τ ∈ [0, 1). Combining (6.36), (6.37) and
(6.41) yields

∫ T

0

(ξε
t )′Dµε

t ξε
t − (ξ

ε

t )
′Dµε

t ξ
ε

t dt ≤ K̄9(M + 1)4(1 + |x|2)(1 + T )τ,(6.42)

for proper choice of K̄9 independent of x ∈ IRn, T ∈ [0,∞) and τ ∈ [0, 1).

We now have, in (6.42), a bound on the first integral term on the right-hand side of (6.35). Next, we
turn to the second integral term on the right-hand side. Note that

∣∣∣∣∣

∫ T

0

(l
µε

t

1 )′ξε
t − (l

µε
t

1 )′ ξ
ε

t dt

∣∣∣∣∣

≤
∣∣∣∣∣

∫ T

0

(l
µε

t

1 − l
µε

t

1 )′ξε
t dt

∣∣∣∣∣+
∣∣∣∣∣

∫ T

0

(l
µε

t

1 )′(ξε
t − ξ

ε

t ) dt

∣∣∣∣∣

which using Theorem 6.7,

≤
∣∣∣∣∣

∫ T

0

(l
µε

t

1 − l
µε

t

1 )′ξε
t dt

∣∣∣∣∣+ max
m∈M

|lm1 |K̄4(M + 1)2
√

1 + |x|2 Tτ.(6.43)

The first term on the right-hand side of (6.43) may be treated in a similar manner to that used for∫ T

0
(ξε

t )′(Dµε
t −Dµε

t )ξε
t dt just above. That is,

∣∣∣∣∣

∫ T

0

(
l
µε

t

1 − l
µε

t

1

)′
ξε
t dt

∣∣∣∣∣ ≤
∑

m

{
∑

k∈KT
m

∣∣∣∣∣

∫ nm,T

k
τ

(nm,T

k
−1)τ

(lm1 )′(ξε
Φm,T

k
(t)

− ξε
t ) dt

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ĩm,T

f

(lm1 )′ξε
t dt−

∫

Ĩ
m, T
f

(lm1 )′ξε
t dt

∣∣∣∣∣

}
,

and by very similar steps, one finds that
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≤ K̄10(M + 1)2(1 + |x|2)(1 + T )τ(6.44)

for proper choice of K̄10 independent of x ∈ IRn, T ∈ [0,∞), τ ∈ (0, 1] and ε ∈ (0, 1]. Combining (6.43)
and (6.44), one obtains

∣∣∣∣∣

∫ T

0

(l
µε

t

1 )′ξε
t − (l

µε
t

1 )′ ξ
ε

t dt

∣∣∣∣∣ ≤ K̄11(M + 1)2(1 + |x|2)(1 + T )τ(6.45)

independent of x ∈ IRn, T ∈ [0,∞), τ ∈ (0, 1] and ε ∈ (0, 1].

We now have bounds on the first and second integral terms on the right-hand side of (6.35). For the
third integral term, one easily finds (using Lemmas 6.2 and 6.3)

∣∣∣∣∣

∫ T

0

αµε
t − αµε

t dt

∣∣∣∣∣ =

∣∣∣∣∣
∑

m

λm
t α

m −
∑

m

λ̄m
t α

m

∣∣∣∣∣ ≤M

(
∑

m

|αm|
)
τ.(6.46)

Lastly,

|(ξε
T )′P 1ξε

T − (ξ
ε

T )′P 1ξ
ε

T |
≤ |P 1|

[
|ξε

T − ξ
ε

T |2 + 2|ξε
T | |ξε

T − ξ
ε

T |
]

which, using Theorem 6.7, is

≤ |P 1|
[
K̄2

4(M + 1)4(1 + |x|2)τ2 + 2K̄4(M + 1)2
√

1 + |x|2 τ |ξε
T |
]
,

and by using Lemma 4.2 and Assumption (A.w), this is

≤ |P 1|
[
K̄2

4 (M + 1)4(1 + |x|2)τ2

+2K̄4(M + 1)2
√

1 + |x|2 τ
(
|x| + 2

cA
max
m∈M

|lm2 | + cσ√
cA

√
c1 + c2|x|2

)]

which for proper choice of K̄12,
≤ K̄12(M + 1)4(1 + |x|2)(1 + T )τ(6.47)

Combining (6.35), (6.42), (6.45), (6.46) and (6.47), one has
∣∣∣∣∣

∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+ V 1(ξε
T ) −

[∫ T

0

Lµε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt+ V 1(ξ
ε

T )

]∣∣∣∣∣
≤ K̄13(M + 1)4(1 + |x|2)(1 + T )τ(6.48)

for proper choice of K̄13 independent of x ∈ IRn, T ∈ [0,∞), τ ∈ (0, 1] and ε ∈ (0, 1].

Combining (4.16), (4.18), (6.8) and (6.48), one has

S̃T [V 1](x) − ¯̄S
τ

T [V 1](x)≤ ε+ K̄13(M + 1)4(1 + |x|2)(1 + T )τ

Since it is true for all ε ≥ 0 and since K̄13 is independent of ε ∈ (0, 1], we finally obtain

S̃T [V 1](x) − ¯̄S
τ

T [V 1](x)≤ K̄13(M + 1)4(1 + |x|2)(1 + T )τ,

which completes the proof of Theorem 6.1.

