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Abstract

We consider a two-point boundary value problem (TPBVP) in orbital mechanics involving a small
body (e.g., a spacecraft or asteroid) and N larger bodies. The least action principle TPBVP formulation
is converted into an initial value problem via the addition of an appropriate terminal cost to the action
functional. The latter formulation is used to obtain a fundamental solution, which may be used to solve
the TPBVP for a variety of boundary conditions within a certain class. In particular, the method of
convex duality allows one to interpret the least action principle as a differential game, where an opposing
player maximizes over an indexed set of quadratics to yield the gravitational potential. In the case where
the time duration is less than a specific bound, there exists a unique critical point for the resulting
differential game, which yields the fundamental solution given in terms of the solutions of associated
Riccati equations.

Keywords Least action, two-point boundary value problem, differential game, Hamilton-Jacobi, optimal
control.

Mathematics Subject Classification 49N90, 49Lxx, 93C10,35G20, 35D40.

1 Introduction

We examine the motion of a single body under the influence of the gravitational potential generated by N
other celestial bodies, where the mass of the first body is negligible relative to the masses of the other bodies,
and we suppose that the N large bodies are on known trajectories. The single, small body follows a trajectory
satisfying the principle of stationary action (cf., [3, 4]), where under certain conditions, the stationary-action
trajectory coincides with the least-action trajectory. This allows such problems in dynamics to be posed,
instead, in terms of optimal control problems with vastly simplified dynamics. Here, we are specifically
interested in two-point boundary value problems (TPBVPs). From the solution of certain optimal control
problems, we will obtain fundamental solutions for classes of TPBVPs.

In the case of a quadratic potential function, the control problem takes a linear-quadratic form. Al-
though the gravitational potential is not quadratic, one may take a dynamic game approach, where an inner
optimization problem is posed in a linear-quadratic form. In particular, the non-quadratic control problem
is converted into a differential game where the minimizing, outer player controls the velocity, and the max-
imizing, inner player controls the potential energy term (cf., [1, 2]). It will be demonstrated that for the
case where the time duration is less than a specified bound, the action functional is strictly convex in the
velocity control. The action functional is naturally concave in the potential-energy control. We will find
that because of the very special form of this problem, one can invert the order of minimum and maximum
so that the maximizing player is the outer player For any potential-energy (outer player) control, the min-
imizing trajectory is the unique stationary point of a quadratic functional, and the least action is obtained
by solution of associated Riccati equations. This leaves only a control problem for the outer player. We use
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a numerical method to maximize this concave function. As an aid in this maximization, we also obtain the
derivative of the Riccati-equation solution with respect to the potential-energy control.

In Section 2, we define the orbital mechanics problem of interest, and develop its relevant least action
principle. In Sections 3 and 4, the problem is reformulated into the aforementioned equivalent differential
game in a linear-quadratic form. We provide a bound on the duration that guarantees the existence and
uniqueness of the solution. Then, in next two sections, we examine two subproblems of the differential game,
separately. Specifically, in Section 5, we demonstrate that the minimizing subproblem in the differential game
is solved via associated Riccati equations, and in Section 6, the derivative of the solution of Riccaiti equations
with respect to the maximizing player is examined. Further, an approximate subproblem is introduced, and
corresponding first-order necessary conditions are obtained, where these are used in the numerical method.
An error analysis is also provided. Lastly, in Section 7, an example is given.

2 Problem statement and Fundamental solution

We consider a small body, moving among a set of N other bodies in IR3. The only forces to be considered
are gravitational. The single body has negligible mass in relation to the masses of the other bodies, and
consequently has no effect on their motion. In particular, we suppose that the N bodies are moving along
already-known trajectories. We will obtain fundamental solutions of TPBVPs for the motion of the small
body. Note that, for a problem involving dynamical systems, we use the term fundamental solution to indicate
an object, which once obtained for a specific time-horizon, allows solution of the problem for varying input
data by an operation on the object and given specific data that does not require re-propagation over time.
(See [13] for further discussion.) The concept will become more clear further below.

The set of N bodies may be indexed as N .
=]1, N [

.
= {1, 2, · · · , N}. Throughout, for integers a ≤ b, we

will use ]a, b[ to denote {a, a+1, · · · , b−1, b}. We assume that the larger bodies are spherical with spherically
symmetric densities. As for a given total mass, the specific radial density profiles of the bodies do not affect
the resulting trajectories (for small-body paths not intersecting the larger bodies), we may, without loss of
generality assume that the larger bodies each have uniform density. For i ∈ N , let ρi and Ri denote the
(uniform) density and radius of larger body i. Obviously, the mass of each body is given by mi =

4
3πρiR

3
i .

Let ζir
.
= ζi(r) denote the position of the center of body i at time r ≥ 0. We suppose that ζ

.
= {ζi}i∈N ∈

Ẑ .
= {{ζi}i∈N | ζi ∈ C([0,∞); IR3) ∀i ∈ N}, where Ẑ will be equipped with the usual (supremum) norm.

Assuming that collision between bodies does not occur, we define the subset of Ẑ given by Z .
= {ζ ∈

Ẑ | |ζir − ζjr | > Ri +Rj ∀r ≥ 0, ∀i 6= j ∈ N}.
For simplicity, the small body is considered as a point particle with mass m̄. Suppose that the position of

the small body at time r is denoted by ξr, where also, we will use x ∈ IR3 to denote generic position values.
We model the dynamics of the small body position as

ξ̇r = ur, ξ0 = x, (1)

where u = u· ∈ U∞ .
= {u : [0,∞) → IR3 |u[0,t) ∈ L2([0, t); IR

3) ∀t ∈ [0,∞)} where u[0,t) denotes the
restriction of the function to domain [0, t).

The kinetic energy, T̂ , for generic velocity, v, is given by

T̂ (v)
.
= 1

2m̄|v|2 ∀v ∈ IR3.

Let Y .
= {{yi}i∈N | yi ∈ IR3 ∀i ∈ N}. Given i ∈ N and Y ∈ Y, the potential energy between the small body

at x and body i at yi, V̂ i(x, y
i), is given by

−V̂ i(x, y
i)
.
=

{
Gmim̄

3R2
i−|x−yi|2

2R3
i

if x ∈ BRi
(yi),

Gmim̄
|x−yi| if x /∈ BRi

(yi),
(2)

where G is the universal gravitational constant. We define the total potential energy V̂ : IR3 × Y → IR as

V̂ (x, Y )
.
=

∑
i∈N V̂ i(x, y

i). We remark that we include the gravitational potential here within the extended
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bodies as the finiteness and smoothness of the potential are relevant at technical points in the theory, in
spite of the infeasibility of small body trajectories that pass through the other bodies.

We remind the reader that we will obtain fundamental solutions for the TPBVPs through a game-theoretic
formulation. The game will appear through application of a generalization of convex duality to a control-
problem formulation. With that in mind, we define the action functional J0 : [0,∞)× IR3 × U∞ × Z → IR
as

J0(t, x, u, ζ)
.
=

∫ t

0

T (ur)− V (ξr, ζr) dr, (3)

where

V
.
= V̂ /m̄, V i

.
= V̂ i/m̄ and T

.
= T̂ /m̄, (4)

and ξ satisfies (1).
Adding a terminal cost to J0 will yield a control problem equivalent to a TPBVP, where we can manipulate

the terminal condition in the TPBVP by adjusting the terminal cost, and we will have initial condition ξ0 = x.
For background on this approach to TPBVPs for conservative systems, see [5, 13, 14]. Given generic terminal
cost ψ̄ : IR3 → IR, let

J̄(t, x, u, ζ)
.
= J0(t, x, u, ζ) + ψ̄(ξt), W (t, x, ζ)

.
= inf

u∈U∞

J̄(t, x, u, ζ). (5)

For the development of the fundamental solution, it is useful to introduce a terminal cost that takes
the form of a min-plus delta-function. Let ψ∞ : IR3 × IR3 → [0,∞] (where throughout we let [0,∞]

.
=

[0,∞) ∪ {+∞}) be given by

ψ∞(y, z) = δ−(y − z)
.
=

{
0 if y = z,
∞ otherwise,

where δ− denotes the min-plus “delta-function” (cf., [12]). We define the finite time-horizon payoff J̄∞ :
[0,∞)× IR3 × U∞ ×Z × IR3 → IR ∪ {∞} by

J̄∞(t, x, u, ζ, z)
.
= J0(t, x, u, ζ) + ψ∞(ξt, z), (6)

and the corresponding value function as

W
∞
(t, x, ζ, z) = inf

u∈U∞

J̄∞(t, x, u, ζ, z), (7)

where ξ satisfies (1). The proof of the following is nearly identical to that of Proposition 2.11 in [13], and so
is not included.

Theorem 2.1. For all t ≥ 0, x ∈ IR3 and ζ ∈ Z,

W
∞
(t, x, ζ, z) = inf

u∈U∞

{J0(t, x, u, ζ) | ξt = z }, and W (t, x, ζ)
.
= inf

z∈IR3

{
W

∞
(t, x, ζ, z) + ψ̄(z)

}
.

It is seen that the value functionW of (5) for terminal cost ψ̄ can be evaluated fromW
∞
, and consequently,

W
∞

may be regarded as a fundamental solution.

3 Optimal control problem

The development in this section and the next is similar to that in [13, 14], where the n-body problem was
considered. In this case the state-dimension is substantially reduced, but the presence of the large bodies
on known trajectories leads to time-dependent input processes. Because of the time-dependent inputs the
results of [13, 14] are not applicable. Nonetheless, the overall structure of the development is formally similar,
and where reasonable to do so, the material is condensed.
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We will find it helpful to define a value function W
c
with quadratic terminal cost ψc, and demonstrate

that the limit property, limc→∞W
c
=W

∞
holds. For c ∈ [0,∞), let ψc : IR3 × IR3 → [0,∞) be given by

ψc(x, z)
.
=
c

2
|x− z|2.

We define the finite time-horizon payoff, J̄c : [0,∞)× IR3 × U∞ ×Z × IR3 → IR, by

J̄c(t, x, u, ζ, z)
.
= J0(t, x, u, ζ) + ψc(ξt, z), (8)

where J0 is given by (3), and corresponding value function,

W
c
(t, x, ζ, z)

.
= inf

u∈U∞

J̄c(t, x, u, ζ, z). (9)

Lemma 3.1. The potential energy V (x, Y ) is globally Lipschitz continuous in x, i.e., for any Y
.
= {yi}i∈N ∈

Y, there exists KL = KL({mi, Ri}i∈N ) <∞ such that

|V (x, Y )− V (x̂, Y )| ≤ KL|x− x̂| ∀x, x̂ ∈ IR3. (10)

Also, there exists DV = DV ({mi, Ri}i∈N ) <∞ such that

0 < −V (x, Y ) ≤ DV ∀x ∈ IR3, ∀Y ∈ Y. (11)

Proof. The second assertion is immediate from the definition of V i, and so we address only the first. Given
yi ∈ IR3, in the cases where x, x̂ ∈ BRi

(yi) and x, x̂ /∈ BRi
(yi), by (2), (4) and the mean value theorem, we

have

|V i(x, y
i)− V i(x̂, y

i)| ≤ Gmi

R2
i

|x− x̂|. (12)

Lastly, suppose without loss of generality that x /∈ BRi
(yi) and x̂ ∈ BRi

(yi). Let xλ = x(λ)
.
= λx+(1−λ)x̂

for λ ∈ [0, 1]. Then, there exists † ∈ (0, 1] such that |x†−yi| = Ri. Note that for such x
† ∈ IR3, the potential

is given by

−V i(x
†, yi) = Gmi

3R2
i − |x† − yi|2

2R3
i

=
Gmi

|x† − yi| . (13)

Therefore, by the triangle inequality,

|V i(x, y
i)− V i(x̂, y

i)| ≤ |V i(x, y
i)− V i(x

†, yi) + |V i(x
†, yi)− V i(x̂, y

i)|,
which by using the results of two previous cases with (13),

≤ Gmi

R2
i

[
|x− x†|+ |x† − x̂|

]
=
Gmi

R2
i

|x− x̂| (14)

where the last equality is obtained since x† is a point on the straight-line between x and x̂. Given both (12)
and (14), one has the first assertion.

Theorem 3.2.

W
∞
(t, x, ζ, z) = lim

c→∞
W

c
(t, x, ζ, z) = sup

c∈[0,∞)

W
c
(t, x, ζ, z).

where the convergence is uniform on B̄t × B̄ × Z × B̄ for any compact B̄t ⊂ [0,∞) and compact B̄ ⊂ IR3.

Proof. Let t > 0. Suppose that given x, z ∈ IR3, the “straight-line control” from x to z is given by
usr

.
= (1/t)[z − x] for all r ∈ [0, t], and we let the corresponding trajectory be denoted by ξs. Noting

that ξst = z, for c ∈ [0,∞),

J̄c(t, x, us, ζ, z) = J0(t, x, us, ζ),

which by the definition of us and Lemma 3.1
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≤ 1
2t |z − x|2 +DV t ≤ D1(1 + |x|2 + |z|2), (15)

for an appropriate choice of D1 = D1(t) <∞.
On the other hand, by definition, given c ∈ (0,∞) and ε ∈ (0, 1], there exists uc,ε ∈ U∞ such that

J̄c(t, x, uc,ε, ζ, z) ≤W
c
(t, x, ζ, z) + ε. (16)

Let ξc,ε be the trajectory corresponding to uc,ε. By the non-negativity of T and −V and (16),

c
2 |ξ

c,ε
t − z|2 ≤W

c
(t, x, ζ, z) + ε,

which by the suboptimality of us with respect to W
c
,

≤ J̄c(t, x, us, ζ, z) + ε,

which by (15),
≤ D1(1 + |x|2 + |z|2) + 1 ≤ 1

2 [D̃(1 + |x|+ |z|)]2, (17)

for an appropriate choice of D̃ = D̃(t) <∞. This implies that

|ξc,εt − z| ≤ D̃(1 + |x|+ |z|)√
c

. (18)

Let
ûc,εr

.
= uc,εr + 1

t [z − ξc,εt ], ∀r ∈ [0, t], (19)

which yields ξ̂c,εt = z where ξ̂c,ε denotes the trajectory corresponding to ûc,ε. Then, by (18) and (19),

|ξc,εr − ξ̂c,εr | ≤ 1

t

∫ r

0

|z − ξc,εt | dρ ≤ rD̃(1 + |x|+ |z|)
t
√
c

(20)

for all r ∈ [0, t]. By (10) and (20),

∣∣∣∣
∫ t

0

−V (ξc,εr , ζr) + V (ξ̂c,εr , ζr) dr

∣∣∣∣ ≤ KL

∫ t

0

|ξc,εr − ξ̂c,εr | dr ≤ KLD̃(1 + |x|+ |z|)t
2
√
c

. (21)

Now, by (3), (8) and (16),

∫ t

0

T (uc,εr )− V (ξc,εr , ζr) dr + ψc(ξc,εt , z) ≤W
c
(t, x, ζ, z) + ε.

