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Abstract— An exact supremum-of-quadratics representation
for log-barrier functions is developed for, and subsequently
applied in, a state-constrained linear regulator problem. By
approximating this representation, it is shown that this reg-
ulator problem can be approximated by an unconstrained
linear quadratic dynamic game. It is anticipated that this game
approximation may facilitate the computation of approximate
solutions to such state-constrained regulator problems.

I. INTRODUCTION

Finite horizon linear quadratic regulator (LQR) problems
have been extensively studied in the literature over many
decades, giving rise to numerous advances in linear systems
theory, optimal control, model predictive control (MPC), etc,
see for example [10], [3], [2], [12], [4], [6]. In the absence
of constraints, the value function defining such problems is
guaranteed to be finite everywhere on sufficiently small time
horizons, and quadratic with a Hessian that evolves according
to the solution of a differential Riccati equation (DRE)
initialized with the Hessian of the terminal payoff, see for
example [10], [12], [8]. It is well-known that finite horizon
linear quadratic regulators admit a linear state feedback
characterization of their optimal control, which is defined
with respect to the aforementioned DRE solution.

The imposition of constraints in LQR problems fun-
damentally impacts their solvability. In particular, con-
straints destroy the quadratic structure in the aforementioned
constraint-free case, even though linearity of the underlying
model is preserved. In the specific case of linear regulator
problems employing state trajectory constraints, the corre-
sponding regulator problem is defined by a non-quadratic
value function that cannot be finite for those initial states
violating these constraints. This loss of structure means that
the value function must be characterized more generally,
as the extended real-valued discontinuous viscosity solution
of a non-stationary Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE), fixed uniquely by a terminal
condition determined by the terminal payoff. Explicit solu-
tions to such HJB PDE are exceedingly rare, and numerical
approximation schemes are inevitably required. Furthermore,
while a state feedback characterization of the optimal control
may still exist, it must be numerically approximated using
the computed approximation of the unique viscosity solution.
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In this paper, a linear regulator problem with a log-
barrier type state constraint is considered. By providing a
sup(remum)-of-quadratics representation for the attendant
log-barrier function, this linear regulator problem is ap-
proximated by a linear quadratic dynamic game problem in
which one player is the usual control, while the other is an
adversary that negotiates an appropriate state penalty. The
approach employed is analogous to that recently developed
for constructing a fundamental solution to the gravitational
N -body problem, see [9]. In contrast to standard MPC [4],
[6], it is formulated entirely in continuous time, see also [5].
It is anticipated that this new game problem may assist in the
computation of an optimal control that approximately solves
the linear regulator problem of interest. It may also provide
an continuous time alternative to a recent Lyapunov-based
approach to the use of log-barrier functions in MPC [7].

In terms of organization, the state constrained linear
regulator problem of interest is formulated in Section II,
using a log-barrier function to implement the state constraint
involved. A sup-of-quadratics representation for this log-
barrier constraint is developed in Section III. This is subse-
quently applied in Section IV to approximate the constrained
linear regulator problem as a game, followed by some brief
concluding remarks in Section V. Throughout, N, Z, R

denote respectively the natural, integer and real numbers,
while R≥0, Rn, Rn×n denote respectively the nonnegative
real numbers, n-dimensional Euclidean space, and the space
of n × n matrices with real entries. R

±, etc, denotes the
analogous sets defined with respect to extended reals R ∪
{±∞}. Similarly, S

n×n
≥0 denotes the space of nonnegative

symmetric elements of R
n×n. The transpose of P ∈ R

n×n

is denoted by PT ∈ R
n×n.

II. LINEAR REGULATOR WITH A STATE CONSTRAINT

Attention is restricted to an example class of linear regu-
lator problems, with a log-barrier type hard state constraint
(see for example [7]), defined on a finite time horizon
t ∈ R≥0 via a value function W t : R

n → R. In particular,

W t(x)
.
= inf

u∈U [0,t]
J̄t(x, u), (1)

in which U [0, t]
.
= L2([0, t];R

m), and the total cost J̄t is
defined with respect to the log-barrier and standard quadratic
integrated running costs Īt, It, and a terminal cost Ψ0 by

J̄t, Īt, It : R
n × U [0, t] → R

+, Ψ0 : Rn → R,

with

J̄t(x, u)
.
= It(x, u) + Īt(x, u) + Ψ0(ξt), (2)



Īt(x, u)
.
=

∫ t

0

1
2 Φ(|ξs|

2) ds, (3)

It(x, u)
.
=

∫ t

0

1
2 |ξs|

2 + 1
2 |us|

2 ds, (4)

Ψ0(x)
.
= 1

2x
TP0 x, (5)

for all x ∈ R
n, u ∈ U [0, t]. Here, P0 ∈ S

n×n
≥0 , while ξs ∈

R
n denotes the state of the linear dynamics

ξ̇σ = Aξσ +B uσ, σ ∈ [0, t], (6)

evolved to time s ∈ [0, t] from an initial state x0 = x ∈ R
n

via input u ∈ U [0, s], given A ∈ R
n×n and B ∈ R

n×m. In
(3), Φ : R → R

+
≥0 is the extended real-valued log-barrier

function defined by

Φ(ρ)
.
=

{
− log(1− ρ/b2), ρ ∈ [0, b2),

+∞, ρ ∈ R<0 ∪ R≥b2 ,
(7)

where b ∈ R>0 denotes the constraint radius of interest.
Its application in the otherwise linear quadratic regulator
problem (1) is intended to implement the state trajectory
constraint given by

ξs ∈ B[0; b]
.
=

{
x ∈ R

n
∣∣ |x| ≤ b

}
∀ s ∈ [0, t] . (8)

As alluded to in Section I, the nonlinearity introduced by
constraint (8) into the regulator problem (1) renders the value
function W t non-quadratic. Consequently, its computation
via the solution of a corresponding DRE is no longer possi-
ble, with the solution of a general HJB PDE instead required.
Here, rather than solving this HJB PDE, a different approach
is employed. In particular, by decomposing the log-barrier
function (7) into a sup-of-quadratics, it is shown that solution
of the regulator problem may instead be approximated via a
linear quadratic game.

