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Abstract

A new max-plus fundamental solution semigroup is pre-
sented for a class of lossless wave equations. This new
semigroup is developed by employing the action princi-
ple to encapsulate the propagation of all possible solu-
tions of a given wave equation in the evolution of the
value function of an associated optimal control prob-
lem. The max-plus fundamental solution semigroup for
this optimal control problem is then constructed via dy-
namic programming, and used to formulate the funda-
mental solution semigroup for the original wave equa-
tion. An application of this semigroup to solving two-
point boundary value problems is discussed via an ex-
ample.

1 Introduction

The action principle postulates that any trajectory gen-
erated by a system that conserves energy must render
the action functional stationary in the sense of the cal-
culus of variations [7, 8, 9]. In previous work by the
authors [4, 11, 12], connections between the action prin-
ciple and optimal control have been exploited to solve
two-point boundary value problems constrained by en-
ergy conserving systems. In that work, the action func-
tional is interpreted as the integrated running payoff in
an optimal control problem, in which a fictitious termi-
nal payoff is introduced to capture boundary data. By
considering sufficiently short time horizons, it is shown
that the total payoff involved is either concave or con-
vex, so that stationarity of the action functional can be
achieved as an extremum in the optimal control prob-
lem. Consequently, the optimal control problem can be
solved, and the state feedback characterization of the
optimal control obtained (via dynamic programming)
can be used to propagate solutions of the conservative
system of interest to meet the boundary conditions re-
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quired. By formulating a fundamental solution to this
optimal control problem, i.e. one that captures solu-
tions of the optimal control problem for any terminal
payoff, it is possible to solve any two point boundary
value problems formulated in this way, see [4, 11, 12].

In this paper, attention is restricted to two-point
boundary value problems for energy conserving infinite
dimensional systems, and their solution via stationary
action and optimal control. The objective is to further
generalize recent work in this direction, beyond the
simple scalar wave equation that is used to model
a vibrating string, see [4]. In particular, attention
is expanded to consider abstract second order partial
differential equations (PDEs) of the form

ẍ = −Ax ,(1.1)

in which x and ẋ may (for example) be interpreted
respectively as the distributed position (or deflection)
and velocity of some vibrating mechanical structure.
Operator A is assumed to have some general properties
that are summarized as follows (see [2] for definitions).

Assumption 1.1.

1) A is linear, unbounded, positive, and self-adjoint on
a subset X0

.
= dom (A) of an L2-space X of real

valued functions;

2) −A is the generator of a strongly continuous semi-
group of contractions on X; and

3) A has a compact inverse.

Note that A is densely defined, i.e. X0 ≡ X , and
closed by 2) and the Hille-Yosida Theorem (see for ex-
ample [14, Theorem 5.3]). The closed property also fol-
lows by 3), as A−1 ∈ L (X ) exists. In a mechanical
setting, domain X0 may be interpreted as the space of
sufficiently smooth functions that describe (for exam-
ple) admissible deflections of a vibrating beam or struc-
ture, subject to its boundary data. Typically, X0 is a
Sobolev space. By definition, A has a unique, positive,
self-adjoint, and boundedly invertible square root A 1

2 ,
whose domain X 1

2

.
= dom (A 1

2 ) defines a real Hilbert

space with inner product ⟨x, ξ⟩ 1

2

.
= ⟨A 1

2 x, A 1

2 ξ⟩ and



associated norm ∥x∥ 1

2

defined for all x, ξ ∈ X 1

2

. Using
this Hilbert space, potential and kinetic energy func-
tionals V and T may be defined and associated with
(1.1), with

V (x)
.
= 1

2 ∥x∥
2
1

2

, T (ẋ)
.
= 1

2 ∥ẋ∥
2 = ∥J ẋ∥21

2

,(1.2)

for all x ∈ X 1

2

, ẋ ∈ X , in which J .
= (A 1

2 )−1 ∈
L (X ). In order to see that system (1.1) is energy
conserving, note that the instantaneous total energy
associated with a deflection x and velocity ẋ in (1.1)
is E(x, ẋ)

.
= V (x) + T (ẋ). Hence, differentiating along

trajectories and recalling that J 2 = A−1,

d
dsE(x(s), ẋ(s))

= ⟨∇xV (x(s)), ẋ(s)⟩ 1

2

+ ⟨∇ẋT (ẋ(s)), ẍ(s)⟩ 1

2

= ⟨x(s) + J 2 ẍ(s), ẋ(s)⟩ 1

2

= 0 ,

for all s ∈ R≥0. That is, the abstract second order
PDE (1.1) is conservative with respect to the potential
and kinetic energies (1.2). Hence, the action principle
is applicable with action functional

∫ t

0
V (x(s))− T (ẋ(s)) ds(1.3)

for all t ∈ R≥0, see [4]. Together, the characteristic
equations corresponding to the calculus of variations
problem defined by the action principle applied to (1.3)
yield the abstract Cauchy problem (see Remark 2.2)

(
ẋ(s)
ṗ(s)

)
= A∨

(
x(s)
p(s)

)
, s ∈ R≥0 ,(1.4)

in which p denotes the costate variable,

A∨ .
=

(
0 I

−A 0

)
, dom (A∨) = Y0

.
= X0∨X 1

2

,

and ∨ is used to unambiguously denote the direct sum.
By inspection, any classical solution of (1.4) satisfies
ẍ = ṗ = −Ax, which is precisely (1.1).