By the definition of T and the non-negativity of −V and ψc, this implies

‖uc,ε‖2L2(0,t)
≤

√
2W

c
(t, x, ζ, z) + 2ε ≤ D̃(1 + |x|+ |z|), (22)

where the last inequality follows by (17). Noting that
∣∣|a|2 − |b|2

∣∣ < |a− b| [|a|+ |b|] for a, b ∈ IR3,

∣∣∣∣
∫ t

0

T (uc,εr )− T (ûc,εr ) dr

∣∣∣∣ ≤ 1

2

∫ t

0

|uc,εr − ûc,εr | [|uc,εr |+ |ûc,εr |] dr,

which by (19) and the triangle inequality,

≤ 1

2t
|z − ξc,εt |

∫ t

0

2|uc,εr |+ 1

t
|z − ξc,εt | dr,

which by applying Hölder’s inequality, (18) and (22),

≤ 1

2t
|z − ξc,εt |

[
2
√
t‖uc,ε‖L2(0,t) + |z − ξc,εt |

]
≤ D̂(t)(1 + |x|+ |z|)2√

c
, (23)
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for all x, z ∈ IR3 and all c ∈ [1,∞), for an appropriate choice of D̂ = D̂(t) < ∞. Therefore, by (21), (23)
and the non-negativity of ψc, we have

J̄c(t, x, uc,ε, ζ, z)− J̄c(t, x, ûc,ε, ζ, z) ≥ −D2(t)(1 + |x|+ |z|)2√
c

(24)

for proper choice of D2(t) <∞. The suboptimality of ûc,ε with respect to W
∞

combined with (24) yields

W
∞
(t, x, ζ, z)− D2(t)(1 + |x|+ |z|)2√

c
≤ J̄c(t, x, uc,ε, ζ, z) ≤W

c
(t, x, ζ, z) + ε

where the last inequality follows by (16). Since this is true for all ε ∈ (0, 1],

W
c
(t, x, ζ, z) ≥W

∞
(t, x, ζ, z)− D2(t)(1 + |x|+ |z|)2√

c
. (25)

Next, we examine the monotonicity of W
c
with respect to c. Given t > 0; x, z ∈ IR3; u ∈ U∞ and ζ ∈ Z,

note that for c1 ≤ c2 ≤ ∞, by the definitions of J̄∞ of (6) and J̄c of (8), J̄c1(t, x, u, ζ, z) ≤ J̄c2(t, x, u, ζ, z),
which easily yields

W
c1
(t, x, ζ, z) ≤W

c2
(t, x, ζ, z) ∀c1 ≤ c2 ≤ ∞.

Combining this with (25) implies

W
∞
(t, x, ζ, z)− D2(t)(1 + |x|+ |z|)2√

c
≤W

c
(t, x, ζ, z) ≤W

∞
(t, x, ζ, z)

for all x, z ∈ IR3, ζ ∈ Z, t > 0 and c ∈ [1,∞).

4 Differential game formulation

Recall that in the case where the potential energy does take a quadratic form, the fundamental solution
may be obtained through the solution of associated differential Riccati equations (DREs) [13, 14]. In order
to exploit that Riccati-solution form, we will take a duality-based approach to gravitation. That is, we will
express the additive inverse of the gravitational potential as the pointwise maximum over an indexed set
of quadratics. Extending this to time-dependent trajectories, the action functional will take the form of
a max-plus integral, over potential-energy controls, of quadratic action functionals. We will find that the
control problem is converted to a zero-sum differential game where the velocity controller is the minimizing
player, and the potential-energy controller is an opposing, maximizing player. Although at first this may
appear to lead to additional complications, the ability to exploit the DRE solution form yields significant
benefits.

By [13], Lemma 4.1, (see also [14]),

−V i(x, y
i) = sup

ˆ̃α∈(0,
√

2/3R−1

i
]

µi

[
ˆ̃α−

ˆ̃α3

2
|x− yi|2

]
(26)

for all x, yi ∈ IR3 such that |x− yi| ≥ Ri, where µi
.
= Gmi

(
3
2

)3/2
. Now, let ¯̂α

.
=

√
2
3R

−1
i and |x− yi| ≤ Ri.

Recalling (2), and performing a small calculation yields

−V i(x, y
i) = Gmi

3R2
i − |x− yi|2

2R3
i

= µi

[
¯̂α−

¯̂α3

2
|x− yi|2

]
. (27)

Further,
d

d ˆ̃α

{
ˆ̃α− 1

2
ˆ̃α3|x− yi|2

}
= 1− 3

2
ˆ̃α2|x− yi|2 > 0
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for ˆ̃α <
√
2/3|x − yi|−1. Consequently, noting R−1

i ≤ |x − yi|−1, we see that µi[ ˆ̃α − 1
2
ˆ̃α3|x − yi|2] is

monotonically increasing on (0,
√
2/3R−1

i ]. Therefore, using (27), we see that for |x − yi| ≤ Ri, we also
obtain (26). That is, we have the following.

Theorem 4.1. Let µi
.
= Gmi

(
3
2

)3/2
. For all x, yi ∈ IR3,

−V i(x, y
i) = max

ˆ̃α∈(0,
√

2/3R−1

i
]

µi

[
ˆ̃α−

ˆ̃α3

2
|x− yi|2

]
.

4.1 Revisiting the payoff

Let
A .

= {α̃ = {α̃i}i∈N | α̃i ∈ (0,
√
2/3R−1

i ] ∀i ∈ N}.
Then, using Theorem 4.1, the potential energy −V may be represented by

−V (x, Y ) = −
∑

i∈N

V i(x, y
i)
.
= max

α̃∈A
{−V̂ (x, Y, α̃)} (28)

where

−V̂ (x, Y, α̃)
.
=

∑

i∈N

µi

[
α̃i − (α̃i)3

2
|x− yi|2

]
. (29)

Further, the payoff (8) may be written as

J̄c(t, x, u, ζ, z) =

∫ t

0

T (ur) + max
α̃∈A

{−V̂ (ξr, ζr, α̃)} dr + ψc(ξt, z). (30)

Given t > 0, let

Ãt .= C([0, t];A) and At .
= L∞([0, t];A). (31)

Also, for α ∈ At, r ∈ [0, t], x ∈ IR3 and Y ∈ Y, let

−V α(r, x, Y )
.
= −V̂ (x, Y, αr) =

∑

i∈N

µi

[
αi
r −

(αi
r)

3

2
|x− yi|2

]
. (32)

Given c ∈ [0,∞], let Jc : [0,∞)× IR3 × U∞ ×At ×Z × IR3 → IR be given by

Jc(t, x, u, α, ζ, z)
.
=

∫ t

0

T (ur)− V α(r, ξr, ζr) dr + ψc(ξt, z)
.
= J̌0(t, x, u, α, ζ) + ψc(ξt, z). (33)

Let ᾱ∗ : IR3 × IRnN → A be given by ᾱ∗(x, Y )
.
= {[ᾱ∗]i(x, yi)}i∈N where

[ᾱ∗]i(x, yi)
.
= argmax

α̂∈(0,
√

2/3R−1

i
]

µi

[
α̂− α̂3

2
|x− yi|2

]
=

√
2/3min{R−1

i , |x− yi|−1} (34)

for all x, yi ∈ IR3 and all i ∈ N . Let

α∗
r = α∗(r;u·, ζ·) = {[α∗

r ]
i| i ∈ N}, [α∗

r ]
i = [ᾱ∗]i(ξr , ζ

i
r) ∀r ∈ [0, t], (35)

where ξr = x+
∫ r

0
uρ dρ.
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Theorem 4.2. Let t > 0; c ∈ [0,∞); x, z ∈ IR3; and ζ ∈ Z. For any u ∈ U∞,

J̄c(t, x, u, ζ, z) = max
α∈At

Jc(t, x, u, α, ζ, z) = max
α∈Ãt

Jc(t, x, u, α, ζ, z) = Jc(t, x, u, α∗, ζ, z), (36)

where α∗, depending on u, is given by (35). Further,

W
c
(t, x, ζ, z) = inf

u∈U∞

max
α∈At

Jc(t, x, u, α, ζ, z) = inf
u∈U∞

max
α∈Ãt

Jc(t, x, u, α, ζ, z). (37)

Proof. As (37) is immediate from (36), we need only prove the latter. Fix t > 0, x, z ∈ IR3 and ζ ∈ Z.
Given u ∈ U∞, let ξ denote the state trajectory corresponding to u with ξ0 = x. By (31) and (32), given
any α ∈ At, αr is suboptimal in the maximization in (30) at each r ∈ [0, t], and in particular,

J̄c(t, x, u, ζ, z) ≥
∫ t

0

T (ur)− V̂ (ξr, ζr, αr) dr + ψc(ξt, z) = Jc(t, x, u, α, ζ, z).

As this is true for all α ∈ At,
J̄c(t, x, u, ζ, z) ≥ max

α∈At
Jc(t, x, u, α, ζ, z). (38)

By (28), (32), (34) and (35),
−V (ξr, ζr) = −V α∗

(r, ξr, ζr) ∀r ∈ [0, t],

and then by (30), (33), this implies

J̄c(t, x, u, ζ, z) = Jc(t, x, u, α∗, ζ, z) ≤ sup
α∈At

Jc(t, x, u, α, ζ, z). (39)

Consequently, combining (38) and (39) yields the first equality of (36).
For r ∈ [0, t] and i ∈ N , let dir

.
= |ξr−ζir|. Fix s ∈ [0, t] and εd > 0. By the continuity of ζ and ξ (the latter

being guaranteed by u ∈ U∞), there exists δd > 0 such that for all i ∈ N and all r ∈ (s− δd, s+ δd) ∩ [0, t],
|dir − dis| < εd. Using (34) and (35), one easily sees that this implies |[α∗

r ]
i − [α∗

s]
i| < εd/R

2
i for all r ∈

(s− δd, s+ δd) ∩ [0, t]. Consequently, α∗ ∈ Ãt, which implies the second equality of (36).

Note that the non-quadratic control problem has been converted into a differential game that has a
linear-quadratic form of the potential energy.

4.2 Existence and uniqueness of optimal controls: c <∞
We will see that Jc(t, x, ·, ·, ζ, z) is strictly convex-concave over the velocity and potential energy control sets
within a certain time-horizon bound, and that there exists a unique minimax point over U∞ ×At.

We first study the question of existence of optimal velocity controls by examining the smoothness, con-
vexity and coercivity of the payoff. We will obtain a bound on the time duration which will be sufficient to
guarantee the convexity and coercivity of the payoff Jc and the uniqueness of the stationary-action trajectory.

Let t > 0. We define a linear operator B : L2(0, t) → L2(0, t) as

[Bv](r)
.
=

∫ r

0

vρ dρ ∀r ∈ [0, t]. (40)

Moreover,

‖Bv‖2L2(0,t)
=

∫ t

0

∣∣∣∣
∫ r

0

vρ dρ

∣∣∣∣
2

dr ≤
∫ t

0

[∫ r

0

|vρ| dρ
]2

dr ≤
∫ t

0

r dr‖v‖2L2(0,t)
=
t2

2
‖v‖2L2(0,t)

, (41)

where the last bound follows by applying Hölder’s inequality to the inner integral.
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Let x, z ∈ IR3; c ∈ [0,∞); α ∈ At, and ζ ∈ Z. Let u ∈ U∞ and ξ be the corresponding trajectory. Then,
using (40), we may rewrite (32) as

∫ t

0

−V α(r, ξr , ζr) dr =
∑

i∈N

µi

∫ t

0

αi
r dr −

∑

i∈N

µi

2

∫ t

0

(αi
r)

3|x̂r + [Bu](r) − ζir|2 dr

.
= S(α)−

∑

i∈N

U i(u, α, x̂, ζ) (42)

where x̂r
.
= x for all r ∈ [0, t]. Letting

[Bi
αu](r)

.
= µ

1/2
i (αi

r)
3/2

∫ r

0

uρ dρ = µ
1/2
i (αi

r)
3/2[Bu](r),

we also note that

〈Bi
αu,B

i
αu〉L2(0,t) =

∫ t

0

µi(α
i
r)

3|[Bu](r)|2 dr,

which since αi
r ∈ (0,

√
2/3R−1

i ] for all r ∈ [0, t],

≤ Gmi

R3
i

∫ t

0

|[Bu](r)|2 dr ≤ Gmi

2R3
i

t2‖u‖2L2(0,t)
, (43)

where the last inequality follows by (41). Then, for i ∈ N , we have

U i(u, α, x̂, ζ) =
1

2

∫ t

0

µi(α
i
r)

3|x̂r − ζir|2 dr +
∫ t

0

µi(α
i
r)