Combining Theorems 4.5 and 6.1, we see that for sufficiently large T < ∞ and sufficiently small

τ > 0, ¯̄S
τ

T [V ] approximates Ṽ arbitrarily well. However, this does not give us a specific error bound or
requisite relative rates for T, τ . For this we will also need to consider the errors due to time truncation,
and we now address such.
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7. Finite-time truncation errors. We now know that by taking T large and τ small, we can

approximate Ṽ (x) arbitrarily closely by ¯̄S
τ

T [V 1](x), where the latter is obtained from the numerical
algorithm (see Section 10). However, we would like to know how large T = Nτ must be, and how small
τ must be to achieve a desired accuracy. Further, we would like to know at what rate should one take
N → ∞ relative to the rate for τ ↓ 0 in order to obtain good convergence.

Given T = Nτ , Theorem 6.1 indicates an error bound on
∣∣∣ ¯̄S

τ

T [V 1] − S̃T [V 1]
∣∣∣ as a function of τ (as

well as T ). Now we would like an estimate of
∣∣∣S̃T [V 1] − Ṽ

∣∣∣ as a function of T . Unfortunately, this

estimate will require another assumption on the behavior of ε–optimal trajectories of the system, in the
general class of coercivity-type assumptions. (One would prefer an assumption that only involves the

instantaneous structure of H̃ or
˜̃
H , but we have, so far, been unable to obtain such.)

(A.ξ)

Assume there exist T , c3 ∈ (0,∞) such that for all x ∈ IRn, all ε ∈ (0, 1], and all µε, wε

which are ε–optimal for Ṽ (x) (i.e., such that J̃(x, µε, wε) ≥ Ṽ (x) − ε ), one has

∫ T

0

Lµε
t (ξε

t ) dt ≥ c3

∫ T

0

|ξε
t |2 dt ∀T ≥ T

where ξ̇ε
t = Aµε

t ξε
t + l

µε
t

2 + σµε
twε

t , ξ
ε
0 = x.

This assumption is used only in this section, and indirectly, in the Combined Errors section that follows.
It is also worth noting that Assumption (A.m) is not needed in this section.

Lemma 7.1. Assume (A.ξ) (as well as the assumptions of Section 2). Then, there exist c̄1, c̄2 < ∞
such that for any T ∈ [T ,∞), ε ∈ (0, 1], x ∈ IRn and ε–optimal µε, wε, one has

∫ T

0

|ξε
t |2 dt ≤ c̄1 + c̄2|x|2

where

ξ̇ε
t = fµε

t (ξε
t , w

ε
t )

.
= Aµε

t ξε
t + l

µε
t

2 + σµε
twε

t with ξε
0 = x.(7.1)

Proof. Let x ∈ IRn and T ∈ [T ,∞). Let R ≥ |x|. Let ε, ε̄ ∈ (0, 1] and µε, wε be ε–optimal for Ṽ (x).
By Assumption (A.w) and Lemma 4.2, there exists R̄ = R̄(R) <∞ such that |ξε

t | ≤ R̄ for all t ∈ [0,∞).

Now, as in the proof of Theorem 4.1, we approximate Ṽ by a one-parameter family V δ ∈ C∞ where
V δ(x) = [gδ ∗ Ṽ ](x) =

∫
IRn g

δ(x − y)Ṽ (y) dy with gδ as described there. In particular, using the same
analysis as that which yielded (4.5) and (4.14), there exists δ = δ(T, R̄, ε̄) > 0 such that

∣∣∣Ṽ (y) − V δ(y)
∣∣∣ < ε̄(7.2)

and

H̃(y, gradV δ(y)) <
ε̄

T
(7.3)

for all y ∈ BR̄(0).

Let δ = δ(T, R̄, ε̄) be such that (7.2),(7.3) hold. Then, by Assumption (A.ξ),

c3

∫ T

0

|ξε
t |2 dt−

γ2

2

∫ T

0

|wε
t |2 dt

≤
∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt,

and using the fact that V δ ∈ C1,
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=

∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 + fµε
t (ξε

t , w
ε
t ) · gradV δ(ξε

t ) dt−
∫ T

0

fµε
t (ξε

t , w
ε
t ) · gradV δ(ξε

t ) dt,

which, using the definition of H̃ and (7.1),

≤
∫ T

0

H̃(ξε
t , gradV δ(ξε

t )) dt−
∫ T

0

ξ̇ε
t · gradV δ(ξε

t ) dt,

which by (7.3),
≤ V δ(x) − V δ(ξε

T ) + ε̄.

which by (7.2),

≤ Ṽ (x) − Ṽ (ξε
T ) + 3ε̄,

and since Ṽ ∈ QK by Theorem 4.1,

≤ K

2
|x|2 + 3ε̄.

Rearranging this last statement, we have

c3

∫ T

0

|ξε
t |2 dt ≤

γ2

2
‖wε‖2

L2(0,T ) +
K

2
|x|2 + 3ε̄,

which, using Assumption (A.w), implies that

∫ T

0

|ξε
t |2 dt ≤ c̄1 + c̄2|x|2 + 3ε̄,

where c̄1 = γ2c1

2c3
and c̄2 = γ2c2+K

2c3
. Since this is true for all ε̄ > 0, one has the asserted result.