2 Action principle and optimal control problem

In order to formulate an optimal control problem that
encapsulates the action principle, define the abstract
Cauchy problem [2, 14]

ξ̇(s) = w(s) , ξ(0) = x ∈ X 1

2

,(2.5)

in which ξ(s) denotes the infinite dimensional state at
time s ∈ [0, t], evolved from initial state x ∈ X 1

2

via

the velocity input w ∈ W [0, s]
.
= L2([0, s];X 1

2

). In

view of (1.3), see also [4], define the payoff functional

Jµ
ψ(t, ·, ·) : X 1

2

× W [0, t]→R given µ, t ∈ R≥0 and
concave terminal payoff ψ : X 1

2

→R by

Jµ
ψ(t, x, w)

.
=

∫ t

0
V (ξ(s))− Tµ(w(s)) ds+ ψ(ξ(t))

(2.6)

where the perturbed potential Tµ(w)
.
= T (w)+ µ2

2 ∥w∥21
2

approximates the actual potential T (w) for all µ ̸= 0
and w ∈ X 1

2

(with T 0 = T ). It may be shown [4,

Theorem 2.1] w.l.o.g. that Jµ
ψ(t, x, ·) is strictly concave

for all t ∈ [0, t̄µ), where

t̄µ
.
= µ

√
2 .(2.7)

Note in particular that the action functional J0
0 as

per (1.3) need not be concave (or convex), but its
approximation Jµ

0 is, for t ∈ [0, t̄µ). Hence, it is useful
to consider an approximating optimal control problem
defined via the value function Wµ : R≥0 × X 1

2

→R

defined for µ ∈ R>0 by

Wµ(t, x)
.
= sup

w∈W [0,t]
Jµ
ψ(t, x, w)(2.8)

for all t ∈ [0, t̄µ), x ∈ X 1

2

. A standard application
of dynamic programming yields that Wµ is the unique
solution of the corresponding Hamilton-Jacobi-Bellman
(HJB) partial differential equation (PDE)

0 = −
∂W

∂t
(t, x) +H(x,∇xW (t, x)) ,

W (0, x) = ψ(x)
(2.9)

for all t ∈ [0, t̄µ), x ∈ X 1

2

, where

H(x, p)
.
= 1

2 ∥x∥
2
1

2

+ 1
2 ∥I

1

2
µ A

1

2 p∥21
2

(2.10)

for all x, p ∈ X 1

2

, with Iµ : X →X0 defined by

Iµ
.
= (I + µ2 A)−1 .(2.11)

(Relevant properties of Iµ, including existence of its
square root, are catalogued in Lemma A.1, see Ap-
pendix A.) In terms of the unique solution W = Wµ of
(2.9), the optimal input in (2.8) is

w∗(s) = k(s, ξ∗(s)) ,(2.12)

in which ξ∗ denotes the trajectory of system (2.5) in
feedback with k(s, x)

.
= A 1

2 Iµ A
1

2 ∇xW (t − s, x). The
characteristic equations corresponding to the Hamilto-
nian H of (2.10) define the abstract Cauchy problem

(
ξ̇(s)
π̇(s)

)
= A∨

µ

(
ξ(s)
π(s)

)
, s ∈ R≥0 ,(2.13)



in which

A∨
µ

.
=

(
0 I

1

2
µ

−A 1

2 I
1

2
µ A 1

2 0

)

,
dom (A∨

µ)
= Y 1

2

.
= X 1

2

∨X .

Here, Y 1

2

is a Hilbert space equipped with the inner

product defined by ⟨(x, p), (ξ, π)⟩∨ = ⟨x, ξ⟩ 1

2

+ ⟨p, π⟩
for all x, ξ ∈ X 1

2

, p,π ∈ X .

In order for the optimal control problem (2.8) to
be useful in encapsulating (1.1), it is essential that A∨

and A∨
µ of (1.4) and (2.13) both generate semigroups,

and that these semigroups converge in an appropriate
sense as µ → 0. These properties are established via
the following lemma and theorem, the proofs of which
are deferred to Appendix B.

Lemma 2.1. Given µ ∈ (0, 1], the operators A∨
µ and A∨

of (2.13) and (1.4) satisfy the following properties:

1) A∨
µ ∈ L (Y 1

2

);

2) A∨
µ generates a uniformly continuous semigroup of

bounded linear operators T ∨
µ (t) ∈ L (Y 1

2

), t ∈ R≥0;

3) A∨ is unbounded, closed, and densely defined on
Y0

.
= X0∨X 1

2

(with Y0 = Y 1

2

);

4) A∨ generates a strongly continuous semigroup of
bounded linear operators T ∨(t) ∈ L (Y 1

2

), t ∈ R≥0;

5) A∨
µ converges strongly to A∨ as µ → 0, i.e.

limµ→0 ∥A∨
µ y −A∨ y∥∨ = 0 for all y ∈ Y0.