III. AN EXACT SUP-OF-QUADRATICS REPRESENTATION

FOR LOG-BARRIER FUNCTION (7), AND ITS

APPROXIMATION

Attention is restricted to a log-barrier function of the form
(7). For convenience, write (7) as

Φ(ρ)
.
=

{
φ(ρ), ρ ∈ [0, b2),
+∞, ρ ∈ R<0 ∪ R≥b2 ,

(9)

for all ρ ∈ R, in which φ : [0, b2) → R≥0 is defined by

φ(ρ)
.
= − log(1− ρ/b2), (10)

for all ρ ∈ [0, b2). An exact sup-of-quadratics representation
is established using convex duality [1], [13].

A. Exact sup-of-quadratics representation

Lemma 3.1: Given the log-barrier function Φ : R → R
+
≥0

of (7), there exists a function A : R → R
+
≥0 such that

Φ(ρ) = sup
β∈R

{β ρ−A(β)}, (11)

A(β) = sup
ρ∈R

{β ρ− Φ(ρ)}, (12)

for all ρ, β ∈ R, in which

A(β) =

{
0, β ∈ R<1/b2 ,

a(β), β ∈ R≥1/b2 ,
(13)

for all β ∈ R, with a : [1/b2,∞) → R≥0 defined by

a(β)
.
= b2 β − log(b2 β)− 1, (14)

for all β ∈ [1/b2,∞). Furthermore, the optimizers β∗ : R →
R

± and ρ∗ : R → R defined by β∗(ρ)
.
= argmaxβ∈R

{β ρ−
A(β)} and ρ∗(β)

.
= argmaxρ∈R

{β ρ − Φ(ρ)} in (11) and
(12) are given respectively by

β∗(ρ) =





−∞, ρ ∈ R<0,
1/(b2 − ρ), ρ ∈ [0, b2),

+∞, ρ ∈ R≥b2

(15)

ρ∗(β) =

{
0, β ∈ R<1/b2 ,

b2 − 1/β, β ∈ R≥1/b2 ,
(16)

for all β, ρ ∈ R.
Proof: With b ∈ R>0 fixed, note that Φ is convex and

(lower) closed [1, (3.8), pp.15,17] on R. Hence, [1, Theorem
5] implies that there exists a one-to-one pairing between Φ
and its Fenchel transform A : R → R

+, as per (11) and (12).
By definition (7) of Φ, the supremum in the definition of A
will always be achieved via a supremum over [0, b2), ie.

A(β) = sup
ρ∈[0,b2)

πβ(ρ), πβ(ρ)
.
= β ρ− φ(ρ) (17)

for all β ∈ R, ρ ∈ [0, b2). The supremum is achieved at a
stationary point ρ = ρ∗ ∈ [0, b2) if

0 = π′
β(ρ

∗) = β −
1

b2 − ρ∗
⇐⇒





β =
1

b2 − ρ∗
∈ R≥1/b2 ,

ρ∗ = b2 −
1

β
,

in which case, the supremum is

πβ(ρ
∗) = a(β) = b2 β − log(b2 β)− 1.

Otherwise, β ∈ R<1/b2 , so that by inspection π′
β(ρ) < 0 for

all ρ ∈ [0, b2). Hence, the supremum is achieved at ρ∗ = 0
instead, with πβ(ρ

∗) = πβ(0) = 0. Combining these facts
in (12) via (17) reveals that the Fenchel transform A is in
fact finite everywhere, and given by (12), (13), (14), with the
corresponding optimizer as per (16).

In order to confirm (11) and (15), define Γ : R → R
+ by

Γ(ρ)
.
= sup

β∈R

{β ρ−A(β)} (18)

for all ρ ∈ R, as per the right-hand side of (11). Note by
inspection of (13) that

Γ−(ρ)
.
= sup

β∈R<1/b2

{β ρ−A(β)} (19)

= sup
β∈R<1/b2

{β ρ} =

{
+∞, ρ ∈ R<0,
ρ/b2, ρ ∈ R≥0,

for all ρ ∈ R, with the corresponding optimizer given by

β∗
−(ρ) =

{
−∞, ρ ∈ R<0,
1/b2, ρ ∈ R≥0.

(20)



for all ρ ∈ R. Again by inspection of (13), define

Γ+(ρ)
.
= sup

β∈R≥1/b2

{β ρ−A(β)}

= sup
β∈R≥1/b2

χρ(β), χρ(β)
.
= β ρ− a(β)

for all ρ ∈ R, β ∈ [1/b2,+∞). Here, the supremum is
achieved at a stationary point β = β∗ ∈ [1/b2,∞) if

0 = χ′
ρ(β

∗) = ρ− b2 +
1

β∗
⇐⇒





b2 − ρ =
1

β∗
∈ (0, b2] ,

β∗ =
1

b2 − ρ
.

in which case, the supremum is

χρ(β
∗) = − log(1− ρ/b2) = φ(ρ) .