3(x̂r − ζir) · [Bu](r) dr +
1

2

∫ t

0

µi(α
i
r)

3|[Bu](r)|2 dr
.
= 1

2 〈wi, wi〉L2(0,t) + 〈wi, Bi
αu〉L2(0,t) +

1
2 〈Bi

αu,B
i
αu〉L2(0,t)

where wi
r = wi

r(α, x̂, ζ)
.
= µ

1/2
i (αi

r)
3/2(x̂r − ζir) for all i ∈ N and r ∈ [0, t]. For ν

.
= {νi}i∈N , ν̂

.
= {ν̂i}i∈N ⊂

L2(0, t), define the inner product (with associated norm)

〈ν, ν̂〉L2(0,t)
.
=

∑

i∈N

〈νi, ν̂i〉L2(0,t). (44)

Then, letting w
.
= {wi}i∈N and Bαu

.
= {Bi

αu}i∈N , we may rewrite (42) as

∫ t

0

−V α(r, ξr, ζr) dr = S(α) − 1
2 〈w,w〉L2(0,t) − 〈w,Bαu〉L2(0,t) − 1

2 〈Bαu,Bαu〉L2(0,t),

so that J̌0 given in (33) may be rewritten as

J̌0(t, x, u, α, ζ) = 1
2 〈u, u〉L2(0,t) + Ŝ(α)− 〈w,Bαu〉L2(0,t) − 1

2 〈Bαu,Bαu〉L2(0,t), (45)

where Ŝ(α) = Ŝ(α; x̂, ζ)
.
= S(α)− 1

2 〈w,w〉L2(0,t). Further, by (40),

ψc(ξt, z) = c
2 |x− z + [Bu](t)|2,

which by letting ẑr
.
= z for all r ∈ [0, t],

= c
2 |x− z|2 + 〈c(x̂− ẑ), u〉L2(0,t) +

c
2 |[Bu](t)|2. (46)

Theorem 4.3. Let t > 0; c ∈ [0,∞); x, z ∈ IR3; α ∈ At, and ζ ∈ Z. Then, J̌0(t, x, u, α, ζ) and
Jc(t, x, u, α, ζ, z) are Fréchet differentiable with respect to u.
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Proof. Let u, v ∈ U∞. Then, by (33), (45) and (46),

Jc(t, x, u+ v, α, ζ, z)− Jc(t, x, u, α, ζ, z) (47)

= 〈u, v〉L2(0,t) +
1
2 〈v, v〉L2(0,t) − 〈w,Bαv〉L2(0,t) − 〈Bαu,Bαv〉L2(0,t) − 1

2 〈Bαv,Bαv〉L2(0,t)

+c〈x+ [Bu](t)− z, v〉L2(0,t) +
c
2 |Bv(t)|2,

which by letting B∗
α be the adjoint of Bα (cf., [9]),

= 〈c(ξt − z)−B∗
αw + (I −B∗

αBα)u, v〉L2(0,t) +
1
2

[
〈v, v〉L2(0,t) − 〈Bαv,Bαv〉L2(0,t) + c|[Bv](t)|2

]
;

where I denotes the identity operator. This implies that letting DJc
α(u)

.
= c(ξt − z)−B∗

αw + (I −B∗
αBα)u,

|Jc(t, x, u + v, α, ζ, z)− Jc(t, x, u, α, ζ, z)− 〈DJc
α(u), v〉L2(0,t)|

≤ 1
2 |〈v, v〉L2(0,t) − 〈Bαv,Bαv〉L2(0,t) + c|[Bv](t)|2| ≤ Cu‖v‖2L2(0,t)

for proper choice of Cu = Cu(t, t̄) <∞. Since this is true for all u, v ∈ U∞, Jc is Fréchet differentiable with
Fréchet derivative representation DJc

α. Similarly, using (45), one easily sees that J̌0 is Fréchet differentiable
with Fréchet derivative representation DJ̌0

α(u)
.
= (I −B∗

αBα)u−B∗
αw.

We also have the following, and do not include the obvious proof.

Lemma 4.4. Let t > 0; x, z ∈ IR3; ζ ∈ Z; α ∈ At, and c ∈ [0,∞). J0(t, x, ·, ζ), J̌0(t, x, ·, α, ζ),
J̄c(t, x, ·, ζ, z), and Jc(t, x, ·, α, ζ, z) are continuous on U∞.

Theorem 4.5. Let

t̄
.
=

[ ∑

i∈N

Gmi

2R3
i

]−1/2

. (48)

Let x, z ∈ IR3; c ∈ [0,∞), and ζ ∈ Z. If t ∈ (0, t̄), then J̌0(t, x, u, α, ζ) and Jc(t, x, u, α, ζ, z) are strictly
convex quadratic and coercive in u for any α ∈ At.

Proof. Considering the quadratic terms in u in the definition (45) of J̌0, by (43) and (44),

1
2 〈u, u〉L2(0,t) − 1

2 〈Bαu,Bαu〉L2(0,t) ≥
1

2

[
1−

∑

i∈N

Gmi

2R3
i

t2

]
‖u‖2L2(0,t)

> 0 (49)

if t < t̄
.
=

(∑
i∈N

Gmi

2R3
i

)−1/2
. That is, J̌0(t, x, ·, α, ζ) is coercive and strictly convex if t ∈ (0, t̄). Further,

from (46), we note that ψc(ξt, z) is convex quadratic in u. Consequently, the strict convexity and coercivity
of Jc(t, x, ·, α, ζ, z) are guaranteed for t ∈ (0, t̄).

Remark 4.6. The condition (48) in Theorem 4.5 may be overly restrictive. If one can assume a greater
minimum distance from the bodies than their respective Ri, say δi > Ri for i ∈]1, N [, then this could be
relaxed, replacing the Ri with the δi. Also, we mention that the condition allows one to seek minima rather
than stationary points; consideration of the stationary-point case is an area for future research.

Henceforth, throughout the paper, t̄ is used to denote the time upper bound given by (48).

By Theorems 4.2 and 4.5, we have:

Corollary 4.7. Let x, z ∈ IR3; c ∈ [0,∞), and ζ ∈ Z. For t ∈ (0, t̄), J̄c(t, x, u, ζ, z) is strictly convex in u.

Lemma 4.8. Let x, z ∈ IR3; c ∈ [0,∞), and ζ ∈ Z. Then, for t > 0, J̄c(t, x, ·, ζ, z) is coercive in U∞.

Proof. For any u ∈ U∞, by the non-negativity of −V and ψc, J̄c(t, x, u, ζ, z) ≥ 1
2‖u‖2L2(0,t)

, which implies

the coercivity of J̄c(t, x, ·, ζ, z).
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Combining Theorem 4.5, Corollary 4.7, Lemmas 4.4 and 4.8 immediately yields the following uniqueness
property (cf., [8]).

Theorem 4.9. Let t < t̄; x, z ∈ IR3; c ∈ [0,∞). Then, there exists a unique optimal velocity control
in the definition (9) of W

c
(t, x, ζ, z). For any α ∈ At, there exists a unique optimal velocity control of

Jc(t, x, ·, α, ζ, z).
Next we will examine the concavity of Jc(t, x, u, ·, ζ, z), which guarantees the existence of a unique

potential energy control in the maximization in (36).

Lemma 4.10. For all t > 0; c ∈ [0,∞); x, z ∈ IR3; ζ ∈ Z and u ∈ U∞, Jc(t, x, u, α, ζ, z) and J̌0(t, x, u, α, ζ)
are strictly concave in α.

Proof. Let t > 0; c ∈ [0,∞); x, z ∈ IR3 and ζ ∈ Z. Given α ∈ At, let α̂ ∈ L∞([0, t]; IR3) be such that
α± α̂ ∈ At and δ ∈ [−1, 1]. Then, for any u ∈ U∞, using (29),

Jc(t, x, u, α+ δα̂, ζ, z) + Jc(t, x, u, α− δα̂, ζ, z)− 2Jc(t, x, u, α, ζ, z)

=

∫ t

0

−V̂ (ξr , ζr, αr + δα̂r)− V̂ (ξr, ζr, αr − δα̂r) + 2V̂ (ξr , ζr, αr) dr,

=

∫ t

0

∑

i∈N

µi

[
− (αi

r + δα̂i
r)

3 − (αi
r − δα̂i

r)
3 + 2(αi

r)
3
]
|ξr − ζir|2/2 dr = −3δ2

∫ t

0

∑

i∈N

µiα
i
r(α̂

i
r)

2|ξr − ζir|2 dr,

which completes the proof.

Theorem 4.11. Let t ∈ (0,∞); x, z ∈ IR3; c ∈ [0,∞) and ζ ∈ Z. Let u† ∈ U∞, and let the corresponding

trajectory be denoted by ξ†. Let α∗
r = α∗(r;x, u†· , ζ·)

.
= ᾱ∗(ξ†r , ζr) for all r ∈ [0, t] where ᾱ∗ is given in (34).

Then, u† is a stationary point of J̄c(t, x, ·, ζ, z) if and only if u† is a stationary point of Jc(t, x, ·, α∗, ζ, z).

Proof. Let ν ∈ U∞ and δ > 0. Letting ξ†,ν denote the trajectory corresponding to u† + δν. We examine
differences in the direction ν from u†. Recall from (28) that −V (x, Y ) = maxα̃∈A{−V̂ (x, Y, α̃)} where the
maximum is uniquely attained at ᾱ∗(x, Y ). Consequently,

−∇xV (x, Y ) = −∇xV̂ (x, Y, ᾱ∗(x, Y )),

and with this, the first-order difference in the potential-energy term is

−V̂ (ξ†,νr , ζr, α
∗
r) + V̂ (ξ†r , ζr, α

∗
r) = −δ∇xV̂ (ξ†r , ζr, α

∗
r) · (ξ†,νr − ξ†r) +O(δ2)

= −δ∇xV̂ (ξ†r , ζr, ᾱ
∗
r(ξ

†
r , ζr)) · (ξ†,νr − ξ†r) +O(δ2) = −δ∇xV (ξ†r , ζr) · (ξ†,νr − ξ†r) +O(δ2)

= −V (ξ†,νr , ζr) + V (ξ†r , ζr) +O(δ2). (50)

Now,

Jc(t, x, u† + δν, α∗, ζ, z)− Jc(t, x, u†, α∗, ζ, z)

=

∫ t

0

T (u†r + δνr)− T (u†r)− V̂ (ξ†,νr , ζr, α
∗
r) + V̂ (ξ†r , ζr, α

∗
r) dr + ψc(ξ†,νt , z)− ψc(ξ†t , z),

which by (50),

= J̄c(t, x, u† + δν, ζ, z)− J̄c(t, x, u†, ζ, z)+O(δ2). (51)

By (51), we have the desired result.

Theorem 4.12. Given t < t̄; x, z ∈ IR3; ζ ∈ Z and c ∈ [0,∞), let uc,∗ be the unique minimizer of
J̄c(t, x, ·, ζ, z) over U∞, and ξc,∗ be the corresponding trajectory. Let α∗

r
.
= ᾱ∗(ξc,∗r , ζr) for all r ∈ [0, t] where

ᾱ∗ is given in (34). Then,

W
c
(t, x, ζ, z) = Jc(t, x, uc,∗, α∗, ζ, z) = min

u∈U∞

max
α∈At

Jc(t, x, u, α, ζ, z)

= max
α∈At

min
u∈U∞

Jc(t, x, u, α, ζ, z)
.
= max

α∈At
Wα,c(t, x, ζ, z). (52)
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Further,

uc,∗ = argmin
u∈U∞

max
α∈At

Jc(t, x, u, α, ζ, z) and α∗ = argmax
α∈At

min
u∈U∞

Jc(t, x, u, α, ζ, z). (53)

Proof. Let t, x, z, ζ, c be as indicated in the theorem statement. Note that minu∈U∞ Jc(t, x, u, α, ζ, z) and
maxα∈At Jc(t, x, u, α, ζ, z) exist for all u ∈ U∞ and α ∈ At by Theorems 4.2 and 4.9 and Lemma 4.10. By
Lemma 4.4 and Theorem 4.11, uc,∗ is a stationary point of Jc(t, x, ·, α∗, ζ, z). Further, by the uniqueness given
in Theorem 4.9, uc,∗ = argminu∈U∞ Jc(t, x, u, α∗, ζ, z). Also, note that by Theorem 4.5, Jc(t, x, ·, α, ζ, z) is
strictly convex in u for all α ∈ At, which implies that maxα∈At Jc(t, x, u, α, ζ, z) is strictly convex in u, which
yields the first assertion of (53). Similarly, using Lemma 4.10, one obtains the second assertion of (53).

By Lemma 4.10 and Theorem 4.2, α∗ = argmaxα∈At Jc(t, x, uc,∗, α, ζ, z), which implies that

max
α∈At

Jc(t, x, uc,∗, α, ζ, z) = Jc(t, x, uc,∗, α∗, ζ, z) = min
u∈U∞

Jc(t, x, u, α∗, ζ, z),

which implies

min
u∈U∞

max
α∈At

Jc(t, x, u, α, ζ, z) ≤ Jc(t, x, uc,∗, α∗, ζ, z) ≤ max
α∈At

min
u∈U∞

Jc(t, x, u, α, ζ, z). (54)

Also, by the usual reordering inequality, one has

max
α∈At

min
u∈U∞

Jc(t, x, u, α, ζ, z) ≤ min
u∈U∞

max
α∈At

Jc(t, x, u, α, ζ, z). (55)

Combining (54) and (55), one has

min
u∈U∞

max
α∈At

Jc(t, x, u, α, ζ, z) = Jc(t, x, uc,∗, α∗, ζ, z) = max
α∈At

min
u∈U∞

Jc(t, x, u, α, ζ, z).

Combining this with (36) completes the proof.