Theorem 2.1. T ∨
µ (t) converges strongly to T ∨(t) as

µ → 0, uniformly for t ∈ R>0 in compact intervals.
In particular, limµ→0

∥∥T ∨
µ (t) y − T ∨(t) y

∥∥
∨ = 0 for all

y ∈ Y 1

2

, t ∈ I , I ⊂ R≥0 compact.

The strong convergence property set out in The-
orem 2.1 states that any solution of the approximate
Cauchy problem (2.13) defined by the characteristics of
the optimal control problem (2.8) converges to the cor-
responding solution of the exact Cauchy problem (2.13)
defined by the characteristics of the action principle. It
is in this sense that the optimal control problem (2.8)
approximates solutions of (1.1).

Remark 2.1. While the approximation T ∨
µ (t) of T ∨(t)

improves with decreasing µ ∈ R>0, it is important to
note that the time horizon t ∈ [0, t̄µ) of the associated
optimal control problem (2.8) must similarly decrease
via (2.7). Indeed, in the limit as µ → 0, the time
horizon on which stationarity of action is achieved
as a maximum converges to zero. Hence, in order
for this optimal control approach to be useful, it is
crucial that there exist a mechanism for extending
the horizon beyond the bound defined by (2.7). As

will be demonstrated, one such mechanism involves
the concatenation of control horizons [0, t], t ∈ (0, t̄µ),
using amax-plus fundamental solution semigroup for the
optimal control problem (2.8).

Remark 2.2. The abstract Cauchy problems (1.4) and
(2.13) are constructed via a transformation of the
characteristic equations defined by the Hamiltonian H
of (2.10). DifferentiatingH, the characteristic equations
involved are given by

ξ̇(s) = ∇pH(ξ(s), π̂(s)) = A
1

2 Iµ A
1

2 π̂(s) ,

˙̂π(s) = −∇xH(ξ(s), π̂(s)) = −ξ(s) ,
(2.14)

for s ∈ R≥0. The transformation of interest is defined

by π(s)
.
= A 1

2 I
1

2
µ A 1

2 π̂(s), s ∈ R≥0. Applying this
transformation in (2.14) yields (2.13), with (1.4) defined
so as to agree in the limit as µ → 0. This construction
ensures that the domains of operators A∨ and A∨

µ are
as per (1.4) and (2.13), see [2, Example 2.2.5, p.34], so
that Lemma 2.1 and Theorem 2.1 may be applied.

3 Max-plus fundamental solution semigroup

The max-plus algebra is a commutative idempotent
semifield over R− .

= R ∪ {−∞} equipped with the
addition and multiplication operations ⊕ and ⊗ defined
by a ⊕ b

.
= max(a, b) and a ⊗ b

.
= a + b. Max-

plus integration of a functional f : X →R− is defined
by

∫ ⊕
X

f(x) dx
.
= supx∈X f(x). A max-plus linear

max-plus integral operator is an operator of the form
F ψ

.
=
∫ ⊕

X
F (·, z) ⊗ ψ(z) dz, in which the kernel F :

X ×X →R− is a bi-functional, and ψ is any functional
for which the associated supremum exists everywhere.

A max-plus fundamental solution semigroup corre-
sponding to the optimal control problem (2.8) is a semi-
group of horizon indexed max-plus linear max-plus in-
tegral operators, with associative binary operation de-
fined by operator composition, from which the value
function Wµ of (2.8) can be computed for any terminal
payoff ψ : X 1

2

→R−. There are two types of max-plus
fundamental solution semigroups, called dual and pri-
mal space semigroups [3, 5, 15, 16], where the type is
determined by whether the Legendre-Fenchel transform
is involved in its definition. Their definition is moti-
vated by the Lax-Oleinik semigroup of max-plus linear
dynamic programming evolution operators, see [10].

With a view to defining the max-plus primal space
fundamental solution semigroup for the optimal con-
trol problem (2.8), define the auxiliary value function
Gµ

t (·, z) : X 1

2

→R− for each t ∈ [0, t̄µ) and z ∈ X 1

2

by

Gµ
t (x, z) = sup

w∈W [0,t]
Jµ
δz
(t, x, w) ,(3.15)



in which Jµ
δz

is the payoff (2.6), which in turn is defined
in terms of the max-plus delta functional δz : X 1

2

→R−,
defined for each z ∈ X 1

2

by

δz(x)
.
=

{
0 , x = z ,

−∞ , x ̸= z .
(3.16)