Otherwise, ρ ∈ R<0 or ρ ∈ R≥b2 . The former case ρ ∈ R<0

implies by inspection that χ′
ρ(β) = ρ + b2

β [1/b2 − β] < 0
for all β ∈ R≥1/b2 . Hence, the supremum is achieved at
β∗ = 1/b2, with χρ(β

∗) = ρ/b2. Alternatively, the latter
case ρ ∈ R≥b2 implies by inspection that χ′

ρ(β) = [ρ−b2]+
1/β > 0 for all β ∈ [1/b2,+∞). Hence, the supremum is
achieved at β∗ = +∞, with χρ(β

∗) = +∞. Consequently,

Γ+(ρ) =





ρ/b2, ρ ∈ R<0,
φ(ρ), ρ ∈ [0, b2),
+∞, ρ ∈ R≥b2 ,

(21)

with the corresponding optimizer given by

β∗
+(ρ) =





1/b2, ρ ∈ R<0,
1/(b2 − ρ), ρ ∈ [0, b2),

+∞, ρ ∈ R≥b2 .
(22)

Combining (18), (19), and (21),

Γ(ρ) = max(Γ−(ρ),Γ+(ρ))

=





+∞, ρ ∈ R<0,
max(φ(ρ), ρ/b2), ρ ∈ [0, b2),

+∞, ρ ∈ R≥b2 ,

for all ρ ∈ R. Applying the fact that φ(ρ) ≥ ρ/b2 for all
ρ ∈ R≥0 yields that Γ(ρ) = Φ(ρ) for all ρ ∈ R. That is,
(11) holds, with the optimizer selected as per (15).

Corollary 3.2: Given Φ : R → R
+
≥0, A : R → R≥0

defined by (7), (13), their corresponding restrictions φ :
[0, b2) → R≥0, a : [1/b2,∞) → R≥0 defined respectively
by (10), (14) are strictly monotone increasing, with

φ(ρ) = sup
β∈[1/b2,∞)

{β ρ− a(β)} , (23)

a(β) = sup
ρ∈[0,b2)

{β ρ− φ(ρ)} , (24)

for all ρ ∈ [0, b2), β ∈ [1/b2,∞).
Proof: Fix b ∈ R>0. Restricting the domains of Φ, A to

[0, b2), [1/b2,+∞) in the proof of Lemma 3.1 immediately
yields (23), (24). It follows by inspection of (10), (14) that
φ, a are strictly monotone increasing.

Lemma 3.3: The inverse a−1 : R≥0 → R≥1/b2 of a is
given explicitly by

a−1(α) = −(1/b2)W−1(− exp(−α− 1)), (25)

for all α ∈ R≥0, in which W−1 denotes the −1 branch of
the Lambert-W function (see Appendix A).

Proof: For convenience, write a
.
= a(β). Applying the

exponential function to both sides of (14),

exp(a) = exp(b2β)
1

b2 β
exp(−1)

⇐⇒ (−b2 β) exp(−b2 β) = − exp(−a− 1)

⇐⇒ β = −(1/b2)W (− exp(−a− 1)), (26)

where W is the multi-valued Lambert-W function, see (74)
in Appendix A. By inspection of (14), a : R≥1/b2 →
R≥0 is strictly increasing, asymptotically linear, and satisfies
a(1/b2) = 0. Its range is [0,∞). Hence, the argument of the
Lambert-W function satisfies

− exp(−a− 1) ∈ [− exp(−1), 0) . (27)

Furthermore, as β ∈ R≥1/b2 by definition of the domain of
a, (26) implies that

W (− exp(−a− 1)) ∈ (−∞,−1] . (28)

Consequently, (27) and (28) together imply that it is the −1
branch of the Lambert-W function, denoted by W−1, that
appears in (26), see Figure 3 in Appendix A. Hence, recalling
that a

.
= a(β), (26) immediately implies (25).

Theorem 3.4: Given b ∈ R>0, the log-barrier term Φ(|·|2)
appearing in (1) via (2) and (3), and defined by (7), has the
sup-of-quadratics representation

Φ(|x|2) = sup
α∈R≥0

{a−1(α) |x|2 − α}, (29)

for all x ∈ R
n, where the inverse a−1 : R≥0 → R≥1/b2 is

as per (25). Furthermore, the optimizer in (29) is

α∗(|x|2)
.
= argmax

α∈R≥0

{a−1(α) |x|2 − α}

=

{
a ◦ β∗(|x|2), |x| ∈ R<b,

+∞, |x| ∈ R≥b,
(30)

where a, β∗ are as per (14), (15).
Proof: Fix b ∈ R>0. With ρ

.
= |x|2 ∈ [0, b2), x ∈ R

n,
recall by Lemma 3.1 and Corollary 3.2 that (11) and (23)
hold. Note in particular that a : [1/b2,∞) → R≥0 appearing
in (23) is strictly monotone increasing, with a monotone
strictly increasing inverse a−1 : R≥0 → R≥1/b2 given by
(25). Hence, substituting the change of variable β = a−1(α)
in (23) yields

Φ(ρ) = φ(ρ) = sup
α∈[0,∞)

{a−1(α) ρ− α} , ρ ∈ [0, b2). (31)

That is, (29) holds for ρ = |x|2 ∈ [0, b2). Furthermore, the
optimizer is given by (15), subject to the change of variable,
ie. α∗ = a ◦ β∗(ρ).