4.3 Existence and uniqueness of optimal controls: c = ∞
Remark 4.13. Recall that the TPBVP corresponds to the case c = ∞. Given x, z ∈ IR3 and t > 0, let
Ũ∞
t,x,z

.
=

{
u ∈ U∞

∣∣ ∫ t

0 ur dr = z − x
}
. By Theorem 2.1,

W
∞
(t, x, ζ, z) = inf

u∈Ũ∞

t,x,z

J0(t, x, u, ζ).

Also, by Lemma 4.4 and Theorem 4.5, J0(t, x, u, ζ) is continuous, coercive and strictly convex in u ∈ Ũ∞
t,x,z

if t < t̄, which implies that there exists unique optimal velocity control u∗ ∈ Ũ∞
t,x,z ⊂ U∞ in the definition

(7) of W
∞
(t, x, ζ, z) (cf., [8]), i.e.,

u∗ = argmin
u∈U∞

J̄∞(t, x, u, ζ, z) = argmin
u∈Ũ∞

t,x,z

J̄∞(t, x, u, ζ, z), (56)

where the corresponding trajectory, ξ∗, is the solution of the TPBVP. In an analogous fashion to the proof
of Theorem 4.11, u∗ is a stationary point of J̌0(t, x, ·, α̌∗, ζ) over Ũ∞

t,x,z where α̌∗
r
.
= ᾱ∗(ξ∗r , ζr) for all r ∈ [0, t].

Further, we may represent the fundamental solution in terms of Wα,c with a limit property.

Theorem 4.14. Let t < t̄. For u ∈ U∞; α ∈ At; x, z ∈ IR3, and ζ ∈ Z, let

J∞(t, x, u, α, ζ, z)
.
= J̌0(t, x, u, α, ζ) + ψ∞(ξt, z). (57)

Then,

W
∞
(t, x, ζ, z) = max

α∈At
min
u∈U∞

J∞(t, x, u, α, ζ, z)
.
= max

α∈At
Wα,∞(t, x, ζ, z). (58)
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Further, given α ∈ At,

Wα,∞(t, x, ζ, z) = lim
c→∞

Wα,c(t, x, ζ, z) = sup
c>0

Wα,c(t, x, ζ, z)

where the convergence is uniform on B̄ × Z × B̄ for any compact B̄ ⊂ IR3.

Proof. Let u∗ ∈ Ũ∞
t,x,z be as per (56), and ξ∗· be the corresponding trajectory. Let α̌∗

r
.
= ᾱ∗(ξ∗r , ζr) for all

r ∈ [0, t]. Then, by the definitions of Ũ∞
t,x,z and J∞,

inf
u∈U∞

J∞(t, x, u, α̌∗, ζ, z) = inf
u∈Ũ∞

t,x,z

J̌0(t, x, u, α̌∗, ζ),

which by Theorem 4.5 and Lemma 4.4,

= min
u∈Ũ∞

t,x,z

J̌0(t, x, u, α̌∗, ζ) = J̌0(t, x, u∗, α̌∗, ζ). (59)

where the last equality follows by Remark 4.13. Noting that the terminal state ξt = z corresponding to all
u ∈ Ũ∞

t,x,z, by Theorem 4.2, we may have

J0(t, x, u, ζ) = max
α∈At

J̌0(t, x, u, α, ζ) = J̌0(t, x, u, α∗, ζ) ∀u ∈ Ũ∞
t,x,z (60)

where α∗
r
.
= ᾱ∗(ξr , ζr) for r ∈ [0, t] and ξ· denotes the trajectory corresponding to u. Noting ξ∗t = z, by (57),

(59) and (60),

max
α∈At

J∞(t, x, u∗, α, ζ, z) = J∞(t, x, u∗, α̌∗, ζ, z) = min
u∈Ũ∞

t,x,z

J∞(t, x, u, α̌∗, ζ, z),

which yields in an analogous fashion to the proof of Theorem 4.12 that

min
u∈Ũ∞

t,x,z

max
α∈At

J∞(t, x, u, α, ζ, z) = max
α∈At

min
u∈Ũ∞

t,x,z

J∞(t, x, u, α, ζ, z), (61)

and (u∗, α̌∗) is the unique solution of (61) over Ũ∞
t,x,z ×At. Consequently, by Remark 4.13 and (60),

W
∞
(t, x, ζ, z) = min

u∈Ũ∞

t,x,z

J0(t, x, u, ζ) = min
u∈Ũ∞

t,x,z

max
α∈At

J̌0(t, x, u, α, ζ),

which by the definitions of Ũ∞
t,x,z and J∞ and (61),

= min
u∈Ũ∞

t,x,z

max
α∈At

J∞(t, x, u, α, ζ, z),= max
α∈At

min
u∈Ũ∞

t,x,z

J∞(t, x, u, α, ζ, z),

which since J∞(t, x, u, α, ζ, z) = ∞ for all u ∈ U∞\Ũ∞
t,x,z and any α ∈ At,

= max
α∈At

min
u∈U∞

J∞(t, x, u, α, ζ, z),

which completes the first assertion.
Regarding the last assertion, similar to Theorem 3.2, we have monotonicity of Wα,c in c, and we do not

include the analogous proof.

Recall from Theorem 3.2 that as c → ∞, W
c
(t, x, ζ, z) approaches W

∞
(t, x, ζ, z). The following lemma

shows that the optimal velocity controls for c <∞ also approach those for c = ∞ as c→ ∞
Theorem 4.15. Let t < t̄ and c ∈ [0,∞). Let x, z ∈ IR3 and ζ ∈ Z. Let u∗ and uc,∗ be the least
action points in the definitions (7) of W

∞
(t, x, ζ, z) and (9) of W

c
(t, x, ζ, z), respectively. Then, there exists

Ď = Ď(t, t̄) <∞ such that

‖u∗ − uc,∗‖2L2(0,t)
≤ Ď(1 + |x|+ |z|)2√

c
.

13



Proof. Let u∗, uc,∗ be as per the statement. Let ξc,∗ be the trajectory corresponding to uc,∗, and α∗
r
.
=

ᾱ∗(ξc,∗r , ζr) for all r ∈ [0, t] where ᾱ∗ is given in (34). Then, by (24),

D2(t)(1 + |x|+ |z|)2√
c

≥ J̄∞(t, x, u∗, ζ, z)− J̄c(t, x, uc,∗, ζ, z),

which since ξ∗t = z,

= J̄c(t, x, u∗, ζ, z)− J̄c(t, x, uc,∗, ζ, z),

which by the suboptimality and optimality of α∗ with respect to Jc(t, x, u∗, α, ζ, z) and Jc(t, x, uc,∗, α, ζ, z),
respectively,

≥ Jc(t, x, u∗, α∗, ζ, z)− Jc(t, x, uc,∗, α∗, ζ, z),

which by (48) and the optimality of uc,∗ with respect to Jc(t, x, u, α∗, ζ, z),

≥ 1
2

[
〈u∗ − uc,∗, u∗ − uc,∗〉L2(0,t) − 〈Bα∗u∗ − uc,∗, Bα∗u∗ − uc,∗〉L2(0,t)

]
,

which by (49),

≥ 1
2 (1− (t/t̄)2)‖u∗ − uc,∗‖2L2(0,t)

,

which completes the proof.

4.4 Hamilton-Jacobi-Bellman PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) problem associated with our (ζ, z, α)-
indexed control problem is

0 = − ∂
∂rW (r, x, ζ, z) + inf

v∈IR3
{ 1
2 |v|2 − V α(t− r, x, ζt−r) + vT∇xW (r, x, ζ, z)}

.
= − ∂

∂rW (r, x, ζ, z)− inf
v∈IR3

Hα(t− r, x, v, ζ,∇xW (r, x, ζ, z)) ∀ (r, x) ∈ (0, t)× IR3, (62)

W (0, x, ζ, z) = ψc(x, z) ∀x ∈ IR3, (63)

where ∇xW represents the gradient with respect to the space variable. For t > 0, let

Dt
.
= C([0, t]× IR3) ∩ C1((0, t)× IR3).

Suppose that W ∈ Dt satisfies (62) and (63). Since

1
2 |v|2+ vT∇xW (r, x, ζ, z) ≥ 1

2 |v|2 − |v||∇xW (r, x, ζ, z)|,
the coercivity and convexity of the Hamiltonian imply that

− inf
v∈IR3

Hα(t− r, x, v, ζ,∇xW (r, x, ζ, z)) = − min
v∈IR3

Hα(t− r, x, v, ζ,∇xW (r, x, ζ, z)),

which since Hα is quadratic in v,

= −Hα(t− r, x, v∗, ζ,∇xW (r, x, ζ, z)) (64)

where v∗
.
= −∇xW (r, x, ζ, z).

Theorem 4.16. Let t > 0; c ∈ [0,∞); x, z ∈ IR3; ζ ∈ Z and α ∈ At. Suppose that W (·, ·, ζ, z) ∈ Dt satisfies
(62) and (63), and ∇xW (t, ·, ζ, z) is globally Lipschitz in x. Then, W (t, x, ζ, z) = Jc(t, x, ǔc,∗, α, ζ, z) for
the input ǔc,∗r = ũ(r, ξ̃r) with ξ̃r given by (1) with ũ(r, x) = −∇xW (t− r, x, ζ, z) and ξ̃0 = x. Consequently,
W (t, x, ζ, z) = Wα,c(t, x, ζ, z).

Proof. Let W and ũ be as asserted. Let ǔc,∗r
.
= ũ(r, ξ̃r) for all r ∈ [0, t], and ξ̌c,∗ be the corresponding

trajectory. Then, by (64), we may rewrite (62) as

0 = − ∂
∂rW (r, ξ̌c,∗t−r, ζ, z)−Hα(t− r, ξ̌c,∗t−r, ǔ

c,∗
t−r, ζ,∇xW (r, ξ̌c,∗t−r , ζ, z))

= − ∂
∂rW (r, ξ̌c,∗t−r, ζ, z) +∇xW (r, ξ̌c,∗t−r, ζ, z) · ǔc,∗t−r +

1
2 |ǔ

c,∗
t−r|2 − V α(t− r, ξ̌c,∗t−r, ζt−r)

= − d
drW (r, ξ̌c,∗t−r, ζ, z) + T (ǔ∗t−r)− V α(t− r, ξ̌c,∗t−r, ζt−r).
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Integrating with respect to r over [0, t] yields

0 =W (0, ξ̌c,∗t , ζ, z)−W (t, x, ζ, z) +

∫ t

0

T (ǔc,∗t−r)− V α(t− r, ξ̌c,∗t−r, ζt−r) dr,

or equivalently, by (63) and letting s = t− r,

W (t, x, ζ, z) =

∫ t

0

T (ǔc,∗s )− V α(s, ξ̌c,∗r , ζs) ds+ ψc(ξ̌c,∗t , z) = Jc(t, x, ǔc,∗, α, ζ, z),

which by Theorem 4.9,

= Wα,c(t, x, ζ, z),

which completes the proof.

5 The fundamental solution in terms of Riccati equation solutions

Given c ∈ [0,∞), r ≤ t, α ∈ At, and ζ ∈ Z, we look for a solution, W̆α,c, of the form

W̆α,c(r, x, ζ, z)
.
= 1

2 [ p
c
r x · x+ 2qcr x · z + rcr z · z + 2hcr · x+ 2lcr · z + γcr ] (65)

where pc· , q
c
· , r

c
· , h

c
· , l

c
· , and γ

c
· depend implicitly on given α and ζ, and satisfy the respective initial value

problems:

ṗcr = −[pcr]
2 −∑

i∈N µi[α
i
t−r]

3, pc0 = c,

q̇cr = −pcrqcr, qc0 = −c,
ṙcr = −[qcr]

2, rc0 = c,

ḣcr = −pcrhcr +
∑

i∈N µi[α
i
t−r]

3ζit−r, hc0 = 0n×1,

l̇cr = −qcrhcr, lc0 = 0n×1,

γ̇cr = −[pcr]
2 +

∑
i∈N µi

{
2αi

t−r − (αi
t−r)

3|ζit−r|2
}
, γc0 = 0,

(66)

where 0m×k denotes the zero matrix of size m× k.

Lemma 5.1. Let t < t̄. Then, for any α ∈ At and any c ∈ [0,∞), the solution of (66) exists on [0, t).

Proof. Let α ∈ At and c ∈ [0,∞). Note that since ṗcr < 0 for all r ∈ [0, t],

pcr ≤ pc0 = c ∀r ∈ [0, t]. (67)

From (48), we have
∑

i∈N µi[α
i
r]

3 ≤ 2t̄−2, and then ṗcr ≥ −[pcr]
2 − 2t̄−2 for all r ∈ [0, t]. Consider

˙̂pcr = −[p̂cr]
2 − 2t̄−2, p̂c0 = c. (68)

Then, ṗc· ≥ ˙̂pc· , which implies that
pcr ≥ p̂cr ∀r ∈ [0, t]. (69)

The analytical solution of (68) is given by p̂cr = −ť−1 tan
(
ť−1(ĉ1 + r)

)
where ť

.
= t̄/

√
2 and ĉ1

.
= ť tan−1(−cť).

Since tan−1(−cť) ∈ (−π/2, 0) and t < t̄, we see that ť−1(ĉ1 + r) = tan−1(−cť) + rť−1 <
√
2 < π

2 for all

r ∈ [0, t], which implies that there exists D̂p <∞ such that

p̂cr ≥ −D̂p ∀r ∈ [0, t]. (70)

Combining (67), (69) and (70), there exist D̂0
p, D̂

1
p < ∞ such that |pcr| < D̂0

p, |ṗcr| < D̂1
p for all r ∈ [0, t],

which implies by Picard-Lindelöf theorem (cf. [6]), that there exists a unique solution. The existence and
uniqueness of the remaining initial value problems follows easily.
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Theorem 5.2. Let t ∈ [0, t̄) and c ∈ [0,∞). Then, Wα,c(r, x, ζ, z) = W̆α,c(r, x, ζ, z) for all x, z ∈ IR3, ζ ∈ Z,
and r ∈ [0, t].