Using the kernel Gt defined by (3.15), define the max-
plus linear max-plus integral operator Gµ

t by

Gµ
t ψ =

∫ ⊕

X 1
2

Gµ
t (·, z)⊗ ψ(z) dz(3.17)

for any ψ : X 1

2

→R− semiconvex such that Gµ
t ψ is

semiconvex (for further details, see [5]). Without loss of
generality, it may be shown [4, 5, 15, 16] that

(3.18)
Wµ(t, x) = (Gµ

t ψ)(x) ,

Gµ
t+τ ψ = Gµ

t Gµ
τ ψ , Gµ

0 ψ = ψ ,

for all x ∈ X 1

2

, and all t, τ ∈ [0, t̄µ) such that

t + τ ∈ [0, t̄µ). In particular, the first identity follows
analogously to [4, Theorem 3.1], while the second and
third identities follow by dynamic programming and
by inspection respectively. These last two identities
indicate that {Gµ

t }t∈[0,t̄µ) defines a semigroup with
composition as the associative binary operation. This
defines the max-plus primal space fundamental solution
semigroup for the optimal control problem (2.8).

As indicated by (3.15), kernel Gµ
t defining operator

Gµ
t in (3.17) is the unique solution to the HJB (2.9) with

terminal payoff ψ replaced with δz. It may be found via
a limiting argument, see [4, Section 3.3]. In particular,

Gµ
t (x, z) = lim

c→∞
Wµ,c(t, x, z)(3.19)

where Wµ,c(t, x, ·) .
= supw∈W [0,t] J

µ
ψµ,c(·,z)(t, x, w),

ψµ,c(x, z)
.
= − c

2 ∥Kµ (x− z)∥21
2

, c ∈ R≥0 ,

and Kµ ∈ L (X 1

2

) is a positive, self-adjoint, and

boundedly invertible operator, see [4]. Following the
aforementioned argument of [4], this limit is given by

Gµ
t (x, z) =

1
2 ⟨x, P̆

µ(t)x⟩ 1

2

+ ⟨x, Q̆µ(t) z⟩ 1

2

(3.20)

+ 1
2 ⟨z, R̆

µ(t) z⟩ 1

2

,

in which P̆µ, Q̆µ, R̆µ : (δ, t̄µ)→L (X 1

2

) are the solutions
of the operator differential equations

˙̆Pµ(t) = I + P̆µ(t)A
1

2 Iµ A
1

2 P̆µ(t) ,

˙̆Qµ(t) = P̆µ(t)A
1

2 Iµ A
1

2 Q̆µ(t) ,

˙̆Rµ(t) = Q̆mu(t)′ A
1

2 Iµ A
1

2 Q̆µ(t) ,

(3.21)

for t ∈ [0, t̄µ), defined via the limit

P̆µ(0) = −Q̆µ(0) = R̆µ(0) = lim
c→∞

−c (Kµ)2 ,

and subsequently restricted to domain (δ, t̄µ). Assertion
3) of Assumption 1.1 facilitates a representation of these
operator-valued functions via the spectral theorem. In
particular, [2, Theorem A.4.25, p.619] implies that A
has the spectral decomposition

Ax =
∞∑

n=1

λn ⟨x, ϕ̃n⟩ 1

2

ϕ̃n(3.22)

for all x ∈ X0 = dom (A), in which λ−1
n and ϕ̃n are

the eigenvalues and eigenvectors of A−1 ∈ L (X ), and
B̃ .

= {ϕ̃n}n∈N defines an orthonormal basis for X 1

2

.

(Note that λn ∈ R>0 by positivity of A, see Assumption
1.1.) Furthermore,

dom (A) =

{

x ∈ X 1

2

∣∣∣∣∣

∞∑

n=1

|λn| |⟨x, ϕ̃n⟩ 1

2

|2 < ∞

}

.

Operators A 1

2 and Iµ inherit corresponding represen-
tations by definition, leading to similarly represented
solutions P̆µ, Q̆µ, R̆µ of (3.21) of the form

P̆µ(t)x =
∞∑

n=1

pµn(t) ⟨x, ϕ̃n⟩ 1

2

ϕ̃n(3.23)

for all t ∈ (δ, t̄µ) and x ∈ X 1

2

. For each t ∈ (δ, t̄µ), the

respective eigenvalues pµn(t), q
µ
n(t), r

µ
n(t) are given by

pµn(t) = rµn(t)
.
= − 1

ωµ
n

1

tan(ωµ
n t)

,

qµn(t)
.
= + 1

ωµ
n

1

sin(ωµ
n t)

,
(3.24)

in which ωµ
n

.
=

√
λµn, λµn

.
= λn

1+µ2 λn
, with {λn}n∈N enu-

merated in non-decreasing order. Note in particular
that {λn}n∈N is strictly positive and unbounded (as A
is unbounded and positive by Assumption 1.1). Con-
sequently, applying (2.7), ωµ

n t ∈ (0, t̄µ/µ) = (0,
√
2) ⊂

(0,π/2) for all t ∈ (0, t̄µ), so that the eigenvalues (3.24)
are well-defined for each t ∈ (0, t̄µ).