Alternatively, with ρ = |x|2 ∈ R≥b2 , x ∈ R
n, note by

definition (7) that

Φ(ρ) = +∞. (32)

Hence, it remains to show that supα∈R≥0
{a−1(α) ρ− α} =

+∞. To this end, define γ(α)
.
= a−1(α) ρ − α, α ∈ R≥0.

Differentiating with respect to α and applying (14) and its
derivative,

γ′(α) =
ρ

a′ ◦ a−1(α)
− 1 =

ρ

b2 − 1/a−1(α)
− 1.

Recall from Corollary 3.2 that a−1(0) = 1/b2, with
a−1(α) ∈ R>1/b2 strictly increasing for all α ∈ R>0.
Note in particular that b2 − 1/a−1(α) ∈ (0, b2) for all
α ∈ R>0. Hence, recalling that ρ ∈ R≥b2 , it is apparent
that γ′(0) = +∞, and γ′(α) ∈ R>0 for all α ∈ R>0.
Consequently, the supremum over α ∈ R≥0 of γ(α) must
be achieved at α = α∗ .

= +∞, with γ(α∗) = +∞. That is,

γ(α∗) = sup
α∈R≥0

{a−1(α) ρ− α} = +∞, α∗ = +∞ . (33)

Hence, combining (32) and (33) again yields (29), with the
optimizer given by the right-hand equality in (33).

B. Approximate sup-of-quadratics representation

An approximation of the exact sup-of-quadratics represen-
tation of Theorem 3.4 can be constructed by restricting the
interval over which the supremum is evaluated in the primal-
dual form (11). In particular, given M ∈ R>0, define

ΦM (ρ)
.
= sup

β∈(−∞,a−1(M)]

{β ρ−A(β)} (34)

for all ρ ∈ R, in which A , a−1 are as per (13), (25).
Lemma 3.5: The following properties hold:

(i) ΦM : R → R
+
≥0, M ∈ R>0, of (34) satisfies

ΦM (ρ) =





+∞, ρ < 0,
φ(ρ), ρ ∈ [0, b2 − 1/a−1(M)],

a−1(M) ρ−M, ρ > b2 − 1/a−1(M),
(35)

for all ρ ∈ R, with φ, a−1 as per (10), (25), and the
corresponding optimizer given by

βM∗(ρ) =





−∞, ρ < 0,
1/(b2 − ρ), ρ ∈ [0, b2 − 1/a−1(M)],
a−1(M), ρ > b2 − 1/a−1(M).

(36)

(ii) Given M ∈ R>0, there exists AM : R → R
+
≥0 s.t.

ΦM (ρ) = sup
β∈R

{
β ρ−AM (β)

}
, (37)

AM (β) = sup
ρ∈R

{
β ρ− ΦM (ρ)

}
, (38)

for all ρ, β ∈ R, with ΦM as per (34), (35), with

AM (β) =





0, β < 1/b2,
a(β), β ∈ [1/b2, a−1(M)],
+∞, β > a−1(M),

(39)

for all β ∈ R, in which a, a−1 are as per (14), (25).
Furthermore, the optimizer in (38) that achieves (39) is

ρM∗(β) =





0, β < 1/b2,
b2 − 1/β, β ∈ [1/b2, a−1(M)],
+∞, β > a−1(M).

(40)

(iii) Functions ΦM and AM of (34), (37) and (38) are point-
wise monotone increasing and decreasing in M ∈ R>0

respectively, and satisfy the respective limit properties

Φ(ρ) = sup
M∈R>0

ΦM (ρ) = lim
M→∞

ΦM (ρ), (41)

A(β) = inf
M∈R>0

AM (β) = lim
M→∞

AM (β) (42)

for all ρ, β ∈ R, with Φ, A as per (11), (12).
Proof: (i) Definition (34) of ΦM and (13) imply that

ΦM (ρ) = max
(
ΓM
− (ρ), ΓM

+ (ρ)
)
, (43)

where

ΓM
− (ρ)

.
= sup

β∈(−∞,1/b2)

{β ρ} =

{
+∞, ρ < 0,
ρ/b2, ρ ≥ 0 ,

(44)

ΓM
+ (ρ)

.
= sup

β∈[1/b2,a−1(M)]

χρ(β), χρ(β)
.
= β ρ− a(β) .

Modifying the argument preceding (21) in the proof of
Lemma 3.1 yields

ΓM
+ (ρ) =





ρ/b2, ρ < 0,
φ(ρ), ρ ∈ [0, b2 − 1/a−1(M)],

a−1(M) ρ−M ρ > b2 − 1/a−1(M).
(45)

The corresponding optimizers in the definitions of ΓM
± (ρ)

may be shown to be

βM∗
− (ρ) =

{
−∞, ρ < 0,
1/b2, ρ ≥ 0,

(46)

βM∗
+ (ρ) =





1/b2, ρ < 0,
1/(b2 − ρ), ρ ∈ [0, b2 − 1/a−1(M)],
a−1(M), ρ > b2 − 1/a−1(M) .

The pointwise maximum in (43) may be evaluated via (44),
(45) and the inequalities (76), (77). Indeed, inspection of
(43), (44), (45), (76), (77) immediately yields (35). The
corresponding optimizer (36) that achieves the supremum in
(34) follows by matching the corresponding cases in (46).