Lemma 7.2. Assume (A.ξ) (as well as the assumptions of Section 2). Then, given T ∈ [T ,∞), there
exists T ∈ [T/2, T ] such that

|ξε
T |2 ≤ 2

T

[
c̄1 + c̄2|x|2

]
.

Proof. Suppose not. Then

∫ T

0

|ξε
t |2 dt ≥

∫ T

T/2

|ξε
t |2 dt >

∫ T

T/2

2

T

[
c̄1 + c̄2|x|2

]
dt = c̄1 + c̄2|x|2

which contradicts Lemma 7.1.

We now proceed to obtain the bound on
∣∣∣S̃T [V 1] − Ṽ

∣∣∣. Let x ∈ IRn, T ∈ [T ,∞), ε ∈ (0, 1], and

µε, wε be ε–optimal for Ṽ (x) (with corresponding trajectory ξε). For any T ∈ [0,∞),

Ṽ (x)≤
∫ ∞

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+ ε

=

∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+

∫ ∞

T

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+ ε

≤
∫ T

0

Lµε
t (ξε

t ) − γ2

2
|wε

t |2 dt+ Ṽ (ξε
T ) + ε.(7.4)
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Let T ∈ [T/2, T ] be as asserted in Lemma 7.2. Using the fact that Ṽ ∈ QK (by Theorem 4.1), (7.4)
implies

Ṽ (x)≤ S̃T [0](x) +
K

2
|ξε

T |2 + ε

which by Lemma 7.2,

≤ S̃T [0](x) +
K

2T

(
c̄1 + c̄2|x|2

)
+ ε.

Since this holds for all ε ∈ (0, 1], we have

S̃T [0](x) ≥ Ṽ (x) − K

2T

(
c̄1 + c̄2|x|2

)
.(7.5)

Suppose V ∈ QK . Then V ≥ 0, and so, by the monotonicity of S̃T [·], (7.5) implies

Ṽ (x) − K

2T

(
c̄1 + c̄2|x|2

)
≤ S̃T [V ](x).(7.6)

Suppose also that V ≤ Ṽ . Then, the monotonicity of S̃T [·] and Theorem 4.5 imply

S̃T [V ] ≤ S̃T [Ṽ ] = Ṽ .(7.7)

Combining (7.6) and (7.7), we have:

Theorem 7.3. Assume (A.ξ) (as well as the assumptions of Section 2). Let V ∈ QK with V ≤ Ṽ .
Then, there exists K̄δ <∞ such that for any T ∈ [T ,∞),

Ṽ (x) − K̄δ

T
(1 + |x|2) ≤ S̃T [V ](x) ≤ Ṽ (x).

8. Combined errors. We can now obtain an explicit estimate of the convergence of ¯̄S
τ

T [V 1] to Ṽ
as τ ↓ 0 and T → ∞. Indeed, combining the results of Theorem 6.1 and Theorem 7.3, we have that for
all x ∈ IRn, all T ∈ [T ,∞), and all sufficiently small τ > 0,

¯̄S
τ

T [V 1](x) ≤ Ṽ (x) = S̃T [Ṽ ](x)

≤ S̃T [V 1](x) +
K̄δ

T
(1 + |x|2)

≤ ¯̄S
τ

T [V 1](x) +
K̄δ

T
(1 + |x|2) + K̄13(M + 1)4(1 + T )(1 + |x|2)τ.(8.1)

If we want 0 ≤ Ṽ (x) − ¯̄S
τ

T [V 1](x) ≤ 2ε(1 + |x|2), we can, for example, choose T = K̄δ/ε and
τ ≤ ε2/[K̄13(M + 1)4(1 + K̄δ)]. Consequently, one can get an approximation of the order ε, with
Nτ = T ∝ ε−1 and τ ∝ ε2, which implies N ∝ ε−3. Also, if the last term in (8.1) could be sharpened by
elimination of the (1 +T ) term (which we believe might be true for a reasonable problem class, but have
been unable to prove), then one would have N ∝ ε−2 rather than N ∝ ε−3.

9. Propagation via dual operators. It remains to demonstrate that one can equivalently replace
the propagation by semigroup operator S̄τ with the propagation in the semiconvex dual space by the
corresponding max-plus integral operator with kernel Bτ (·, ·) (where Bτ (x, y) =

⊕
m∈M Bm

τ (x, y)).

Let Sβ be the set of φ : IRn → IR such that φ(x)+ 1
2x

′βx is convex. It will be implicit throughout that
we consider only Sβ spaces where the β are symmetric and definite (either positive definite or negative
definite).
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We briefly review semiconvex duality. Proofs of the next results may be found in [20], [34]. We will
employ certain transform kernel functions, ψ : IRn × IRn → IR which take the form

ψ(x, z) = 1
2 (x − z)′C(x − z)

with nonsingular, symmetric C satisfying C + β < 0 (i.e., C + β negative definite). The following
semiconvex duality result requires only a small modification of convex duality and Legendre/Fenchel
transform results; see Section 3 of [43], and more generally, [44].