The correspondence between stationary action and
optimal control exploited for horizons t ∈ [0, t̄µ) may
break down for longer horizons, due to loss of concavity
of the action (and hence payoff) functional. That is, for
longer horizons, stationarity of the action functional is
no longer achieved as a maximum. However, for any
sufficiently short horizon within that longer horizon,
concavity is retained. Hence, it is possible to accumulate
longer horizons via a concatenation of sufficiently short



horizons, provided maximization over the intermediate
states that connect adjacent horizons is relaxed to
a stationarity condition. In order to formalize this
rationale, given a fixed longer horizon t ∈ [t̄µ,∞)
of interest, select a sufficiently large number nt ∈ N

of shorter horizons τ
.
= t/nt such that τ ∈ [0, t̄µ).

By definition of τ , the payoff in (2.8) or (3.15) is
concave on each of the subintervals [(k − 1)τ, kτ ], k ∈
[1, nt] ∩ N. Consequently, the loss of concavity for the
longer horizon must occur at the intermediate states
ζk

.
= ξ(kτ) ∈ X 1

2

. Motivated by this observation, and

paying particular attention to the kernel Gµ
t defined via

(3.15), this concatenation of horizons can be written as

Gµ
t (x, z) = stat

ζ∈(X 1
2

)nt−1

{
nt⊗

k=1

Gµ
τ (ζk−1, ζk)

∣∣∣∣
ζ0 = x
ζnt

= z

}

,

(3.25)

for all x, z ∈ X 1

2

, in which the stat operation [13] is
defined generally for differentiable F : X 1

2

→R by

stat
x∈X 1

2

F (x)
.
=

⎧
⎨

⎩F (x̄)

∣∣∣∣∣∣
x̄ ∈ argstat

x∈X 1
2

F (x)

⎫
⎬

⎭ ,

argstat
x∈X 1

2

F (x)
.
=

{

x ∈ X 1

2

∣∣∣∣∣ 0 = lim
y→x

|F (y)− F (x)|
∥y − x∥ 1

2

}

.

Crucially, it may be shown that this construction pre-
serves the explicit representation (3.20), see Appendix
C. That is, (3.20) is valid for both shorter and longer
horizons, defined with respect to t̄µ of (2.7). Conse-
quently, the collection of max-plus linear max-plus in-
tegral operators {Gµ

t }t∈R≥0
for all horizons does indeed

define a semigroup.
The max-plus fundamental solution semigroup

{Gµ
t }t∈R≥0

can also be used to write down the approx-
imating semigroup {T ∨

µ (t)}t∈R≥0
for the wave equation

(1.1). To see how, choose a specific terminal payoff ψ
in (2.8) and (3.18) defined by

ψ(x) = ψv(x)
.
= ⟨(A−1 + µ2 I) v, x⟩ 1

2

(3.26)

for all x ∈ X 1

2

, where v ∈ X 1

2

represents a target

terminal velocity ẋ(t) in (1.1). Given an initial state
x ∈ X 1

2

, the corresponding final optimal input w∗(t) is,

according to (2.12),

w∗(t) = A
1

2 Iµ A
1

2 ∇xW
µ(0, x) = A

1

2 Iµ A
1

2 ∇xψv(x)

= A
1

2 Iµ A
1

2 J I−1
µ J v = v ,

where J .
= (A 1

2 )−1. Similarly, the initial optimal input
w∗(0) required to achieve this final velocity is

w∗(0) = A
1

2 Iµ A
1

2 ∇xW
µ(t, x) .(3.27)

In order to find the gradient required here, note from
(3.17) and (3.18) that

Wµ(t, x) = Gµ
t (x, z

∗(x)) + ψv(z
∗(x))(3.28)

where z∗(x) = argmaxz∈X 1
2

{Gt(x, z) + ψv(z)}. As Gt

and ψv are respectively quadratic and linear function-
als, see (3.20) and (3.26), they are differentiable. Con-
sequently, z∗(x) can be found explicitly, with

z∗(x) = −R̆µ(t)−1[Q̆µ(t)′x+ (A−1+ µ2 I) v] ,(3.29)

where the inverse guaranteed to exist for all t ∈ (δ, t̄µ),
see [4]. Hence, applying (3.28), the definition of z∗(x),
and (3.20) in (3.27),

w∗(0) = A
1

2 Iµ A
1

2 ∇x[G
µ
t (x, z

∗(x)) + ψv(z
∗(x))]

(3.30)

= A
1

2 Iµ A
1

2 [∇xG
µ
t (x, z)]

∣∣
z=z∗(x)

= A
1

2 Iµ A
1

2 [P̆µ(t)x+ Q̆µ(t) z∗(x)] ,

where the second equality follows as 0 = ∇z[Gt(x, z) +
ψv(z)]

∣∣
z=z∗(x)

by definition of z∗(x). Note further that

the terminal state of the dynamics (2.5), with optimal
input w∗ applied, must be ξ(t) = z∗(x). Solving (3.29)
and (3.30) for the terminal position and velocity yields