(ii) Some straightforward calculations based on (i) yield
that ΦM is continuous at ρ = b2 − 1/a−1(M), and strictly
increasing for all ρ ≥ 0. Furthermore, recalling (10), note
that φ′(ρ) = 1/(b2 − ρ), so that φ′(ρ) ∈ [1/b2, a−1(M)]
for all ρ ∈ [0, b2 − 1/a−1(M)]. Consequently, (ΦM )′(ρ) is
non-decreasing for all ρ ≥ 0. Hence, it may be concluded
that ΦM as per (35) is convex and (lower) closed [1, (3.8),
pp.15,17] on R. Hence, [1, Theorem 5] implies that there
exists a one-to-one pairing between ΦM and its Fenchel
transform AM : R → R

+, as per (37) and (38). It remains
to show that (39) holds.

By inspection of (35), the supremum in (38) will never be
achieved at ρ < 0. Hence,

AM (β) = max
(
ΛM
− (β), ΛM

+ (β)
)
, (47)



where

ΛM
− (β)

.
= sup

ρ∈[0,b2−1/a−1(M)]

πβ(ρ), (48)

ΛM
+ (β)

.
= sup

ρ>b2−1/a−1(M)

{
(β − a−1(M)) ρ+M

}
. (49)

in which πβ is as per (17) in the proof Lemma 3.1. Replacing
b2 with b2−1/a−1(M) in the argument following (17) yields

ΛM
− (β) =





0, β < 1/b2,

a(β), β ∈ [1/b2, a−1(M)],

λM
− (β), β > a−1(M),

(50)

λM
− (β)

.
= (b2 − 1

a−1(M) )β − log(b2 a−1(M)).

By inspection of (49),

ΛM
+ (β) =

{
λM
+ (β), β ≤ a−1(M),

+∞, β > a−1(M),
(51)

λM
+ (β)

.
= M −

b2

a−1(M)
(a−1(M)− β)(a−1(M)− b).

The corresponding optimizers in the definitions of ΛM
± (β)

may be shown to be

ρM∗
− (β) =





0, β < 1/b2,
b2 − 1/β, β ∈ [1/b2, a−1(M)],

b2 − 1/a−1(M), β > a−1(M),

ρM∗
+ (β) =

{
b2 − 1/a−1(M), β ≤ a−1(M),

+∞, β > a−1(M).
(52)

The pointwise maximum in (47) may be evaluated via
(50), (51), and the inequalities (78), (79), and the fact that
λM
− (β) < +∞ for all β > a−1(M). Indeed, inspection

of (47), (50), (51), (52) and the aforementioned inequalities
immediately yields (39), (40).

(iii) Follows by inspection of (9), (13), (35), (39).
Theorem 3.6: Given b ∈ R>0, the following holds:

(i) The approximation ΦM of the log-barrier function Φ
of (7), represented in (34), (35), (37), has the sup-of-
quadratics representation

ΦM (|x|2) = sup
α∈[0,M ]

{a−1(α) |x|2 − α}, M > 0,

(53)
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Fig. 1. Log-barrier Φ for b
.
= 3, and its sup-of-quadratics representation.

for all x ∈ R
n, where the inverse a−1 : R≥0 → R≥1/b2

is as per (25). Furthermore, the optimizer in (53) is

αM∗(|x|2)
.
= argmax

α∈[0,M ]

{a−1(α) |x|2 − α}

=

{
a ◦ βM∗(|x|2), |x| ∈ [0, b2 − 1/a−1(M)],

+M, |x| > b2 − 1/a−1(M),
(54)

where a, βM∗ are as per (14), (36); and
(ii) ΦM (|x|2) of (53) is pointwise monotone increasing in

M > 0, and converges to Φ(|x|2) of (29) in the limit
as M → ∞, for any x ∈ R

n.
Proof: (i) Fix x ∈ R

n. Recalling the proof of Lemma
3.5(i), and in particular (43), note that for ρ = |x|2 ∈ R≥0,

ΦM (|x|2) = ΓM
+ (|x|2) = sup

β∈[1/b2,a−1(M)]

{β |x|2 − a(β)},

where a : R≥1/b2 → R≥0 is as per (14). Defining the
invertible change of variable α = a(β), with a−1 : R≥0 →
R≥1/b2 as per (25), immediately yields (53). Applying the
same change of variable a to the optimizer βM∗(|x|2) of
(36) yields (54).

(ii) Immediate by inspection of (29) and (53), or via
Lemma 3.5 (iii) applied for ρ = |x|2, x ∈ R

n.

C. Example

Fix b
.
= 3. Applying Theorem 3.4, and in particular, (29),

the log-barrier function Φ has the equivalent representation

Φ(σ2) = sup
α∈[0,∞)

{a−1(α)σ2 − α} (55)

for all σ ∈ [0, 3). This is illustrated by plotting the family of
quadratic functions s 7→ α−1(α)s2 − α defined by selecting
α from a logarithmic grid. In particular, choosing

α ∈
{
αi

∣∣ log10 αi ∈ [−2, 2] ∩ {k/5 | k ∈ Z}
}
, (56)

this family of quadratics is illustrated in Figure 1, along with
the desired log-barrier function. It is clear by inspection that
the pointwise supremum of the quadratics shown (solid red
lines) does indeed yield the log-barrier function of interest
(dashed blue line). The function inverse a−1 : R≥0 →
[1/b2,∞), as appearing in (55), is illlustrated in Figure
2. Note that it is asymptotically linear, as expected from
the proof of Lemma 3.1. Also shown there are two maps
α 7→ α−1(α)[b2 ± ǫ] − α, illustrating the existence of finite
supremum in evaluating (55) for ρ = σ2 = b2 − ǫ, ǫ