Theorem 9.1. Let φ ∈ Sβ. Let C and ψ be as above. Then, for all x ∈ IRn,

φ(x)= max
z∈IRn

[ψ(x, z) + a(z)](9.1)

=

∫ ⊕

IRn

ψ(x, z) ⊗ a(z) dz = ψ(x, ·) ⊙ a(·)(9.2)

where for all z ∈ IRn

a(z)= − max
x∈IRn

[ψ(x, z) − φ(x)](9.3)

= −
∫ ⊕

IRn

ψ(x, z) ⊗ [−φ(x)] dx = −{ψ(·, z) ⊙ [−φ(·)]}(9.4)

which using the notation of [8]

=
{
ψ(·, z) ⊙ [φ−(·)]

}−
.(9.5)

We will refer to a as the semiconvex dual of φ (with respect to ψ).

Theorem 9.2. Let φ ∈ Sβ ⊂ S−C with semiconvex dual denoted by a. There exist η, τ > 0 such that
Sm

τ [φ] ∈ S−(C+ηIτ) for all τ ∈ [0, τ ]. Further, Sm
τ [φ](x) = ψ(x, ·) ⊙ â1

m(·) where â1
m(y) = Bm

τ (y, ·) ⊙ a(·),
a is the semiconvex dual of φ and

Bm
τ (y, z) = −ψ(·, y) ⊙ [−Sm

τ [ψ(·, z)](·)].(9.6)

Proof. The proof of the first assertion is very similar to the proof of Theorem 3.7 in [32], where it is

demonstrated that S̃τ [ψ(·, z)] ∈ S−(C+ηIτ). One difference is that in Sm
τ , the value of m is fixed rather

than the case in S̃τ where one is optimizing over µ-processes, and so there is some simplification in that
respect here.

A second difference is that ψ(·, z) is now replaced by φ ∈ Sβ . However, φ ∈ Sβ implies φ(y) + 1
2y

′βy
is convex and so for any y, δy ∈ IRn,

φ(y − δy) + 1
2 (y − δy)′β(y − δy) − 2[φ(y) + 1

2y
′βy] + φ(y + δy) + 1

2 (y + δy)′β(y + δy) ≥ 0

which implies

φ(y − δy) − 2φ(y) + φ(y + δy)

≥ − 1
2

[
(y − δy)′β(y − δy) − 2y′βy + 1

2 (y + δy)′β(y + δy)
]

= −δ′yβδy
> δ′yCδy = ψ(y − δy, z)− 2ψ(y, z) + ψ(y + δy, z)(9.7)

for any z ∈ IRn. This inequality will enable us to substitute ψ(·, z) for φ below.
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Lastly, the running cost and dynamics have also been modified with the addition of linear and
constant terms in the cost and a constant term in the dynamics. However, these will have little impact
on the proof. We will begin the proof, and soon reach a point where we may refer to the remainder of
the proof of Theorem 3.7 in [32].

Fix any x, ν ∈ IRn with |ν| = 1 and any δ > 0. Fix τ > 0 (to be specified below), and let ε > 0. Let
wε be ε–optimal in Sm

τ [φ](x). Let

Îφ(x, τ, wε)
.
=

∫ τ

0

Lm(ξε
t ) − γ2

2
|wε

t |2 dt+ φ(ξε
τ )(9.8)

where ξε satisfies (2.2) with input wε. Then,

Sm
τ [φ](x − δν) − 2Sm

τ [φ](x) + Sm
τ [φ](x + δν)(9.9)

≥ Îφ(x− δν, τ, wε) − 2Îφ(x, τ, wε) + Îφ(x+ δν, τ, wε) − 2ε.

Let ξε,−δ, ξε,0, ξε,δ satisfy (2.2) with input wε and initial conditions ξε,−δ
0 = x − δν, ξε,0

0 = x, and

ξε,δ
0 = x+ δν. Note that

ξε,δ
t − ξε,0

t = ξε,0
t − ξε,−δ

t ∀ t ∈ [0, τ ],(9.10)

and we denote this difference as ∆+
t . Substituting definition (9.8) in (9.9) yields

Sm
τ [φ](x − δν) − 2Sm

τ [φ](x) + Sm
τ [φ](x + δν)

≥
∫ τ

0

1
2 (ξε,−δ

t )′Dmξε,−δ
t − (ξε,0

t )′Dmξε,0
t + 1

2 (ξε,δ
t )′Dmξε,δ

t

+(lm2 )′ξε,−δ
t − 2(lm2 )′ξε,0

t + (lm2 )′ξε,δ
t dt

+φ(ξε,−δ
τ ) − 2φ(ξε,0

τ ) + φ(ξε,δ
τ ) − 2ε,

and upon using (9.7) and (9.10), we see that this is

>

∫ τ

0

(∆+
t )′Dm∆+

t dt+ (∆+
τ )′C∆+

τ − 2ε,

and we specifically note that the linear and constant terms in the payoff are irrelevant to this second
difference bound.

Now, note that ∆̇+
t = Am(ξε,δ

t − ξε,0
t )+ lm2 − lm2 = Am∆+

t with ∆+
0 = δν. Consequently, the constant

term in the dynamics is irrelevant to the second-difference, and in particular,

∆+
t = exp[Amt]δν.

The remainder of the proof of the first assertion is identical to the corresponding portion of the proof
of Theorem 3.7 of [32], and we do not repeat it here.

Lastly, we turn to the second assertion. This is essentially the same as the proof of Proposition 3.10
in [32] (with Sm

τ replacing S̃τ there), and we do not repeat the steps here.

The above theorem implies that one can propagate in the semiconvex dual space via the max-plus
integral operation with kernel Bm

τ in place of propagation via Sm
τ . Next we use that result to show that

we may also replace propagation via S̄τ with propagation in the semiconvex dual space.