(
z∗(x)
v

)
= T ∨

µ (t)

(
x

w∗(0)

)
,(3.31)

where T ∨
µ (t) =

⎛

⎝
[T ∨

µ (t)]11 [T ∨
µ (t)]12

[T ∨
µ (t)]21 [T ∨

µ (t)]22

⎞

⎠, with

[T ∨
µ (t)]11

.
= −Q̆µ(t)−1 P̆µ(t)

[T ∨
µ (t)]12

.
= Q̆µ(t)−1 (A−1 + µ2 I)

[T ∨
µ (t)]21

.
= −A

1

2 Iµ A
1

2 (Q̆µ(t)′ − R̆µ(t) Q̆µ(t)−1 P̆µ(t))

[T ∨
µ (t)]22

.
= −A

1

2 Iµ A
1

2 R̆µ(t) Q̆µ(t)−1 (A−1 + µ2 I)

That is, (3.31) provides a representation for the uni-
formly continuous semigroup generated by A∨

µ as per
Lemma 2.1.

4 Example

The max-plus fundamental solution semigroup
{T ∨

µ (t)}t∈R≥0
defined by (3.31) explicitly propa-

gates solutions of (1.1) for any initial data. Its
construction also facilitates the solution of two-point
boundary value problems constrained by (1.1). For
example, given fixed t ∈ R>0, x, z ∈ X 1

2

, it is possible

to compute the initial velocity ẋ(0) such that the
propagated wave equation dynamics satisfy x(t) = z.



Indeed, by definition of the kernel Gµ
t of (3.15), this

initial velocity is given by

ẋ(0) = w∗(0) = A
1

2 Iµ A
1

2 ∇xG
µ
t (x, z)

= A
1

2 Iµ A
1

2

(
P̆µ(t)x+ Q̆µ(t) z

)
,

where the second equality follows by (3.20). Applying
the decomposition for Pµ(t) and Qµ(t) defined by
(3.22), (3.23), (3.24) yields

ẋ(0) =
∞∑

n=1

λn
1 + µ2 λn

[
pn ⟨x, ϕ̃n⟩ 1

2

+ qn ⟨z, ϕ̃n⟩ 1

2

]
ϕ̃n

(4.32)

where λ−1
n and ϕ̃n denote the eigenvalues and eigen-

vectors of A−1 ∈ L (X ). In order to illustrate the
application of (4.32), a specific example is considered.
In particular, select Ω

.
= [0, 1]2 ⊂ R2, and define

X
.
= L2(Ω;R) ,

X0
.
=

{
x ∈ X

∣∣∣∣
x, ∂1x, ∂2x absolutely continuous

x
∣∣
∂Ω

= 0 , ∂21x, ∂
2
2x ∈ X

}
,

A .
= −∂21 − ∂22 , dom (A) = X0 ,

in which ∂1 and ∂2 denote the partial derivative opera-
tors defined with respect to the first and second carte-
sian coordinates in R2 respectively, and ∂Ω denotes
the boundary of Ω. It may be noted that −A is the
Laplacian operator on Ω, with A satisfying Assump-
tion 1.1. For example, positivity and self-adjointness
of A follow by Green’s first identity, while [2, Corol-
lary 2.2.3, p.33] implies that −A generates a contrac-
tion semigroup on X . Furthermore, A−1 is com-
pact, with eigenvalues λ−1

n,m ∈ R>0 and eigenvectors
ϕ̃n,m ∈ X 1

2

defined respectively by λn,m
.
= (n2+m2)π2

and ϕ̃n,m(x1, x2)
.
= (2/

√
λn,m) sin(nπ x1) sin(mπ x2)
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Figure 1: Terminal state z ∈ X0 for all (x1, x2) ∈ Ω.

for all n,m ∈ N, (x1, x2) ∈ Ω. It may be noted that
B̃ .
= {ϕ̃n,m}n,m∈N defines an orthonormal basis for X 1

2

.

As N2 is countable, these eigenvalues and eigenvectors
may be enumerated as per (3.22).

For illustrative purposes, the specific initial state
x ∈ X0 is chosen (arbitrarily) to be the zero function
on Ω, while the terminal state z ∈ X0 is selected to
be as per Figure 1. A horizon t

.
= π/3 is assumed.

The initial velocity ẋ(0) obtained in the µ = 0 limit
in (4.32) is illustrated in Figure 2. By propagating the
initial state x(0) = x and velocity ẋ(0) forward in time,
it may be seen that (4.32) does indeed solve the two-
point boundary value problem of interest, see Figure 3.