.
= 0.1,

but not for ρ = b2 + ǫ, as anticipated by (30). �

Remark 3.7: The sup-of-quadratics representation of (29)
is not an approximation for the log-barrier function (7), but
rather is exact. However, its form does provide scope for
approximation, for example by truncating or discretizing the
set over which the supremum is computed, as per (56), or
by instituting an upper bound on its elements. It is this latter
approach that is adopted in formulated an approximating
game for (1). �
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IV. AN APPROXIMATE UNCONSTRAINED GAME

REPRESENTATION FOR (1)

In view of the sup-of-quadratics representation (29) and
its approximation (53), Theorem 3.6 can be applied to
approximate the constrained linear regulator problem of (1)
as a game. In order to formulate this game, it is convenient to
first define a control problem based on (1) that incorporates
the aforementioned sup-of-quadratics approximation (53). In
particular, given M ∈ R>0, define WM

t : Rn → R by

W
M

t (x)
.
= inf

u∈U [0,t]
J̄M
t (x, u) (57)

for all x ∈ R
n, in which the total cost J̄M

t is defined anal-
ogously to (2) but with the log-barrier function Φ replaced
with its sup-of-quadratics approximation ΦM of (34), (35),
(53). In particular,

J̄M
t (x, u)

.
= It(x, u) + ĪMt (x, u) + Ψ0(ξt), (58)

ĪMt (x, u)
.
=

∫ t

0

1
2 sup
α∈[0,M ]

{a−1(α) |ξs|
2 − α} ds (59)

for all x ∈ R
n, u ∈ U [0, t]. Motivated by (58), (59), define

the signal space

A [0, t]
.
= C([0, t]; [0,M ]), (60)

and a new cost function ĴM
t : Rn × U [0, t] × A [0, t] → R

for fixed t ∈ R≥0 by

ĴM
t (x, u, α)

.
= It(x, u) + ÎMt (x, u, α) + Ψ0(ξt), (61)

ÎMt (x, u, α)
.
=

∫ t

0

1
2 [a

−1(αs) |ξs|
2 − αs] ds (62)

for all x ∈ R
n, u ∈ U [0, t], α ∈ A [0, t]. Using (61),

(62), define a linear quadratic dynamic game problem (with
unconstrained state) via the (upper) value function Ŵt :
R

n → R for fixed t ∈ R≥0 and all x ∈ R
n by

ŴM
t (x)

.
= inf

u∈U [0,t]
sup

α∈A [0,t]

ĴM
t (x, u, α). (63)

Lemma 4.1: Given any fixed t ∈ R>0, u ∈ U [0, t], x ∈
R

n, the map s 7→ ξs, s ∈ [0, t], defined by (6) subject to
ξ0 = x is continuous.

Proof: See for example [11, Lemma 3.1.5].

Theorem 4.2: Given M ∈ R>0, t ∈ R≥0, the value func-
tions W

M

t , ŴM
t of (57), (63) are equivalent. Furthermore,

these value functions are pointwise monotone non-decreasing
with increasing M ∈ R>0, and satisfy

W
M

t (x) = ŴM
t (x) ≤ W

∞

t (x) ≤ W t(x) (64)

for all x ∈ R
n, where W t, W

∞

t : Rn → R
+
≥0 are defined

for all x ∈ R
n by (1) and

W
∞

t (x)
.
= sup

M∈R>0

W
M

t (x) = lim
M→∞

W
M

t (x). (65)

Remark 4.3: By inspection of (57), (63), (64), Theorem
4.2 states that value of the optimal control problem (57)
defined with respect to the sup-of-quadratics approximation
(53) is identical to the value of the two-player game defined
by (63). As the order of the inf and sup in this game can
be swapped under mild conditions as per [9], the value
(57) can in-principle be computed via a supremum (over
α ∈ A [0, t]) of the values of a family of linear quadratic
regulator problems. The details are omitted for brevity.

Proof: [Theorem 4.2] Fix M ∈ R>0, t ∈ R≥0, and
x ∈ R

n. Let u ∈ U [0, t]. By inspection of (58), (59), (61),
(62), as any input α ∈ A [0, t] is pointwise suboptimal in the
definition (59) of ĪMt (x, u),

J̄M
t (x, u) ≥ sup

α∈A [0,t]

ĴM
t (x, u, α).

As u ∈ U [0, t] is arbitrary, it immediately follows that

W
M

t (x) = inf
u∈U [0,t]

J̄M
t (x, u)

≥ inf
u∈U [0,t]

sup
α∈A [0,t]

ĴM
t (x, u, α) = ŴM

t (x) (66)

yielding one of two inequalities required to demonstrate (64).
For the other inequality, first define α∗ : Rn → [0,M ] via

Theorem 3.6 by

α∗(x)
.
= argmax

α̂∈[0,M ]

{
a−1(α̂) |x|2 − α̂

}
, (67)

=

{
a(1/(b2 − |x|2)), |x|2 ∈ [0, b2 − 1/a−1(M)],

+M, |x|2 > b2 − 1/a−1(M),

in which the equality follows by (54). Note in particular that
α∗ ∈ C(Rn; [0,M ]). With t ∈ R≥0, x ∈ R

n, u ∈ U [0, t]
fixed, let s 7→ ξs denote the corresponding state trajectory
map defined by the unique solution of (6) subject to ξ0 = x.
As this map is continuous by Lemma 4.1, the composed
map defined by s 7→ α∗(ξs) is also continuous. That is, the
signal α̂ defined by α̂s

.
= α∗(ξs) for all s ∈ [0, t] satisfies

α̂ ∈ C([0, t]; [0,M ]). Hence, recalling (58) and applying
Theorem 3.6,

J̄M
t (x, u) = It(x, u) + ĪMt (x, u) + Ψ0(ξt)

= It(x, u) +

∫ t

0

1
2 Φ

M (|ξs|
2) ds+Φ0(ξt)

= It(x, u) +

∫ t

0

1
2 [a

−1(α̂s) |ξs|
2 − α̂s] ds+Ψ0(ξt)

= ĴM
t (x, u, α̂) ≤ sup

α∈A [0,t]

ĴM
t (x, u, α) .