Theorem 9.3. Let φ ∈ Sβ ⊂ S−C with semiconvex dual denoted by a. For τ ∈ [0, τ ], S̄τ [φ](x) =
ψ(x, ·) ⊙ a1(·) where a1(y) = Bτ (y, ·) ⊙ a(·), a is the semiconvex dual of φ, and

Bτ (y, z) =
⊕

m∈M

Bm
τ (y, z).
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Proof. Note that

S̄τ [φ](x)=
⊕

m∈M

Sm
τ [φ](x)

which by Theorem 9.2

=
⊕

m∈M

ψ(x, ·) ⊙ â1
m(·) =

⊕

m∈M

∫ ⊕

IRn

ψ(x, y) ⊗ â1
m(y) dy

=
⊕

m∈M

∫ ⊕

IRn

ψ(x, y) ⊗
[∫ ⊕

IRn

Bm
τ (y, z) ⊗ a(z) dz

]
dy

=

∫ ⊕

IRn

ψ(x, y) ⊗
∫ ⊕

IRn

[
⊕

m∈M

Bm
τ (y, z) ⊗ a(z)

]
dy dz.

10. Modification of the algorithm. The algorithm was fully discussed in [32]. Also, some im-
portant comments appear in [30]. However, we now have the additional terms lm1 , lm2 and αm. The only
change this induces in the actual implementation of the algorithm is that there are now some additional
terms in the quadratic functions Bm

τ (y, z). We now indicate the minor modifications necessary for the
generalization.

The computation of the Bm
τ is performed by solving some differential Riccati equations and linear

differential equations for each of the m systems. In particular, note that one may let Sm
τ [ψ(·, z)](x) take

the form

Sm
τ [ψ(·, z)](x) = 1

2

[
(x− Λm

τ z)
′Pm

τ (x − Λm
τ z) + z′Rm

τ z + 2(Lm
τ )′x+ 2(Km

τ )′z + bmτ

]
.

The Pm
τ , Λm

τ and Rm
τ are n× n matrices, the Lm

τ and Km
τ are vectors of length n, and bmτ is a scalar. At

t = 0, these time-dependent coefficients satisfy Pm
0 = C, Λm

0 = I, Rm
0 = 0, Lm

0 = 0, Km
0 = 0 and bm0 = 0,

because they correspond to ψ. They evolve according to

Ṗm = (Am)′Pm + PmAm +Dm + PmΣmPm

Λ̇m =
[
(Pm)−1Dm +Am

]
Λm

Ṙm = (Λm)′DmΛm,

L̇m = [PmΣm + (Am)′]Λm + lm1 + Pmlm2 ,

K̇m = (Λm)′[Pmlm2 + PmΣmLm],

ḃm = αm + (Lm)′ΣmLm + 2(Lm)′lm2 .

The Pm
τ ,Λm

τ , R
m
τ , L

m
τ ,Km

τ , b
m
τ may be computed from these ordinary differential equations via a Runge-

Kutta algorithm (or other technique) with initial time t = 0 and terminal time t = τ . We remark that
each of these need only be computed once.

Next, noting that each Bm
τ is given by (9.6), one has

Bm
τ (x, z) = 1

2

[
x′Mm

1,1x+ 2x′Mm
1,2z + z′Mm

2,2z + 2(λm
1 )′x+ 2(λm

2 )′z + βm
]

where with shorthand notation Dτ
.
= (Pm

τ − C),
Mm

1,1 = −CD−1
τ Pm

τ

Mm
1,2 = CD−1

τ Pm
τ Λm

τ
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Mm
2,2 = Rm

τ − (Λm
τ )

′
CD−1

τ Pm
τ Λm

τ ,

λm
1 = −CD−1

τ Lm
τ ,

λm
2 = Λm

τ P
m
τ D−1

τ Lm
τ + Km

τ ,

βm = bmτ − (Lm
τ )′D−1

τ Lm
τ .

Note that each of these need only be computed once as well. Once one has these Bm
τ , the remainder of

the algorithm is identical to what is presented in [32], with the exception that the initialization of the

algorithm is with V
0

= V 1.

Acknowledgments. The author thanks L. Jonathan Kluberg for his contribution to certain esti-
mates appearing in Section 6.

11. Appendix A. The proofs of Lemmas 4.2 and 4.3 are nearly identical to the corresponding
development in [40]. For the purposes of completeness and self-containment, we sketch the proofs of
each.

Proof of Lemma 4.2: Using (4.3), one has

d

dt
|ξε

t |2= 2
{
(ξε

t )′Aµε
t ξε

t + (ξε
t )′
[
l
µε

t

2 + σµε
twε

t

]}
,

which by Assumption (A.m),

≤ 2
{
−cA|ξε

t |2 + (ξε
t )′
[
l
µε

t

2 + σµε
twε

t

]}
,

which, using the general inequality a · b ≤ |a|2

2 + |b|2

2 ,

≤ 2

{
−cA

2
|ξε

t |2 +

∣∣lµ
ε
t

2 + σµε
twε

t

∣∣2

2cA

}

≤ −cA|ξε
t |2 +

2 maxm |lm2 |2
cA

+
2c2σ|wε

t |2
cA

.