Proof. It will be sufficient to show that W̆α,c satisfies the conditions of Theorem 4.16. Note first that Lemma
5.1 implies W̆α,c(·, ·, ζ, z) ∈ Dt. Also by Lemma 5.1, there exists Dp <∞ such that |pcr| < Dp for all r ∈ [0, t].
For x, x̂ ∈ IR3, note that

|∇xW̆α,c(r, x, ζ, z)−∇xW̆α,c(r, x̂, ζ, z)| ≤ |pcr||x− x̂| ≤ Dp|x− x̂|,
which implies that ∇xWα,c(t, ·, ζ, z) is globally Lipschitz continuous in x.

Let P .
= IR10. We define P̂ c

r ∈ P as

P̂ c
r
.
= (pcr, q

c
r, r

c
r, (h

c
r)

′, (lcr)
′, γcr)

′
, (71)

and accordingly, Ĉ
.
= P̂ c

0 . For x, z ∈ IR3, we define X : IR3 × IR3 → P as

X(x, z)
.
= (x · x, 2x · z, z · z, 2x′, 2z′, 1)′ . (72)

Suppose that ρ̂, η̂ ∈ P are given by

ρ̂
.
= (ρ1, ρ2, ρ3, ρ̄

′
4, ρ̄

′
5, ρ6)

′, η̂
.
= (η1, η2, η3, η̄

′
4, η̄

′
5, η6)

′ (73)

where ρj , ηj ∈ IR for j ∈ {1, 2, 3, 6} and ρ̄j, η̄j ∈ IR3 for j ∈ {4, 5}. We define f : P × P → P as

f(ρ̂, η̂)
.
= −(ρ1η1, ρ1η2, ρ2η2, ρ1η̄

′
4, ρ2η̄

′
4, ρ̄4 · η̄4)′, (74)

and for α̃ = {α̃i}i∈N ∈ A and Y
.
= {yi}i∈N ∈ Y, define Γ : A× Y → P as

Γ(α̃, Y )
.
=

∑

i∈N

µi

(
−(α̃i)3, 0, 0, (α̃i)3(yi)′, 01×n,Υi

)′
(75)

where Υi
.
= {2α̃i − [α̃i]3|yi|2}. Then, we may rewrite (65) as

W̆α,c(r, x, ζ, z) = 1
2X(x, z) · P̂ c

r , (76)

and note that (66) is equivalent to

˙̂
P c
r = f(P̂ c

r , P̂
c
r ) + Γ(αt−r, ζt−r) with P̂

c
0 = Ĉ. (77)

Now, from (76), we note that

∂
∂rW̆α,c(r, x, ζ, z) = 1

2X(x, z) · ˙̂
P c
r , ∇xW̆α,c(r, x, ζ, z) = 1

2∇xX(x, z) · P̂ c
r , (78)

and with a bit of work, one may verify that

−|∇xW̆α,c(r, x, ζ, z)|2 = X(x, z) · f(P̂ c
r , P̂

c
r ). (79)

Also, collecting like terms, we have

−V α(t− r, x, ζt−r) =
1

2

∑

i∈N

µi

[
−(αi

t−r)
3x · x+ x · (αi

t−r)
3[ζit−r ] +

{
2αi

t−r − (αi
t−r)

3|ζit−r|2
}]
,

= 1
2X(x, z) · Γ(αt−r, ζt−r), (80)

where the last equality follows by (72) and (75). Consequently, substituting (78) – (80) in the right-hand
side of the PDE (62) yields

0 = − ∂
∂rW̆α,c(r, x, ζ, z)−Hα(t− r, x,−∇xW̆α,c(r, x, ζ, z), ζ,∇xW̆α,c(r, x, ζ, z))

= 1
2X(x, z) ·

[
− ˙̂
P c
r + f(P̂ c

r , P̂
c
r ) + Γ(αt−r, ζt−r)

]
,

which implies (65) is a solution of HJB PDE (62), and by Theorems 4.5 and 4.16, Wα,c(r, x, ζ, z) =
W̆α,c(r, x, ζ, z) for all r ∈ [0, t], with t ∈ [0, t̄).
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Recall from Theorems 3.2 and 4.14 that the fundamental solution of interest is obtained through the
c→ ∞ limit of Wα,c. Consequently, we have that for t < t̄, by Theorems 4.14 and 5.2,

W
∞
(t, x, ζ, z) = sup

α∈At

lim
c→∞

1
2X(x, z) · P̂ c

t (α, ζ)
.
= sup

α∈At

1
2X(x, z) · P̂∞

t (α, ζ). (81)

Letting Gt
.
= {P̂∞

t (α, ζ) |α ∈ At}, the fundamental solution (81) can be represented as W
∞
(t, x, ζ, z) =

supP∈Gt

1
2X(x, z) · P . Also note that by the linearity in P of the expression inside this supremum,

W
∞
(t, x, ζ, z) = sup

P∈〈Gt〉

1
2X(x, z) · P = sup

P∈∂〈Gt〉

1
2X(x, z) · P, (82)

where 〈Gt〉 denotes the convex hull of Gt, and ∂〈Gt〉 denotes the boundary of 〈Gt〉. Further, by Theorem 4.14,
there exists P ∗ ∈ ∂〈Gt〉 such that

P ∗ = argmax
P∈〈Gt〉

1
2X(x, z) · P = argmax

P∈∂〈Gt〉

1
2X(x, z) · P.

6 The maximization over α

Recall that by Lemma 4.10, Jc(t, x, u, ·, ζ, z) is strictly concave, and consequently, by definition (52), so is
W ·,c(t, x, ζ, z). Combining this with Theorem 4.12, we see that there exists a unique maximizer. Further,
by Theorem 5.2, Wα,c = W̆α,c. Using this last representation, in Corollary 6.4 below, we will see that
W ·,c(t, x, ζ, z) is Fréchet differentiable. Consequently, in searching for the unique maximum, we may utilize
algorithms which require knowledge of the derivative, through first-order necessary conditions. We next
obtain such first-order conditions and, in particular, a useful Riesz representation for the derivative.

Recall from (52) and Theorem 5.2 that

W
c
(t, x, ζ, z) = max

α∈At
W̆α,c(r, x, ζ, z) = max

α∈At

1
2X(x, z) · P̂ c

t (α, ζ).

Then, letting
ˆ̂αc,∗ .

= argmax
α∈At

1
2X(x, z) · P̂ c

t (α, ζ),

by Theorems 4.12 and 5.2, ˆ̂αc,∗ ≡ ᾱ∗(ξc,∗, ζ) where ξc,∗ and ᾱ∗ are indicated in the statement of Theorem
4.12. Further, recall from Theorem 4.14 that the fundamental solution of (58) has a unique solution. Further,
by Theorem 4.15, we may see that the solution ofW

c
uniformly converges to that of the fundamental solution

as c→ ∞. That is, letting α̌∗ be the maximizing solution of J∞ of (58), we know from (34) that for proper
choice of Ďα = Ďα(t, t̄, {Ri}i∈N ) <∞,

‖ ˆ̂αc,∗ − α̌∗‖2L2(0,t)
≤ Ďα‖uc,∗ − u∗‖2L2(0,t)

≤ ĎαĎ(1 + |x|+ |z|)2√
c

,

where the last inequality follows by Theorem 4.15.
We will demonstrate the existence of derivatives of Wα,c with respect to α. Also, in order to develop

a tractable numerical scheme, we consider the maximization problem over a finite-dimensional subspace of
At. In particular, noting the differentiability and concavity, we will seek the maximum through a search for
the point where the derivative is zero. We will obtain an efficient means for computing the derivative, and
we will also examine the errors induced by the finite-dimensional approximation.

Let L <∞, and suppose x, z, ζir ∈ BL(0) for all i ∈ N and all r ∈ [0, t]. Henceforth, we will work on this
compact domain. Accordingly, we define the subset of Z given by ZL

.
= {ζ ∈ Z | |ζir | ≤ L ∀r ≥ 0, ∀i ∈ N}.

We assume that for t < t̄, there exists x, z ∈ BL(0); ζ ∈ ZL; c̄ = c̄(t, x, ζ, z) < ∞, and ε̄ = ε̄(t, x, ζ, z)
such that for any ε ∈ (0, ε̄], c > c̄ and any ε−optimal in the definition (9) of W

c
, we have

|ξεr − ζir| > Ri, ∀r ∈ [0, t], ∀i ∈ N (A.N1)

where ξε· denotes the corresponding trajectory.
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6.1 Derivative of Wα,c with respect to α

We first note some simple miscellaneous bounds that will be used below. For ρ̂, η̂ ∈ P given as (73), using
the bilinearity of f in (74), we define linear operators

ℓ1(η̂)
.
= fρ̂(ρ̂, η̂), ℓ2(ρ̂)

.
= fη̂(ρ̂, η̂), (83)

where the subscripts on f denote differentiation, and ℓ1, ℓ2 are introduced to emphasize the dependence on
only one variable each. From the definition of f , we see that

‖ℓ1(η̂)‖F = ‖fρ̂(ρ̂, η̂)‖F =
[
|η1|2 + 2|η2|2 + 3|η̄4|2

]1/2 ≤
√
3|η̂|, (84)

‖ℓ2(ρ̂)‖F = ‖fη̂(ρ̂, η̂)‖F =
[
5|ρ1|2 + 4|ρ2|2 + |ρ̄4|2

]1/2 ≤
√
5|ρ̂|, (85)

where ‖ · ‖F denotes the Frobenius norm, and hence the Fréchet derivatives involved are bounded linear
operators on P . Further, note that for σ, ω ∈ P ,

f(σ, σ) − f(ω, ω) = [ℓ1(σ) + ℓ2(ω)](σ − ω), (86)

‖ℓ1(σ)− ℓ1(ω)‖F ≤
√
3|σ − ω|. (87)

By Lemma 5.1, given t < t̄, c ∈ [0,∞) and ζ ∈ ZL, we may choose Kp = Kp(c, t, ζ) <∞ such that

|P̂ c
r (α, ζ)| ≤ Kp ∀r ∈ [0, t], α ∈ At (88)

where P̂ c
· (·, ζ) are the solutions of (77). Further, combining (84), (85) and (88) yields

‖ℓ1(P̂ c
r (α, ζ))‖F , ‖ℓ2(P̂ c

r (α, ζ))‖F ≤
√
5Kp

.
= K1

f ∀ r ∈ [0, t], α ∈ At. (89)

Also, by examining (75), we note that for α̃
.
= {α̃i}i∈N ∈ A and Y ∈ YL

.
= {{yi}i∈N ∈ Y | |yi| ≤ L, ∀i ∈

N},
‖Γα(α̃, Y )‖2F = 9

∑

i∈N

[(α̃i)2]2
{
1 + |yi|2 + |yi|4

}
,

where the subscripts on Γ indicate differentiation with respect to the first variable α. Then, by the definitions
of A and YL, we see that there exists K1

γ = K1
γ({Ri}i∈N , L) <∞ such that

‖Γα(α̃, Y )‖F ≤ K1
γ ∀ α̃ ∈ A, Y ∈ YL. (90)

Further, for α̃1
.
= {α̃i

1}i∈N , α̃2 = {α̃i
2}i∈N ∈ A and Y ∈ YL,

‖Γα(α̃1, Y )− Γα(α̃2, Y )‖2F = 9
∑

i∈N

[α̃i
1 + α̃i

2]
2
{
1 + |yi|2 + |yi|4

}
[α̃i

1 − α̃i
2]

2,

which implies, by the definitions of A and YL, that there exists K̂γ = K̂γ({Ri}i∈N , L) <∞ such that this is

≤ [K̂γ ]
2
∑

i∈N

|α̃i
1 − α̃i

2|2 =
{
K̂γ |α̃1 − α̃2|

}2

. (91)

Lemma 6.1. For t < t̄, c ∈ [0,∞), α̌, α̂ ∈ At and ζ ∈ ZL, there exists Ĉ1 <∞ such that

|P̂ c
r (α̌, ζ)− P̂ c

r (α̂, ζ)| ≤ Ĉ1‖α̌− α̂‖L2(0,t)

for all r ∈ [0, t] where P̂ c
· (α̌, ζ) and P̂

c
· (α̂, ζ) are the solutions of (77) with α = α̌ and α = α̂, respectively.
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Proof. By (77) and the triangle inequality,

|P̂ c
r (α̌, ζ) − P̂ c

r (α̂, ζ)| ≤
∫ r

0

|f(P̂ c
ν (α̌, ζ), P̂

c
ν (α̌, ζ))− f(P̂ c

ν (α̂, ζ), P̂
c
ν (α̂, ζ))|

+|Γ(α̌t−ν , ζt−ν)− Γ(α̂t−ν , ζt−ν)| dν,
which by (86) and (90),

≤
∫ r

0

[
‖ℓ1(P̂ c

ν (α̌, ζ))‖F + ‖ℓ2(P̂ c
ν (α̂, ζ))‖F

]

·|P̂ c
ν (α̌, ζ)− P̂ c

ν (α̂, ζ)|+K1
γ |α̌t−ν − α̂t−ν | dν,

which by (89) and Hölder’s inequality,

≤ 2K1
f

∫ r

0

|P̂ c
ν (α̌, ζ) − P̂ c

ν (α̂, ζ)| dν+K1
γ

√
t‖α̌− α̂‖L2(0,t).

Using Gronwall’s inequality, this implies

|P̂ c
r (α̌, ζ)− P̂ c

r (α̂, ζ)| ≤ K1
γ

√
t exp(2K1

f t)‖α̌− α̂‖L2(0,t)

for all r ∈ [0, t].

Lemma 6.2. Let c ∈ [0,∞). Then Wα,c(t, x, ζ, z) is Lipschitz continuous in α on bounded subsets of
[0, t̄)× IR3 ×ZL × IR3.