As u ∈ U [0, t] is arbitrary, taking the infimum of both sides
and recalling (57), (63) yields

W
M

t (x) ≤ ŴM
t (x). (68)

As x ∈ R
n is arbitrary, inequalities (66) and (68) together

yield the required equivalence.
In order to demonstrate the non-decreasing property, fix

t ∈ R≥0, x ∈ R
n, u ∈ U [0, t], and M1,M2 ∈ R>0, M1 ≤

M2. Recall by Theorem 3.6 (ii) that φM (| · |2) defines a
pointwise monotone non-decreasing sequence of functions
with increasing M ∈ R>0. Hence, (58), (59) imply that

ĪM1
t (x, u) ≤ ĪM2

t (x, u) =⇒ J̄M1
t (x, u) ≤ J̄M2

t (x, u) .

As u ∈ U [0, t] is arbitrary, it follows immediately by (57)
that W

M1

t (x) ≤ W
M2

t (x). That is, the pointwise mono-
tone non-decreasing property holds. Furthermore, applying
Lemma 3.5 (iii) and the definition of W

∞

t , in particular (41)
and (65),

W
M

t (x) ≤ sup
M∈R>0

W
M

t (x) = W
∞

t (x)

≤ inf
u∈U [0,t]

{
It(x, u) + sup

M∈R>0

ĪMt (|ξs|
2) + Ψ0(ξt)

}

≤ inf
u∈U [0,t]

J t(x, u) = W t(x).

As t ∈ R≥0, x ∈ R
n are arbitrary, (64) holds.

Given t ∈ R≥0, x ∈ R
n, ǫ ∈ R>0, it is useful to define

respective sets of all ǫ-optimal inputs in the definitions (1),
(57) of W t(x), W

M

t (x) for M ∈ R>0. In particular, define

U
ǫ
x [0, t]

.
=

{
u ∈ U [0, t]

∣∣∣∣W t(x) + ǫ > J̄t(x, u)

}
, (69)

U
M,ǫ
x [0, t]

.
=

{
u ∈ U [0, t]

∣∣∣∣W
M

t (x) + ǫ > J̄M
t (x, u)

}
.

It is also convenient to define the (possibly empty) set of time
intervals for which a trajectory, generated by dynamics (6)
corresponding to a particular initial state and input, resides
outside the desired state constraint set. That is, given fixed
t ∈ R≥0, define ∆t : R

n × U → ∪I⊂[0,t]I by

∆t(x, u)
.
=

⋃

r∈[0,t],s∈[r,t]



[r, s]

∣∣∣∣∣∣

ξσ 6∈ B(0; b) ∀ σ ∈ [r, s],
ξ satisfying (6) given

ξ0 = x and u





(70)

for all x ∈ R
n, u ∈ U [0, t].

Lemma 4.4: Given t ∈ R≥0, x ∈ R
n such that W t(x) <

∞, and the set U ǫ
x [0, t] of ǫ-optimal inputs (69), ǫ ∈ R>0,

sup
u∈U ǫ

x [0,t]

|∆t(x, u)| = 0 , (71)

where |∆t(x, u)| is the Lebesgue measure of the set (70).
Proof: Fix t ∈ R≥0, x ∈ R

n such that W t(x) < ∞,
and any ǫ ∈ R>0. Suppose there exists a uǫ ∈ U ǫ

x [0, t] such
that |∆t(x, u

ǫ)| ≥ δ > 0 for some δ ∈ R>0. Recalling (1),
(2), (3), (7), and the definition (69) of δ-optimality,

W t(x) + ǫ > J t(x, u
ǫ) ≥

∫ t

0

1
2 Φ(|ξs|

2) ds

≥ δ lim
R→b

Φ(R) = ∞,

which is a contradiction of the finiteness of W t(x). Hence,
no such δ ∈ R>0 exists, so that (71) follows.

Lemma 4.5: Given any t ∈ R≥0, ǫ,M ∈ R>0, x ∈ R
n,

sup
u∈U

M,ǫ
x [0,t]

|∆t(x, u)| ≤
W

M

t (x) + ǫ
1
2 Φ

M (b)
. (72)

Furthermore, given any x ∈ R
n satisfying W t(x) < ∞,

lim
M→∞

sup
u∈U

M,ǫ
x [0,t]

|∆t(x, u)| = 0. (73)

Proof: Fix t ∈ R≥0, ǫ,M ∈ R>0, x ∈ R
n, and u ∈

U M,ǫ
x [0, t]. Let ξǫ denote the trajectory of (6) with initial

state ξǫ0 = x and input u as given. By (69), (70),

W
M

t (x) + ǫ > J̄M
t (x, u)

= It(x, u) +
1
2

∫ t

0

ΦM (|ξǫs|
2) ds+Ψ0(ξ

ǫ
t )

≥ 1
2

∫

∆t(x,u)

ΦM (b2) ds = 1
2 Φ

M (b2) |∆t(x, u)|,

or |∆t(x, u)| ≤ [W
M

t (x) + ǫ]/( 12 Φ
M (b2)), as ΦM (b2) ∈

R>0. As the right-hand side of this last inequality is inde-
pendent of input u ∈ U M,ǫ

x [0, t], the result (72) follows.
Where W t(x) < ∞, inequality (64) and (65) of Theorem

4.2, (35) of Lemma 3.5, and (72), together imply that

lim
M→∞

sup
u∈U

M,ǫ
x [0,t]

|∆t(x, u)| ≤ lim
M→∞

{
W t(x) + ǫ
1
2 Φ

M (b)

}
= 0

as limM→∞ ΦM (b) = limM→∞{a−1(M) b − M} = ∞.
That is, (73) holds.