Solving this ordinary differential inequality with |ξε
0 |2 = |x|2, one finds

|ξε
t |2 ≤ e−cAt|x|2 + e−cAt 2 maxm |lm2 |2

cA

∫ t

0

ecAr dr +
2c2σ
cA

∫ t

0

ecA(r−t)|wε
r |2 dr,

which yields the result.

Proof of Lemma 4.3: This proof is similar in form to the proof just above. Let Qt
.
=
∫ t

0 |ξε
r |2 dr. Then,

following similar steps,

Q̇t = |ξε
t |2 = |x|2 +

∫ t

0

2(ξε
r)

′
[
Aµε

rξε
r + l

µε
r

2 + σµε
rwε

r

]
dr

≤ |x|2 + 2

{
−cA

∫ t

0

|ξε
r |2 dr +

∫ t

0

(ξε
r)′
[
l
µε

r

2 + σµε
rwε

r

]
dr

}

≤ |x|2 − cAQ+
2

cA

∫ t

0

max
m

|lm2 |2 dr +
2c2σ
cA

∫ t

0

|wε
r |2 dr.

Solving the ordinary differential inequality, one finds

Qt≤
∫ t

0

ecA(r−t)|x|2 dr +
2

cA

∫ t

0

ecA(r−t)

∫ r

0

max
m

|lm2 |2 dρ dr



CONVERGENCE OF CURSE-OF-DIMENSIONALITY-FREE METHOD 27

+
2c2σ
cA

∫ t

0

ecA(r−t)

∫ r

0

|wε
ρ|2 dρ dr

≤ 1

cA
|x|2 +

2 maxm |lm2 |2
c2A

t+
2c2σ
c2A

‖wε‖2
L2(0,t)(11.1)

12. Appendix B. We prove Lemma 4.4. First, note that for any semiconvex function, the subdif-
ferential and the Clarke generalized gradient are identical. (To see this, consider any semiconvex function,
f : IRn → IR and x ∈ IRn. Note that f̃(y)

.
= f(y) + cρ|y − x|2 is convex over a ball, Bρ = Bρ(0), for

appropriate cρ, and has the same subdifferential as f at x in Bρ. The subdifferential of a convex function

is identical to the Clarke generalized gradient [7].) Let A be the set of points where grad
˜̃
V (x) exists

(whose complement has measure zero by Rademacher’s Theorem, c.f., [47]). For any set S ⊆ IRn, let 〈S〉
denote the convex hull of S. Then note, from Theorem 2.5.1 of [7], that

∂
˜̃
V (x) =

〈{
lim grad

˜̃
V (xi)

∣∣∣ xi → x, xi ∈ A, lim grad
˜̃
V (xi)∃

}〉
,(12.1)

where this indicates the convex hull of the set of limits points of grad
˜̃
V (xi) for sequences of points in A

approaching x such that the limit exists.

Now we proceed to the proof. Fix any ρ ∈ (0,∞). By the local Lipschitz behavior of semiconvex
functions (c.f., [19]), there exists R <∞ such that

grad
˜̃
V (x) ∈ BR ∀x ∈ Bρ+1 ∩A.(12.2)

Fix any x0 ∈ Bρ. Let N ∈ N (the set of natural numbers), and let ∆N
.
= {−N,−(N − 1), . . .N − 1}. Let

∆n
N
.
= [∆N ]n where the superscript n on the right-hand side denotes outer product, that is ∆n

N is the set
of vectors of length n of elements from ∆N . The cardinality of ∆n

N is MN
.
= (2N)n. For any i ∈ ∆n

N , let

Si =
R

N
i+ [0, R/N ]n,(12.3)

where again the n superscript here indicates outer product. That is, the right-hand side is the cube with
corner at iR/N and side-length R/N . Note that these cover the cube of half-length R, centered at the
origin, and that that cube is chosen to cover BR, which contains the gradients. Let δ ∈ (0, 1]. For each
i ∈ ∆n

N , let

Dδ
i
.
= {x ∈ Bδ(x0) ∩A, | grad

˜̃
V (x) ∈ Si}.(12.4)

Also, let L ∈ N (with L to be chosen below), and let ∆+
L
.
= {0, 1/L, 2/L, . . .1} Then, let ~w denote a

vector of elements in ∆+
L , with entries, wi, indexed by i ∈ ∆n

N .

ΛL,N
.
=

{
~w

∣∣∣∣wi ∈ ∆+
L ∀i ∈ ∆n

N ,
∑

i∈∆n
N

wi = 1

}
.

Fix any ε ∈ (0, 1]. Let ⌈a denote the smallest integer greater than or equal to a. It is easy to see that for

any L ≥ L̄
.
= MN

ε = ⌈ (2N)n

ε ,

min
~w∈ΛL,N

∑

i∈∆n
N

|wi − µi| ≤ ε ∀ ~µ ∈ IRMN s.t.
∑

i∈∆n
N

µi = 1 and µi ∈ [0, 1] ∀i ∈ ∆n
N .(12.5)
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For any such µ, define the mapping ~w0 by

~w0(~µ) ∈ argmin
~w∈ΛL,N

∑

i∈∆n
N

|wi − µi|.(12.6)

Define

z̄δ = z̄δ(x0)
.
=

∫

Bδ∩Ax0

gδ(y) grad
˜̃
V (x0 − y) dy(12.7)

where Ax0
is the set of points, y, such that grad

˜̃
V (x0−y) exists (and we note as before that m(Ac

x0
) = 0),

and gδ is the mollifier given at the top of the proof of Theorem 4.1. Note that

z̄δ = [grad
˜̃
V ]δ(x0),(12.8)

i.e., z̄δ is the δ-mollification of grad
˜̃
V evaluated at x0, and we note that this exists for all x0 ∈ IRn. Here

we interject a lemma:

Lemma 12.1. z̄δ(x) = grad[
˜̃
V

δ
](x) for all x ∈ IRn and all δ > 0.