5 Conclusion

By exploiting a correspondence between stationary ac-
tion and optimal control, a max-plus fundamental solu-
tion semigroup can be constructed for a class of lossless
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Figure 2: Two-point boundary value problem solution
(4.32).

s/t=0.96 s/t=0.97 s/t=0.98

s/t=0.99 s/t=1.00 s/t=1.01

s/t=1.02 s/t=1.03 s/t=1.04

Figure 3: Solution x(s) of (1.1) propagated forward from
x(0) = x, ẋ(0) as per (4.32), to s/t ∈ [0.96, 1.04].



wave equations. This construction relies on the devel-
opment of a semigroup of max-plus linear max-plus in-
tegral operators that collectively describes all possible
solutions to the corresponding optimal control problem
for different terminal payoffs and time horizons. The
max-plus fundamental solution semigroup obtained can
be used to propagate the dynamics of the lossless wave
equation, and to solve two-point boundary value prob-
lems constrained by it. Its application to a specific wave
equation is illustrated via an example.
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A Properties of Iµ
Lemma A.1. The following properties concerning oper-
ator Iµ of (2.11) hold on X for any µ ∈ R>0:

1) Iµ = 1
µ2 R−A(

1
µ2 ) ∈ L (X ), where R−A(·) denotes

the resolvent of −A;

2) Iµ is self-adjoint and positive, with Iµ x ∈ X0 for
all x ∈ X ;

3) Iµ has a unique, bounded, linear, self-adjoint, and

positive square root I
1

2
µ , with

I
1

2
µ x ∈ X 1

2

, I
1

2
µ I

1

2
µ x = Iµ x , x ∈ X ;

4) Iµ, I
1

2
µ , A, and A 1

2 commute, with

I
1

2
µ A

1

2 x = A
1

2 I
1

2
µ x , Iµ A

1

2 x = A
1

2 Iµ x , x ∈ X 1

2

,

Iµ Ax = AIµ x , I
1

2
µ Ax = AI

1

2
µ x , x ∈ X0 ;

5) Selected compositions of Iµ, I
1

2
µ , A, and A 1

2 define
bounded linear operators, with

AIµ, A
1

2 I
1

2
µ ∈ L (X ) , AIµ ∈ L (X 1

2

)

A
1

2 I
1

2
µ A

1

2 ∈ L (X 1

2

;X ) .

Proof. 1) By definition (2.11) and that of the resolvent,
Iµ = 1

µ2 (
1
µ2 I − (−A))−1 = 1

µ2 R−A(
1
µ2 ) as required.

Assertion 2) of Assumption 1.1 and the Hille-Yosida
Theorem (e.g. [14, Theorem 5.2]) then imply that
Iµ ∈ L (X ).

2) Following on from 1), AIµ defines a Yosida
approximation of A, so that AIµ ∈ L (X ). Hence,
ran (Iµ) = X0. The fact that Iµ is positive and
self-adjoint follows by (2.11) and the corresponding
properties of A.

3) The existence of a unique, positive, and bounded

square root I
1

2
µ is guaranteed by 1) and 2), see for

example [1, Theorem 4].
4) The fact that A and Iµ commute follows by As-

sertion 1). As A and Iµ are both closed (the former
as it is boundedly invertible by the third assertion of
Assumption 1.1, and the latter as it is bounded and



defined on the entirety of X ), the remaining commu-
tations follow (for example) by repeated applications of
[1, Theorem 10].

5) Follows identically to [4, Lemma A.4(iv)]. !

B Proof of Lemma 2.1 and Theorem 2.1 [4]

Proofs of a special case of these results appear in [4].

Proof. [Lemma 2.1] 1) Fix any y
.
=

(
ξ
π

)
∈ Y 1

2

.

Consequently,

∥A∨
µ y∥2∨ =

∥∥∥A
1

2 I
1

2
µ π
∥∥∥
2

+
∥∥∥A

1

2 I
1

2
µ (A

1

2 ξ)
∥∥∥
2

≤
∥∥∥A

1

2 I
1

2
µ

∥∥∥
2
∥π∥2 +

∥∥∥A
1

2 I
1

2
µ

∥∥∥
2
∥ξ∥21

2

= ∥AIµ∥ ∥y∥2∨ .

The assertion follows by Lemma A.1, assertion 5).
2) is immediate by 1) and [14, Theorem 1.2, p.2].
3) and 4) follow by [2, Example 2.2.5, p.34].

5) Fix any y
.
=

(
ξ
π

)
∈ dom (A∨). Consequently,

∥∥A∨
µ y −A∨ y

∥∥2
∨ = ∥(I

1

2
µ − I)A

1

2 π∥2(B.1)

+ ∥(I
1

2
µ − I)A ξ∥2 ,

by definition of ∥·∥ 1

2

and Lemma A.1. Note further that

A 1

2 π, A ξ ∈ X by definition of y ∈ Y0. Consequently,

it remains to be shown that I
1

2
µ converges strongly to I

on X as µ → 0. To this end, fix any x ∈ X0, so that
∥Ax∥ < ∞. Assumption 1.1 and definition (2.11) imply

that I
1

2
µ − I is an operator with a decomposition of the

form (3.22) on X , with dom (I
1

2
µ − I) = X . Hence,

∥∥∥(I
1

2
µ − I)x

∥∥∥
2

=
∞∑

n=1

βλn
(µ2) |⟨x, ϕn⟩|2 ,(B.2)

where βλ : R≥0→[0, 1) is defined for each λ ∈ R>0 by
βλ(ϵ)