Remark 4.6: Lemma 4.4 indicates that the regulator prob-
lem defined by W t of (1) implements that required state
constraint for almost every time for those initial states x ∈
R

n for which W t(x) < ∞. Similarly, Lemma 4.5 indicates
that the approximating regulator problem defined by W

M

t of
(57) implements the same constraint in the limit as M → ∞.

V. CONCLUSION

By developing a sup-of-quadratics representation for a
standard log-barrier constraint, a linear regulator problem
with a state constraint is reformulated as an unconstrained
dynamic game. Various properties of this representation, and
the attendant value functionseq:value-W-M are developed,
along with a simple characterization of the behaviour of near-
optimal trajectories in relation to the underlying constraint. It
is anticipated that the new game formulation, and associated
properties, will prove useful in computing solutions to such
state constrained regulator problems.
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APPENDIX

A. Lambert-W function

The Lambert-W function is a transcendental multi-valued
function defined implicitly by

W (η) exp(W (η)) = η (74)

for all η ∈ R. It is illustrated in Figure 3, with the −1 branch
of Lemma 3.1 explicitly labelled. Note specifically that

W−1 : [−e−1, 0) → (−∞,−1] (75)

is monotone decreasing, with infinite gradient at η = −e−1

and in the limit as η → 0−.
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Fig. 3. Lambert-W function W of (74), including its −1 branch.

B. Some useful inequalities

Given M ∈ R>0,

0 ≥ ρ/b2 − φ(ρ) ∀ ρ ≥ 0, (76)

0 ≥ ρ/b2 − a−1(M) ρ+M ∀ ρ ≥ b2 − 1
a−1(M) , (77)

0 ≥ λM
+ (β) ∀ β ≤ a−1(0), (78)

0 ≥ λM
+ (β)− a(β) ∀ β ∈ (a−1(0), a−1(M)],

(79)

in which λM
+ : R → R is given by

λM
+ (β)

.
= M −

(a−1(M)− β) (a−1(M)− a−1(0))

a−1(0) a−1(M)
(80)

and a : R≥a−1(0) → R≥0, a−1 : R≥0 → R≥a−1(0) are as per
(14), (25), a−1(0) = 1/b2.

Proof: [Inequality (76)] Recalling (10), for all ρ ∈ [0, b2),
φ(ρ) = − log(1 − ρ/b2), φ′(ρ) = 1

b2−ρ , φ′′(ρ) = 1
(b2−ρ)2 .

By Taylor’s theorem, there exists c ∈ [0, ρ] such that

φ(ρ) = φ(0) + φ′(0) ρ+ 1
2 φ

′′(c) ρ2

= ρ/b2 + 1
2/(b− c)2 ≥ ρ/b2,

as required by (76) for all ρ ∈ [0, b2). For ρ ≥ b2, (76) holds
trivially by inspection of (10).

[Inequality (77)] Fix M ∈ R>0. Given any

ρ ≥ b2 −
1

a−1(M)
=

a−1(M)− a−1(0)

a−1(0) a−1(M)

it follows immediately that

ρ/b2 − a−1(M) ρ+M = M − [a−1(M)− a−1(0)] ρ

≤ M −
[a−1(M)− a−1(0)]2

a−1(0) a−1(M)
= λM

+ (a−1(0)),

where λM
+ is as per (80). Hence, (77) is a special case of

inequality (78).
[Inequality (78)] Fix M ∈ R>0. For any β ≤ a−1(0),

(λM
+ )′(β) =

a−1(M)− a−1(0)

a−1(0) a−1(M)
> 0

=⇒ λM
+ (β) ≤ λM

+ (a−1(0)) = µ(M)

for all β ≤ a−1(0), in which µ : R≥0 → R≥0 is defined by

µ(M)
.
= M + 2−

[
a−1(M)

a−1(0)
+

a−1(0)

a−1(M)

]

As (a−1)′(M) = a−1(0) a−1(M)
a−1(0)+a−1(M) , differentiation of µ with

respect to M yields µ′(M) = − a−1(0)
a−1(M) < 0. Hence,

0 = µ(0) > µ(M) = λM
+ (a−1(0)) ≥ λM

+ (β)

for all β ≤ a−1(0), as required by (78).
[Inequality (79)] Define η : (0,M ] → R by

η(α)
.
= λM

+ ◦ a−1(α)− α

for all α ∈ (0,M ]. Differentiation yields that

η′(α) =
a−1(0)

a−1(M)

[
a−1(M)− a−1(0)

a−1(α)− a−1(0)
− 1

]
≥ 0

for all α ∈ (0,M ]. Hence, η(α) ≤ η(M) = 0 for all α ∈
(0,M ]. Setting α = a(β) for β ∈ (a−1(0), a−1(M)],

0 ≥ η ◦ a(β) = λM
+ (β)− a(β)

as required by (79).