Proof. Let u ∈ IRn, |u| = 1. Let the directional derivative of any function, f , at point x0 in direction
u be denoted by fu(x0). We have

u · grad[
˜̃
V

δ
](x0)= [

˜̃
V

δ
]u(x0)

= lim
h→0

˜̃
V

δ
(x0 + hu) − ˜̃

V
δ
(x0)

h
,

which by the definition of
˜̃
V

δ

= lim
h→0

∫

Bδ∩Ax0

gδ(y)[
˜̃
V (x0 + hu− y) − ˜̃

V (x0 − y)]

h
dy

and by the Bounded Convergence Theorem,

=

∫

Bδ∩Ax0

gδ(y) lim
h→0

˜̃
V (x0 + hu− y) − ˜̃

V (x0 − y)

h
dy

which, since the gradient exists for y ∈ Ax0
,

=

∫

Bδ∩Ax0

gδ(y) grad
˜̃
V (x0 − y) · u dy

= u ·
∫

Bδ∩Ax0

gδ(y) grad
˜̃
V (x0 − y) dy = u · [grad

˜̃
V ]δ(x0).

Since this holds for all |u| = 1, x0 ∈ IRn and δ > 0, one has the desired result.

Now, let µδ
i =

∫
x0−Dδ

i

gδ(y) dy, and then let ~µδ denote the vector of elements µδ
i indexed by i ∈ ∆n

N .

Next, let ~wδ .
= ~w0(~µδ) where mapping ~w0 is given by (12.6), and let the elements of ~wδ be wδ

i . For each
i ∈ ∆n

N such that wδ
i > 0, choose any xδ

i ∈ Dδ
i ∩A. Define

ẑδ .
=
∑

i∈∆n
N

wδ
i grad

˜̃
V (xδ

i ).(12.9)
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(We will use the fact that this is a finite convex combination with rational weights with denominators
L.) It is helpful to note that x0 − y ∈ Dδ

i is equivalent to y ∈ x0 −Dδ
i . One now has

|z̄δ − ẑδ|=

∣∣∣∣∣∣

∫

Bδ(0)∩(x0−Ax0
)

gδ(y) grad
˜̃
V (x0 − y) dy −

∑

i∈∆n
N

wδ
i grad

˜̃
V (xδ

i )

∣∣∣∣∣∣

≤
∑

i∈∆n
N

∣∣∣∣∣

∫

[x0−Dδ
i
]∩Ax0

gδ(y) grad
˜̃
V (x0 − y) dy − wδ

i grad
˜̃
V (xδ

i )

∣∣∣∣∣

≤
∑

i∈∆n
N

{∣∣∣∣∣

∫

[x0−Dδ
i
]∩Ax0

gδ(y) dy − wδ
i

∣∣∣∣∣

∣∣∣∣grad
˜̃
V (xδ

i )

∣∣∣∣

+

∫

[x0−Dδ
i
]∩Ax0

gδ(y)

∣∣∣∣grad
˜̃
V (xδ

i ) − grad
˜̃
V (x0 − y)

∣∣∣∣ dy
}
,

which by (12.2), (12.5), (12.6) and the definition of ~wδ,

≤ εR+
∑

i∈∆n
N

∫

[x0−Dδ
i
]∩Ax0

gδ(y)

∣∣∣∣grad
˜̃
V (xδ

i ) − grad
˜̃
V (x0 − y)

∣∣∣∣ dy,

which by (12.3) and the definition of the xδ
i ,

≤ εR+

√
nR

N

∑

i∈∆n
N

∫

[x0−Dδ
i
]∩Ax0

gδ(y) dy

= εR+

√
nR

N

∫

Bδ(0)∩(x0−Ax0
)

gδ(y) dy = εR+

√
nR

N

which for N ≥ N = ⌈(√n/ε),
≤ 2Rε.(12.10)

Note that (12.10) is true independent of δ ≤ 1, ~wδ, ~xδ chosen as xδ
i ∈ Dδ

i ∩ A and ~wδ = ~w0(~µδ) for all
L ≥ L̄.

Note that the weights wδ
i depend on δ. We would like to have constant weights, and so will choose all

weights to be 1/L, with possible duplication of the xδ
i points. Consider any mapping ī : {0, 1, . . .L} →

∆n
N , and let Ni(j)

.
= #

{
j ∈]0, L[ | ī(j) = i

}
, where ]l, k[

.
= {l, l + 1, l + 2, . . . , k} for any l, k ∈ N with

l ≤ k. Now choose the mapping ī such that

Ni(j)

L
= wδ

i ∀ i ∈ ∆n
N .