.
= [1− 1√

1+ϵ λ
]2, and {ϕn}n∈N is the orthonormal

basis for X defined by ϕn
.
=

√
λn ϕ̃n. Taylor’s theorem

implies that for any ϵ ∈ R≥0, there exists an cϵ ∈ (0, ϵ)

such that βλ(ϵ) = [d
2βλ

dϵ2 (cϵ)]
ϵ2

2 ≤ 7
4 λ

2 ϵ2 for all λ ∈
R>0. Substitution in (B.2) yields that ∥(I

1

2
µ − I)x∥2 ≤

7
4 µ

4
∑∞

n=1 |λn|2 |⟨x, ϕn⟩|2 = 7
4 µ

4 ∥Ax∥2. Recalling
that x ∈ X0, so that ∥Ax∥ < ∞, it follows immediately

that limµ→0 ∥(I
1

2
µ − I)x∥ = 0 for any x ∈ X0. As

I
1

2
µ ∈ L (X ) by Lemma A.1, and X0 is dense in X , it

may also be concluded that limµ→0 ∥(I
1

2
µ −I)x∥ = 0 for

any x ∈ X . Recalling (B.1) completes the proof. !

Proof. [Theorem 2.1] The proof follows by application
of the First Trotter-Kato Approximation Theorem (see
for example [6, Theorem 4.8, p.209]), via Lemma 2.1. !

C Invariance of representation (3.20)

In order to justify the claim that the explicit represen-
tation (3.20) is invariant under concatenation of short
horizons, fix an arbitrary pair of horizons t, s ∈ [0, t̄µ),
and states x, z ∈ X 1

2

. Using (3.25), define

Ĝµ
t,s(x, z)

.
= stat
ζ∈X 1

2

{Gµ
t (x, ζ)⊗Gµ

s (ζ, z)} .(C.3)

Note by (3.20) that Gµ
t (x, ·) and Gµ

s (·, z) are quadratic
functionals, and hence differentiable. Applying the
definition of stat [13], the staticizing intermediate state
ζ∗ ∈ X 1

2

is given by 0 = ∇ζ [G
µ
t (x, ζ)⊗Gµ

s (ζ, z)]
∣∣
ζ=ζ∗

=

Q̆µ(t)′x+[R̆µ(t)+P̆µ(s)] ζ∗+Q̆µ(s) z, or ζ∗ = −[P̆µ(s)+
R̆µ(t)]−1[Q̆µ(t)′x+Q̆µ(s) z]. Back substitution in (C.3)
and some straightforward manipulations yield

Ĝµ
t,s(x, z) = Gµ

t (x, ζ
∗) +Gµ

s (ζ
∗, z)

(C.4)

= 1
2 ⟨x, X (t, s)x⟩ 1

2

+ ⟨x, Y(t, s) z⟩+ 1
2 ⟨z, Z(t, s) z⟩ 1

2

where

X (t, s)
.
= P̆µ(t)− Q̆µ(t) [P̆µ(s) + R̆µ(t)]−1 Q̆µ(t)′ ,

Y(t, s)
.
= −Q̆µ(t) [P̆µ(s) + R̆µ(t)]−1 Q̆(s) ,

Z(t, s)
.
= R̆µ(s)− Q̆(s)′ [P̆µ(s) + R̆µ(t)]−1 Q̆µ(s) ,

where existence of the inverse involved follows by defini-
tion of horizons s, t. As P̆µ, Q̆µ, R̆µ are operator-valued
functions of the form (3.23), operators X (t, s), Y(t, s),
Z(t, s) are of the same form. Their respective eigenval-
ues are given by

Xn(t, s) = pµn(t)−
qµn(t)

2

pµn(s) + rµn(t)
= Zn(s, t) ,

Yn(t, s) = −
qµn(t) q

µ
n(s)

pµn(s) + rµn(t)
,

in which pµn, q
µ
n, r

µ
n are defined by (3.24). Substituting

accordingly, applying sum-of-angle formulae for sin and
tan, and manipulating algebraically, yields

Xn(t, s) = − 1
ωµ

n

1

tan(ωµ
n (s+ t))

= Zn(s, t) ,

Yn(t, s) = + 1
ωµ

n

1

sin(ωµ
n (s+ t))

.

Recalling (3.24), it is evident that X µ(t, s) = P̆µ(t+ s),
Yµ(t, s) = Q̆µ(t+ s), and Zµ(t, s) = R̆µ(t+ s). Hence,
(C.4) implies that

Ĝµ
t,s(x, z) =

1
2 ⟨x, P̆

µ(t+ s)x⟩ 1

2

+ ⟨x, Q̆µ(t+ s) z⟩

+ 1
2 ⟨z, R̆

µ(t+ s) z⟩ 1

2

= Gµ
t+s(x, z) ,

as required. !