Proof. Let t ∈ (0, t̄); x, z ∈ BL(0) and ζ ∈ ZL. Let α̌, α̂ ∈ At. Then, by Theorem 5.2 and Lemma 6.1,

|W α̌,c(t, x, ζ, z)−W α̂,c(t, x, ζ, z)| ≤ 1
2 |X(x, z)| |P̂ c

t (α̌, ζ)− P̂ c
t (α̂, ζ)| ≤ K̂α‖α̌− α̂‖L2(0,t),

for proper choice of K̂α = K̂α(Ĉ1, L) <∞.

Letting Ao denote the interior of A, we define At
o
.
= L∞([0, t];Ao). Given ζ ∈ ZL and c ∈ [0,∞), we

will obtain a representation for the derivative of P̂ c
· (α, ζ) with respect to α ∈ At

o. For s ∈ [0, t) and i ∈ N ,
consider

π̇s,i
r

.
=
dπs,i

r

dr
= f(πs,i

r , P̂ c
r ) + f(P̂ c

r , π
s,i
r )+ Γαi(αt−r, ζt−r) (92)

for all r ∈ (s, t) with πs,i
s = 0M×1 where

Γαi(αt−r, ζt−r)
.
=
∂Γ(αt−r, ζt−r)

∂αi
. (93)

The following lemma demonstrates the desired representation for the derivative.

Lemma 6.3. Given α ∈ At
o, let h ∈ At

o such that α + h ∈ At
o. Let c ∈ [0,∞) and ζ ∈ ZL. Then, there

exists Ĉ2 <∞ such that letting P̂ c
h,r

.
= P̂ c

r (α+ h, ζ),

∣∣∣∣P̂ c
h,r − P̂ c

r −
∫ r

0

(
−dπ

s
r

ds

)
ht−s ds

∣∣∣∣ ≤ Ĉ2‖h‖2L2(0,t)
(94)

for all r ∈ [0, t] where P̂ c
· (·, ζ) is the solution of (77).

Proof. Using the integral form of (92) and its initial condition, for r ∈ [s, t),

πs,i
r =

∫ r

s

f(πs,i
ν , P̂ c

ν ) + f(P̂ c
ν , π

s,i
ν ) + Γαi(αt−ν , ζt−ν) dν.
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Differentiating, and using (83), we have

dπs
r

ds
= −Γα(αt−s, ζt−s) +

∫ r

s

[
ℓ1(P̂

c
ν ) + ℓ2(P̂

c
ν )
] dπs

ν

ds
dν. (95)

Letting ∆P̂ c
r
.
= P̂ c

h,r − P̂ c
r , we define

φr
.
= ∆P̂ c

r −
∫ r

0

−dπ
s
r

ds
ht−s ds ∀r ∈ [0, t]. (96)

Letting ∆Γt−r
.
= Γ(αt−r+ht−r, ζt−r)−Γ(αt−r, ζt−r), we note that by (77), differentiation ∆P̂ c

r with respect
to r is given by

∆
˙̂
P c
r
.
=

˙̂
P c

h,r − ˙̂
P c
r = f(P̂ c

h,r, P̂
c
h,r)− f(P̂r, P̂r) + ∆Γt−r = [ ℓ1(P̂

c
r ) + ℓ2(P̂

c
r )]∆P̂

c
r +∆Γt−r, (97)

where the last equality follows by (86). Also, note that by (95),

d

dr

∫ r

0

−dπ
s
r

ds
ht−s ds =

d

dr

∫ r

0

Γα(αt−s, ζt−s)ht−s ds−
d

dr

∫ r

0

∫ r

s

[
ℓ1(P̂

c
ν ) + ℓ2(P̂

c
ν )
] dπs

ν

ds
dν ht−s ds,

which, using the Leibniz integral rule,

= Γα(αt−r , ζt−r)ht−r −
∫ r

0

d

dr

∫ r

s

[
ℓ1(P̂

c
ν ) + ℓ2(P̂

c
ν )
] dπs

ν

ds
dν ht−s ds

= Γα(αt−r , ζt−r)ht−r + [ ℓ1(P̂
c
r ) + ℓ2(P̂

c
r )]

∫ r

0

−dπ
s
r

ds
ht−s ds. (98)

Next, differentiating (96) with respect to r yields

φ̇r = ∆
˙̂
P c
r − d

dr

∫ r

0

−dπ
s
r

ds
ht−s ds,

which by (97) and (98),

= [ ℓ1(P̂
c
h,r) + ℓ2(P̂

c
r )]∆P̂

c
r − [ ℓ1(P̂

c
r ) + ℓ2(P̂

c
r )]

∫ r

0

−dπ
s
r

ds
ht−s ds+∆Γt−r − Γα(αt−r, ζt−r)ht−r

= [ ℓ1(P̂
c
r ) + ℓ2(P̂

c
r )]φr + [ℓ1(P̂

c,h
r )− ℓ1(P̂

c
r )]∆P̂

c
r +∆Γt−r − Γα(αt−r, ζt−r)ht−r (99)

where the last equality follows by (96). Note that by (87),
∫ r

0

∣∣∣
[
ℓ1(P̂

c,h
r )− ℓ1(P̂

c
r )
]
∆P̂ c

ν

∣∣∣ ν ≤
√
3

∫ r

0

|∆P̂ c
ν |2 dν,

which by Lemma 6.1,
≤ C2‖h‖2L2(0,t)

(100)

for proper choice of C2 <∞.
Note that by the integral mean value theorem (cf., Ch. 9 in [11]),

∆Γt−ν = Γ(αt−ν + ht−ν , ζt−ν)− Γ(αt−ν , ζt−ν) =

[∫ 1

0

Γα(αt−ν + sht−ν) ds

]
ht−ν

for all ν ∈ [0, t]. Then,

|∆Γt−ν − Γα(αt−ν , ζt−ν)ht−ν | ≤
∫ 1

0

‖Γα(αt−ν + sht−ν)− Γα(αt−ν , ζt−ν)‖F ds |ht−ν |

≤
∫ 1

0

K̂γs ds|ht−ν |2 = 1
2K̂γ |ht−ν |2,
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where the last inequality follows by (91). This implies that

∫ t

0

|∆Γt−ν − Γα(αt−ν , ζt−ν)ht−ν | dν ≤ 1
2K̂γ

∫ t

0

|ht−ν |2 dν = 1
2K̂γ‖h‖2L2(0,t)

.
= C3‖h‖2L2(0,t)

. (101)

Substituting (100) and (101) into the integration of (99) yields

|φr | ≤
∫ r

0

2K1
f |φν | dν + (C2 + C3)‖h‖2L2(0,t)

.

By Gronwall’s inequality, this implies |φr| ≤ (C2 + C3)t exp(2K
1
f t)‖h‖2L2(0,t)

for all r ∈ [0, t].

Corollary 6.4. Let c ∈ [0,∞) and t ∈ (0, t̄). Then, Wα,c(t, x, ζ, z) is Fréchet differentiable with respect to
α ∈ At

o on bounded subsets of IR3 ×ZL × IR3.

Proof. Let x, z ∈ BL(0) and ζ ∈ ZL. Given α ∈ At
o, let h ∈ At

o such that α+ h ∈ At
o. Let

φWr
.
= Wα+h,c(r, x, ζ, z)−Wα,c(r, x, ζ, z)− 1

2X(x, z) ·
∫ t

0

(
−dπ

s
r

ds

)
ht−s ds,

where X is given in (72), and which by Theorem 5.2 and (76),

= 1
2X(x, z) · P̂ c

r (α+ h, ζ)− 1
2X(x, z) · P̂ c

r (α, ζ) − 1
2X(x, z) ·

∫ t

0

(
−dπ

s
r

ds

)
ht−s ds.

Then, by Lemma 6.3, |φWr | ≤ 1
2 |X(x, z)|Ĉ2‖h‖2L2(0,t)

, which completes the proof.

6.2 An approximate solution

We will consider piecewise constant potential energy controls rather than the L∞ elements of At, as this will
allow us to compute numerically the derivatives of interest.

Let t ∈ (0, t̄) where t̄ is as per (48). Let K ∈ IN denote the number of time intervals contained in the
given time duration [0, t], and ĂK denote the Kth Cartesian power of A. We may choose a norm on ĂK as

‖ᾰ‖2 .
=

√
t

K

[∑

i∈K

|ᾰk|2
]1/2

for ᾰ
.
= {ᾰk}k∈K ∈ ĂK . (102)

Let τ
.
= t/K denote the length of each time interval. Letting τ0 = 0, we define

τk
.
= kτ and Ik .

= [τk−1, τk) ∀k ∈ K .
=]1,K[.

We define the set of piecewise constant functions defined on [0, t) relative to grid {τk | k ∈]0,K[ } as

At
K
.
= {α ∈ At | ∀k ∈ K, ∃ᾰk ∈ A s.t. αr = ᾰk ∀r ∈ Ik}.

Further, we define the one-to-one and onto linear mapping LK : ĂK → At
K such that for ᾰ

.
= {ᾰk}k∈K ∈ ĂK ,

letting α̂
.
= LK(ᾰ),

α̂r = ᾰk ∀r ∈ Ik, ∀k ∈ K. (103)

From Lemma 4.10 and the definition of LK(·), one immediately obtains the following:

Lemma 6.5. Let K ∈ IN . For all t > 0, c ∈ [0,∞); x, z ∈ IR3, ζ ∈ ZL, and u ∈ U∞, WLK(ᾰ),c(t, x, ζ, z)
and Jc(t, x, u,LK(ᾰ), ζ, z) are stictly concave in ᾰ ∈ ĂK .
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Lemma 6.6. Let t < t̄ and K ∈ IN . Let c ∈ [0,∞); x, z ∈ BL; ζ ∈ ZL. Then, for any ŭ ∈ U∞,

sup
ᾰ∈ĂK

Jc(t, x, ŭ,LK(ᾰ), ζ, z) = max
ᾰ∈ĂK

Jc(t, x, ŭ,LK(ᾰ), ζ, z).

Further, letting ξ̆ be the trajectory corresponding to ŭ,

ᾰ∗ = {ᾰ∗
k}k∈K

.
= argmax

ᾰ∈ĂK

Jc(t, x, ŭ,LK(ᾰ), ζ, z)

where

ᾰ∗,i
k =

√
2/3min

{
R−1

i ,
√
τ‖ξ̆ − ζi‖−1

L2(τk−1,τk)

}

for all i ∈ N and k ∈ K

Proof. Let ŭ ∈ U∞ and ξ̆ be the corresponding trajectory. By the independent sum of integrals over the
segments,

sup
ᾰ∈ĂK

Jc(t, x, ŭ,LK(ᾰ), ζ, z) = 1
2‖ŭ‖2L2(0,t)

+ ψc(ξ̆t, z) + sup
ᾰ∈ĂK

∑

k∈K

∫

Ik

−V LK(ᾰ)(r, ξ̆r, ζr) dr

= 1
2‖ŭ‖2L2(0,t)

+ ψc(ξ̆t, z) + sup
ᾰ∈ĂK

∑

k∈K

∑

i∈N

∫

Ik

µi

[
ᾰi
k − 1

2 [ᾰ
i
k]

3|ξ̆r − ζir|2
]
dr,

= 1
2‖ŭ‖2L2(0,t)

+ ψc(ξ̆t, z) +
∑

(i,k)∈N×K

sup
ᾰi

k
∈(0,

√
2/3R−1

i
]

V i
k(ᾰ, ξ̆, ζ)

where

V i
k(ᾰ, ξ̆, ζ)

.
=

∫

Ik

µi

[
ᾰi
k − 1

2 [ᾰ
i
k]

3|ξ̆r − ζir|2
]
dr.

Note that
d

dᾰi
k

V i
k(ᾰ, ξ̆, ζ) = µi

[
τ − 3

2
[ᾰi

k]
2

∫

Ik

|ξ̆r − ζir|2 dr
]
.

From this, it is not difficult to show that

ᾰ∗,i
k = ¯̆αi

k(ξ̆, ζ)
.
= argmax

ᾰi
k
∈(0,

√
2/3R−1

i
]

V i
k(ᾰ, ξ̆, ζ) =

√
2/3min

{
R−1

i ,
√
τ ‖ξ̆ − ζir‖−1

L2(τk−1,τk)

}
. (104)

Let ¯̆α : IR3 × IR3N → ĂK be given by

¯̆α(·, ·) .= { ¯̆αk(·, ·)}k∈K (105)

where ¯̆αk(·, ·) .= { ¯̆αi
k(·, ·)}i∈N and ¯̆αi

k is given by (104) for all i ∈ N and k ∈ K.

Lemma 6.7. Let t < t̄ and K ∈ IN . Let x, z ∈ IR3; ζ ∈ ZL and c ∈ [0,∞). Then, there exists a unique
stationary point of Jc(t, x, ·,LK(·), ζ, z) over U∞ × ĂK .