Let x̂δ
j
.
= xδ

ī(j)
for all j ∈ {0, 1, . . .L}. Then,

∑

j∈]0,L[

1

L
grad

˜̃
V (x̂δ

j) = ẑδ.(12.11)

Also, by (12.10),
∣∣∣∣∣∣

∑

j∈]0,L[

1

L
grad

˜̃
V (x̂δ

j ) − z̄δ

∣∣∣∣∣∣
≤ 2Rε.(12.12)

Further, note that grad
˜̃
V (x̂δ

j) ∈ B̄R for all j. Consider sequence δk ↓ 0. By the compactness of BR, there

exists a subsequence, {δkκ} and {zj | j ∈]0, L[} ⊂ B̄R such that

grad
˜̃
V (x̂

δkκ

j ) → zj ∀ j ∈]0, L[.
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Consequently,

∑

j∈]0,L[

1

L
grad

˜̃
V (x̂δkκ

j ) →
∑

j∈]0,L[

1

L
zj

.
= z̃

∈ 〈{lim grad
˜̃
V (xi) |xi → x, xi ∈ A}〉,

which by (12.1)

= ∂
˜̃
V (x0).(12.13)

We can now put the above together so as to obtain the desired result. Suppose we are given any
ρ ∈ (0,∞) and any x0 ∈ Bρ. Let R = R(ρ) ∈ (0,∞) be as in (12.2). Let δ ∈ (0, 1). Fix any ε̄ > 0, and

let ε = ε̄
4R . Let N = N̄ = ⌈(√n/ε), and let L = L̄ = ⌈ (2N)n

ε . Then, by Lemma 12.1, (12.11) and (12.12),

∣∣∣∣∣∣
grad[

˜̃
V

δ
](x0) −

∑

j∈]0,L[

1

L̄
grad

˜̃
V (x̂δ

j)

∣∣∣∣∣∣
= |z̄δ − ẑδ| ≤ 2Rε = ε̄/2,(12.14)

where this is independent of δ ∈ (0, 1) and sequence {xδ
i } such that xδ

i ∈ Dδ
i for all i ∈ ∆n

N . However, by

(12.13), there exists z̃ ∈ ∂
˜̃
V (x0) and K <∞ such that for κ ≥ K (i.e., δkκ ≤ δkK), one has

|ẑδkκ − z̃| < ε̄/2.(12.15)

Combining (12.14) and (12.15), we see that given ε̄ > 0, there exists z̃ ∈ ∂
˜̃
V (x0) and K < ∞ such that

for κ ≥ K, and letting δ ≤ δkκ,
∣∣∣∣grad[

˜̃
V

δ
](x0) − z̃

∣∣∣∣ < ε̄.

Now, suppose that instead of a single point, x0, we had a finite set, say X =
{
xλ

0 |λ ∈ {0, 1, . . .Λ}
}
.

Then, by taking further subsequences, we obtain set Z =
{
z̃λ |λ ∈ {0, 1, . . .Λ}

}
and subsequence δkκ ↓ 0

such that for all δ ≤ δkκ with κ ≥ K for some K <∞,
∣∣∣∣grad[

˜̃
V

δ
](xλ

0 ) − z̃λ

∣∣∣∣ < ε̄

for all λ ∈ {0, 1, . . .Λ}, which completes the proof of Lemma 4.4.

13. Appendix C. In this appendix, we prove Theorem 6.6. In this proof, we will be letting τ ↓ 0
in homogeneous system (6.5). This limit is taken at this point merely to prove our theorem (Th. 6.6)
regarding the matrizant for the homogeneous system (6.4); it is not related to the argument for the proof
of the main result of Section 6, where we take a similar limit for the overall convergence result. To obtain
our result, we need the following intermediary theorem. The theorem is inequality (65) of [31], and so
no proof is included; to specialize to this case, one simply takes σm = 0 for all m, in which case one can
take w ≡ 0 as optimal.

Theorem 13.1. There exists K0 <∞ such that

|ξ̂t − ˆ̄ξt|2 ≤ K0(1 + |x|2)τ ∀ t ∈ [0,∞), ∀x ∈ IRn.

Next, we include the following restatement of (6.16), which we note does not depend on anything not
proven before Theorem 6.6.
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Lemma 13.2.

∣∣∣∣exp

[∫ t

s

Aµr dr

]
− exp

[∫ t

s

Aµr dr

]∣∣∣∣ ≤M2AeM2A−cA(t−s)τ

for all 0 ≤ s ≤ t <∞, where A = maxm∈M |Am|.
Let

ξ̂0t
.
= exp

[∫ t

0

Aµr dr

]
x ∀ t ∈ [0,∞), ∀x ∈ IRn.(13.1)

Lemma 13.3. There exists K̂0 <∞ such that

|ξ̂0t − ˆ̄ξt| ≤ K̂0|x|τ ∀ t ∈ [0,∞), ∀x ∈ IRn.

Proof. This follows immediately from (6.6), (13.1) and Lemma 13.2

Now we have the material necessary to prove Theorem 6.6, and this follows.

Proof.(proof of Th. 6.6) Fix any τ > 0. Combining Theorem 13.1 and Lemma 13.3, we see that for
any t ∈ [0,∞) and any x ∈ IRn,

|ξ̂t − ξ̂0t | ≤ K0

√
1 + |x|2

√
τ + K̂0|x|τ.

Since this is true for all τ > 0, one has ξ̂t = ξ̂0t for all t ∈ [0,∞) and all x ∈ IRn.
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