Proof. Recall that by Theorem 4.5 and Lemma 4.4, Jc(t, x, u,LK(ᾰ), ζ, z) is continuous, coercive and strictly
convex in u. Then, by (103), it is easy to see that maxᾰ∈ĂK Jc(t, x, u,LK(ᾰ), ζ, z) is also continuous, coercive
and strictly convex in u, where the existence of the maximum follows from Lemma 6.6. This guarantees the
existence of the unique optimal velocity control,

ŭc,∗ = argmin
u∈U∞

max
ᾰ∈ĂK

Jc(t, x, u,LK(ᾰ), ζ, z).
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This implies

min
u∈U∞

max
ᾰ∈ĂK

Jc(t, x, u,LK(ᾰ), ζ, z) = max
ᾰ∈ĂK

Jc(t, x, ŭc,∗,LK(ᾰ), ζ, z)

= Jc(t, x, ŭc,∗,LK(¯̆α(ξc,∗, ζ)), ζ, z) (106)

where ¯̆α is given by (105) and ξ̆c,∗ denotes the trajectory corresponding to ŭc,∗. Then, by an argument similar

to that of the proof of Theorem 4.9 and we do not include the repetitive details), letting ᾰ∗ .
= ¯̆α(ξ̆c,∗, ζ),

Jc(t, x, ŭc,∗,LK(ᾰ∗), ζ, z) = min
u∈U∞

Jc(t, x, u,LK(ᾰ∗), ζ, z). (107)

Combining (106) and (107) yields in an analogous fashion to the proof of Theorem 4.12 that

min
u∈U∞

max
ᾰ∈ĂK

Jc(t, x, u,LK(ᾰ), ζ, z) = max
ᾰ∈ĂK

min
u∈U∞

Jc(t, x, u,LK(ᾰ), ζ, z), (108)

and (ŭc,∗, ᾰ∗) is the unique solution of (108) over U∞ × ĂK .

Remark 6.8. Let t > 0 and K ∈ IN . For ᾰ = {ᾰk}k∈K ∈ ĂK , letting α̂
.
= LK(ᾰ),

‖α̂‖2L2(0,t)
=

∫ t

0

|α̂r|2 dr =
∑

k∈K

∫

Ik

|α̂r|2 dr = τ
∑

k∈K

|ᾰk|2 = ‖ᾰ‖22,

where the last equality follows by (102). Therefore, LK is an isomorphism between two normed spaces,

(ĂK , ‖ · ‖2) and (At
K , ‖ · ‖L2(0,t)) (cf., [7]). Further, by the linearity of LK , for ˇ̆α, ˆ̆α ∈ ĂK ,

‖LK(ˇ̆α) − LK(ˆ̆α)‖L2(0,t) = ‖LK(ˇ̆α− ˆ̆α)‖L2(0,t) = ‖ ˇ̆α− ˆ̆α‖2.

Since ĂK and At
K are isomorphic, the next corollaries follow immediately from Lemmas 6.1 and 6.2,

respectively.

Corollary 6.9. For t < t̄, c ∈ [0,∞), and ζ ∈ ZL, there exists Ĉ1 <∞ such that

|P̂ c
r (LK(ˇ̆α), ζ) − P̂ c

r (LK(ˆ̆α), ζ)| ≤ Ĉ1‖ ˇ̆α− ˆ̆α‖2

for all r ∈ [0, t] where P̂ c
· (·, ζ) is the solution of (77).

Corollary 6.10. Let c ∈ [0,∞) and K ∈ IN . WLK(ᾰ),c(t, x, ζ, z) is Lipschitz continuous in ᾰ ∈ ĂK on
bounded subsets of [0, t̄)× IR3 ×ZL × IR3.

6.3 Error analysis

Computationally, we can approximate the maximum over At (equivalently, Ãt), which yields W
c
, by taking

a maximum over At
K , which due to the above-noted isomorphism, is equivalent to a maximum over ĂK .

Letting

W
c

K(t, x, ζ, z)
.
= max

ᾰ∈ĂK

WLK(ᾰ),c(t, x, ζ, z) = min
u∈U∞

max
ᾰ∈ĂK

Jc(t, x, u,LK(ᾰ), ζ, z), (109)

for all t ∈ [0, t̄); x, z ∈ IR3; ζ ∈ ZL, we will demonstrate that W
c

K → W
c
as K → ∞. Importantly, we will

also demonstrate that the optimal velocity controls converge as K → ∞, which implies that the optimal
trajectories converge.
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Lemma 6.11. Let t < t̄; L <∞; x, z ∈ BL(0), c ∈ [0,∞) and ζ ∈ ZL. Then,

W
c
(t, x, ζ, z) = lim

K→∞
W

c

K(t, x, ζ, z)
.
= lim

K→∞
max
ᾰ∈ĂK

WLK(ᾰ),c(t, x, ζ, z). (110)

Further, letting α∗ .
= argmaxα∈At Wα,c(t, x, ζ, z) and ᾰ∗

K
.
= argmaxᾰ∈ĂK WLK(ᾰ),c(t, x, ζ, z) for K ∈ IN ,

W
c
(t, x, ζ, z)−W

c

K(t, x, ζ, z) ≤ K̂α‖α∗ − LK(ᾰ∗
K)‖L2(0,t),

and LK(ᾰ∗
K) → α∗ as K → ∞.

Proof. Given K ∈ IN and α ∈ Ãt, let

βi
k(K,α)

.
=

1

t/K

∫

Ik

αi
ρ dρ ∀i ∈ N ∀k ∈ K. (111)

For r ∈ [0, t], let ˇ̄αK
.
= { ˇ̄αi

K}i∈N ∈ At
K such that

ˇ̄αi
K(r)

.
=

∑

k∈K

βi
k(K,α

∗)1Ik
(r) ∀i ∈ N (112)

where 1· denotes an indicator function. Note that for any r ∈ [0, t] and K ∈ IN , there exist k̂ = k̂(r,K) ∈ K
and δ+K = δ+K(r), δ−K = δ−K(r) ≥ 0 such that r ∈ Ik̂ = [τk̂−1, τk̂)

.
= [r − δ−K , r + δ+K) where δ+K + δ−K = t/K.

Also, recalling from Theorem 4.2 that α∗ is uniformly continuous in [0, t], given ε > 0, there exists δ > 0
such that

|[α∗
ρ]

i − [α∗
r ]

i| < ε if ρ ∈ Bδ(r) ∀i ∈ N .

This implies that for any r ∈ [0, t], there exists Kε <∞ such that

|[α∗
ρ]

i − [α∗
r ]

i| < ε ∀ρ ∈ [r − δ−K , r + δ+K) ⊂ Bδ(r) (113)

for all K > Kε. Further, by (112), and then (111) and (113),

| ˇ̄αi
K(r) − [α∗

r ]
i| = |βi

k̂
(K,α∗)− [α∗

r ]
i| ≤ 1

δ+K + δ−K

∫ r+δ+
K

r−δ−
K

|[α∗
ρ]

i − [α∗
r ]

i| dρ = ε (114)

for all K > Kε, which implies that ˇ̄αK converges pointwise to α∗ as K → ∞. Further, since Wα,c is Lipschitz
continuous in α, given ε > 0, there exists K̂ε <∞ such that for all K > K̂ε,

ε ≥W
c
(t, x, ζ, z)−W ˇ̄αK ,c(t, x, ζ, z),

which by the suboptimality of ˇ̄αK with respect to W
c

K ,

≥W
c
(t, x, ζ, z)−W

c

K(t, x, ζ, z), (115)

proving the first assertion. The second assertion follows directly from Lemma 6.2.
For the final assertion, let ˇ̆αK ∈ ĂK such that ˇ̄αK

.
= LK(ˇ̆αK), and let ᾰ∗

K be as per the Lemma statement.

By the optimality of ᾰ∗
K with respect to W

c

K ,

0 ≤ WLK(ᾰ∗

K),c(t, x, ζ, z)−WLK( ˇ̆αK),c(t, x, ζ, z),

which by the suboptimality of LK(ᾰ∗
K) with respect to the definition (52) of W

c
,

≤W
c
(t, x, ζ, z)−WLK( ˇ̆αK),c(t, x, ζ, z),

which by (115), for K > K̂ε,
≤ ε.
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This implies that

lim
K→∞

{WLK(ᾰ∗

K),c(t, x, ζ, z)−WLK( ˇ̆αK),c(t, x, ζ, z)} = 0.

Therefore, given ε̃ ∈ (0, 1], there exists K̃ε <∞ such that

ε̃ ≥ WLK(ᾰ∗

K),c(t, x, ζ, z)−WLK( ˇ̆αK),c(t, x, ζ, z)

for all K > K̃ε, which by the strong concavity asserted in Lemma 6.5, there exists Cα > 0 such that

≥ Cα‖ᾰ∗
K − ˇ̆αK‖22,

which by Remark 6.8,

= Cα‖LK(ᾰ∗
K)− ˇ̄αK‖2L2(0,t)

, (116)

which implies that ‖LK(ᾰ∗
K)− ˇ̄αK‖L2(0,t) → 0 as K → ∞. Further, noting that

‖α∗ − LK(ᾰ∗
K)‖L2(0,t) ≤ ‖α∗ − ˇ̄αK‖L2(0,t) + ‖ ˇ̄αK − LK(ᾰ∗

K)‖L2(0,t),

applying (114) and (116) to the above completes the last assertion.

Theorem 6.12. Let t < t̄; c ∈ [0,∞); L < ∞; x, z ∈ BL(0) and ζ ∈ ZL. Given K ∈ IN , suppose that
(uc,∗, α∗) ∈ U∞ ×At and (ŭc,∗, ᾰ∗

K) ∈ U∞ × ĂK are the solutions of W
c
(t, x, ζ, z) of (52) and W

c

K(t, x, ζ, z)

of (109), respectively. Then, there exists D̂u = D̂u(t, L) <∞ such that

‖uc,∗ − ŭc,∗‖L2(0,t) ≤ D̂u‖α∗ − LK(ᾰ∗
K)‖L2(0,t).

Proof. Let α∗,ᾰ∗
K , uc,∗ and ŭc,∗ be as asserted, and let ξc,∗ and ξ̆c,∗ denote the trajectories corresponding to

uc,∗ and ǔc,∗, respectively. By Theorems 4.16 and 5.2 and (78), for all r ∈ [0, t],

uc,∗r = −∇xWα∗,c(t− r, ξc,∗r , ζ, z) = −∇xX(ξc,∗r , z) · P̂ c
t−r(α

∗, ζ), (117)

ŭc,∗r = −∇xWLK(ᾰ∗

K),c(t− r, ξ̆c,∗r , ζ, z) = −∇xX(ξ̆c,∗r , z) · P̂ c
t−r(LK(ᾰ∗

K), ζ). (118)

Note that for r ∈ [0, t), using Hölder’s inequality,

|ξ̆c,∗r | ≤ |x|+
∫ r

0

|ŭc,∗ρ | dρ ≤ |x|+
√
t‖ŭc,∗‖L2(0,t),

and by the definition of W
c
, the nonnegativity of V , and (9) and (15), this is

≤ |x|+ [2tW
c
(t, x, ζ, z)]1/2 ≤ |x|+ [2tD1(1 + |x|2 + |z|2)]1/2 ≤ D̂x (119)

for proper choice of D̂x = D̂x(t, L) <∞. Also, note that by the definition of X(·, ·), for all r ∈ [0, t],

‖∇xX(ξc,∗r , ζ)‖F ≤ 2(1 + |ξc,∗r |+ |z|) ≤ 2(1 + D̂x + L)
.
= D̃x(t, L) (120)

where the last bound follows by (119). Similarly,

‖∇xX(ξc,∗r , z)−∇xX(ξ̆c,∗r , z)‖F = 2|ξc,∗r − ξ̆c,∗r | ≤ 2

∫ r

0

|uc,∗ρ − ŭc,∗ρ | dρ. (121)

Then, by (117) and (118),

|uc,∗r − ŭc,∗r | = |∇xX(ξc,∗r , z) · P̂ c
t−r(α

∗, ζ) −∇xX(ξ̆c,∗r , z) · P̂ c
t−r(LK(ᾰ∗

K), ζ)|,
which by the triangle inequality,

≤ ‖∇xX(ξc,∗r , z)−∇xX(ξ̆c,∗r , z)‖F |P̂ c
t−r(α

∗, ζ)|+ ‖∇xX(ξ̆c,∗r , z)‖F |P̂ c
t−r(α

∗, ζ)− P̂ c
t−r(LK(ᾰ∗

K), ζ)|
which by (88), (120), (121) and Lemma 6.1,
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≤ 2Kp

∫ r

0

|uc,∗ρ − ŭc,∗ρ | dρ+ D̃xĈ1‖α∗ − LK(ᾰ∗
K)‖L2(0,t).

By Gronwall’s inequality, this implies |uc,∗r − ŭc,∗r | ≤ D̃xĈ1 exp(2Kpt)‖α∗ − LK(ᾰ∗
K)‖L2(0,t) for all r ∈ [0, t],

which completes the proof.

Recall that u∗ defined by (56) yields the fundamental solution, W
∞
(t, x, z, ζ). Combining Theorems 4.15

and 6.12, we can obtain a bound on the error in the resulting path, induced by using the approximations
c <∞ and piecewise constant α. That is, we have:

Corollary 6.13. Let t < t̄; c ∈ [0,∞); L < ∞; x, z ∈ BL(0); and ζ ∈ ZL. Given K ∈ IN , suppose that u∗

is the least action point in definition (56) of W
∞
(t, x, ζ, z), and that (ŭc,∗, ᾰ∗

K) ∈ U∞ × ĂK is the solution

of (109). Then, there exist Ď = Ď(t, t̄) <∞ and D̂u = D̂u(t, L) <∞ such that

‖u∗ − ŭc,∗‖L2(0,t) ≤
Ď(1 + |x|+ |z|)2√

c
+ D̂u‖α∗ − LK(ᾰ∗

K)‖L2(0,t).

6.4 First-order necessary condition for maximization of WLK(ᾰ),c

For K ∈ IN , let
AK

o
.
= {α̃ = {α̃i}i∈N | α̃i ∈ (0,

√
2/3(Ri + 1/K)−1) ∀ i ∈ N }.

Then, given t < t̄, there exists K̂ = K̂(t) ∈ IN such that

t <

[∑

i∈N

Gmi

2(Ri + 1/K)3

]−1/2

< t̄ ∀K > K̂. (122)

Letting ĂK
o be the Kth Cartesian product of AK

o , we see that for K ≥ K̂, the coercivity and strict convexity
of Jc(t, x, ·,LK(ᾰo), ζ, z) holds for any ᾰo .

= {ᾰo
k}k∈K ∈ ĂK

o . Further, by the arguments similar to that of
the proofs of Lemma 6.7 and Lemma 6.11, there exists a unique stationary point of Jc(t, x, ·,LK(·), ζ, z) over
U∞ × ĂK

o , and

W
c
(t, x, ζ, z) = lim

K→∞
max

ᾰo∈ĂK
o

WLK(ᾰo),c(t, x, ζ, z),

and letting ᾰo,∗
K

.
= argmaxᾰo∈ĂK

o
WLK(ᾰo),c(t, x, ζ, z),

LK(ᾰo,∗
K ) → α∗ as K → ∞.

Given t < t̄, we fix K > K̂(t) throughout where K̂(·) is given in (122), and with a slight abuse of notation,

let ᾰ = ᾰo and ᾰ∗ = ᾰo,∗
K . We will demonstrate the existence of the derivative of WLK(ᾰ),c with respect to

ᾰ ∈ ĂK
o . Then, the maximum is achieved at the point where this derivative is zero (cf., [10]).

Lemma 6.14. Given ᾰ ∈ ĂK
o , let δ̆

.
= {δ̆k}k∈K ∈ ĂK

o be such that ᾰ+ δ̆ ∈ ĂK
o . Let c ∈ [0,∞) and ζ ∈ ZL.

Then, there exists Ĉ2 <∞ such that

∣∣∣∣P̂ c
r (LK(ᾰ+ δ̆), ζ)− P̂ c

r (LK(ᾰ), ζ) −
∑

k∈K

∫

(0,r)∩Ik

(
−dπ

s
r

ds

)
ds δ̆K+1−k

∣∣∣∣ ≤ Ĉ2‖δ̆‖22

for all r ∈ (0, t) where P̂ c
· (·, ζ) and πs

· = [πs,i
· ]i∈N are given by (77) and (92), respectively, driven by LK(ᾰ).

Proof. Letting α̂ = LK(ᾰ) and h = LK(δ̆), by the linearity of LK ,

LK(ᾰ+ δ̆) = LK(ᾰ) + LK(δ̆) = α̂+ h. (123)
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Note that for r ∈ (0, t),

∫ r

0

(
−dπ

s
r

ds

)
ht−s ds =

∑

k∈K

∫

(0,r)∩Ik

(
−dπ

s
r

ds

)
ds δ̆K+1−k. (124)

Also, by Remark 6.8,
‖h‖2L2(0,t)

= ‖LK(δ̂)‖L2(0,t) = ‖δ̆‖22. (125)

Substituting (123) – (125) into (94) completes the proof.

By Corollaries 6.9 and 6.14, P̂ c
· (LK(·), ζ) ∈ C([0, t]×ĂK ; P)∩C1((0, t)×ĂK

o ; P) (where we recall P = IR10).
For ᾰ ∈ ĂK

o , i ∈ N and k ∈ K, consider

Π̇τk−1,i
r = f(Πτk−1,i

r , P̂ c,k
r ) + f(P̂ c,k

r ,Πτk−1,i
r ) + Γᾰi

K+1−k
(ᾰK+1−k, ζt−r) (126)

for all r ∈ Ik where Π
τk−1,i
τk−1

= 0M×1 (where f is given in (74) and Γ in (93)), and

˙
P̂ c,k
r = f(P̂ c,k

r , P̂ c,k
r ) + Γ(ᾰK+1−k, ζt−r) (127)

for all r ∈ Ik and k ∈ K with P̂ c,k
τk−1

= P̂ c,k−1
τk−1

= P̂ c
τk−1

where P̂ c
· is the solution of (77) with α = LK(ᾰ).

Proposition 6.15. For ᾰ ∈ ĂK
o , let α̂

.
= LK(ᾰ).

∂P̂ c,k
r

∂α̂
=

∂P̂ c,k
r

∂ᾰK+1−k
= Πτk−1

r (128)

for all r ∈ Ik and k ∈ K where Π
τk−1

·
.
= [Π

τk−1,i
· ]i∈N ∈ IRM×N , and Π

τk−1,i
· and P̂ c,k

· are the solutions of
(126) and (127), respectively.

Proof. Let i ∈ N and k ∈ K. Then, we note that P̂ c
r (α̂, ζ) = P̂ c,k

r (LK(ᾰ), ζ) and α̂t−r = ᾰK+1−k for all
r ∈ Ik. Further, for r ∈ Ik, by (127),

∂P̂ c,k
r (LK(ᾰ), ζ)

∂ᾰi
K+1−k

=
∂P̂ c,k

r (α̂, ζ)

∂α̂i
=
∂P̂ c

r (α̂, ζ)

∂α̂i
,

which by Corollary 6.14,
= πτk−1,i

r

where

π̇τk−1,i
r = f(πτk−1,i

r , P̂ c
r ) + f(P̂ c

r , π
τk−1,i
r ) + Γα̂i(α̂t−r, ζt−r)

= f(πτk−1,i
r , P̂ c,k

r ) + f(P̂ c,k
r , πτk−1,i

r ) + Γᾰi
K+1−k

(ᾰK+1−k, ζt−r).

Replacing π
τk−1,i
· with Π

τk−1,i
· completes the proof.

We are now in a position to obtain the following identification.

Theorem 6.16. Let x, z ∈ BL(0) and ζ ∈ ZL. For c ∈ [0,∞),

ᾰ∗ = argmax
ᾰ∈AK

o

WLK(ᾰ),c(t, x, ζ, z) if and only if F̂ (ᾰ∗)
.
= ∇ᾰWLK(ᾰ∗),c(t, x, ζ, z) = 0N×K

where the (i, j)th elements of F̂ (ᾰ∗) are given by

F̂ij(ᾰ
∗) = 1

2X(x, z) · ∂P̂
c
t (LK(ᾰ∗), ζ)

∂ᾰi
j

=

{
1
2X(x, z) · ΠτK−1,i

τK if j = 1,
1
2X(x, z) · DK+2−j Π

τK−j ,i
τK+1−j if j ∈]2,K[.

(129)
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Proof. By the differentiability and the concavity in ᾰ given in Corollary 6.14 and Lemma 6.5, we have the
assertions with the exception of the last representation for F̂ij(ᾰ

∗).
For k ∈ K, note that

∂P̂ c
t

∂ᾰK+1−k
=

∂P̂ c,K
τK

∂P̂ c,K
τK−1

∂P̂ c,K−1
τK−1

∂P̂ c,K−1
τK−2

· · ·
∂P̂ c,k+1

τk+1

∂P̂ c,k+1
τk

Πτk−1

τk
, (130)

where the last term follows from (128) of Proposition 6.15. Letting

ϕk+1
r

.
=
∂P̂ c,k+1

r

∂P̂ c,k+1
τk

∀r ∈ Ik+1, ∀k ∈]1,K − 1[, (131)

ϕ̇k+1
r =

∂

∂r

∂P̂ c,k+1
r

∂P̂ c,k+1
τk

=
∂

∂P̂ c,k+1
τk

∂P̂ c,k+1
r

∂r
=

∂

∂P̂ c,k+1
τk

f(P̂ c,k+1
r , P̂ c,k+1

r )

with ϕk+1
τk = IM where IM denotes the identity matrix of size M and the mth column of ϕ̇k+1

r is given by

ϕ̇k+1
m,r = f(ϕk+1

m,r , P̂
c,k+1
r ) + f(P̂ c,k+1

r , ϕk+1
m,r )

for all m ∈]1,M [ where P̂ c,k+1
· is given by (127). Substituting (131) into (130), we have

∂P̂ c
t

∂ᾰK+1−k
=

{
ϕK
τK ϕ

K−1
τK−1

ϕK−2
τK−2

· · · ϕk+1
τk+1

Π
τk−1

τk
.
= Dk+1 Π

τk−1

τk if k ∈]1,K − 1[,

Π
τK−1

τK . if k = K.

Substituting these expressions into (129), we obtain the last representation.

Remark 6.17. In the above development, we use c < ∞, whereas the TPBVP requires c = ∞, and
the error induced by using c < ∞ is indicated in Theorem 4.15. However, in actual computations, when
applying standard solution methods (e.g., Runge-Kutta methods) in solution of (66), (71), or equivalently,
(77), taking very large c approaching ∞, leads to numerical difficulties. Here, we note a small practical
point. An approximation for solution of (77) for c = ∞, ᾰ ∈ ĂK

o and ζ ∈ ZL, on an arbitrarily short initial
time segment, say r ∈ (0, τ̌) with τ̌ ≪ 1, is given by

P̂∞
r (LK(ᾰ), ζ) = ( r−1,−r−1, r−1, rσ̌T ,−rσ̌T , 13 |σ̌|2r3 + η̌r )′,

where

σ̌
.
= 1

2

∑

i∈N

ᾰi
Kζ

i
t , η̌ =

∑

i∈N

µi{2ᾰi
K − (ᾰi

K)3|ζit |2},

which the reader may easily verify, and we do not attempt a bound on the error. Then, for r > τ̌ , one may
continue with a standard method. This is employed in the examples below.

7 Examples

In Section 2, we indicate that W
∞
(t, ·, ζ, ·) acts as a fundamental solution for multiple TPBVPs, given fixed

duration, t, and set of large-body trajectories, ζ. The theory in support of the construction of W
∞

appears
in Sections 3–5. Specifically, in (82), we see that for fixed t, ζ, W

∞
(t, ·, ζ, ·) may be represented by a set,

∂〈Gt〉 ⊂ IR10. Additional issues regarding the computation of W
∞
(t, ·, ζ, ·) and/or ∂〈Gt〉 are addressed in

Section 6.
Below, we will apply W

∞
(t, ·, ζ, ·) in solution of two different TPBVPs. In particular, we will consider

one example with the boundary data being the endpoint positions, and one example with the boundary data
being the initial position and the terminal velocity. These examples are intended to demonstrate that the
fundamental solution applies to multiple boundary-data types.
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At the next level, we note that one may precompute ∂〈Gt〉 ⊂ IR10, and store this for later use with varying
boundary data. Tractable application at this next level will require investigation of means for efficient storage
of the high-dimensional set, ∂〈Gt〉. Such storage should also contain data indicating the structure of the set.
For example, in the case where one simply stores a closely packed set of points in the set, one should also
include data regarding each point’s neighbors. Further, one needs to develop efficient means for searching
this set for the optimal point corresponding to the specific boundary data, as, for example, in (82). These
last steps will require additional development beyond the already extensive material here.

7.1 Specifics of two problem classes

We present two examples: one case where the terminal position, ξt = z, is specified by choosing ψ̄(z) =
ψ∞(ξt, z) as the terminal cost, and the other where the terminal velocity, ξ̇t = v̄, is specified by taking
ψ̄(z) = −z · v̄ as the terminal cost (cf., [5, 13, 14]). In both cases, the initial position, x, is also specified. In
the case ψ̄(z) = ψ∞(ξt, z), by (5)–(7) and (82),

W (t, x, ζ) =W
∞
(t, x, ζ, z) = max

P∈∂〈Gt〉

1
2X(x, z) · P.

For the case of ψ̄(z) = −z · v̄, recalling (66), we see that we will have r∞t > 0 for sufficiently small t > 0.
Then, recalling (71) and (81), we see that W

∞
(t, x, ζ, ·) will be strictly convex and coercive for such t.

Consequently, by Theorem 2.1 and (81), we may rewrite (5) as

W (t, x, ζ) = min
z∈IR3

{W∞
(t, x, ζ, z) + ψ̄(z)}

= min
z∈IR3

{max
α∈At

1
2X(x, z) · P̂∞

t (α, ζ) + ψ̄(z)} = min
z∈IR3

{ max
P∈∂〈Gt〉

1
2X(x, z) · P − v̄ · z},

and by classical results on saddle points, cf. [15], this is
= max

P∈∂〈Gt〉
min
z∈IR3

{ 1
2X(x, z) · P − v̄ · z} = max

P∈∂〈Gt〉
{ 1
2X(x, z̄(P )) · P − v̄ · z̄(P ))}, (132)

where z̄(P )
.
= r−1(−qx − l + v̄) where P

.
= (p, q, r, h′, l′, γ)′. We see that in both cases, solution of the

problem may be obtained from sets of solutions of differential Riccati equations.

7.2 Example 1: ψ̄(x) = ψ∞(x, z)

In the first example, we solve a TPBVP where initial and terminal positions are specified. Suppose that five
large bodies are moving clockwise on circular orbits with radii of 1.5, 3, 4.5, 6 and 7 AU . The masses of
bodies are given by [2, 4, 9, 10, 7]× 1031kg . In order to ensure a sensible problem, and for reasons of error

estimation, we generate a trajectory, ξ̂, of the small body by forward propagation of Newton’s second law
from an initial position/velocity pair given by x = [0, 1, 0.02]T AU , u0 = [35, 104, 0.3]T km/s from initial
time r = 0 to terminal time, r = t = 11 days. This yields a terminal position, z = [0.179, 5.265, 0.0078]T.
We reconstruct the trajectory from solution of the TPBVP given by x, z and t. We remark that the body
masses and duration form an exaggerated example, constructed such that the dynamics lead to an interesting
trajectory. Further, we see that for all i ∈ N , there exists δi > 0 such that |ξ̂r − ζir| > δi for all r ≥ 0.
Assuming the radius of body Ri < δi for all i ∈ N , by Remark 4.6, the time duration that guarantees the
convexity in the velocity control is given by t̃ = 13.5 days. We use piecewise constant potential energy
controls over [0, t] with a uniform grid {τk|k ∈]0,K[ }, with K = 25. The small body is required to move

through the intermediate points ξ̂t/4, ξ̂t/2 and ξ̂3t/4 where

ξ̂t/4 = [0, 132, 1.708,−0.017], ξ̂t/2 = [0.121, 2.681,−.0.011], ξ̂3t/4 = [0.134, 3.958, 0.0024].

The maximizing ᾰ∗ ∈ ĂK
o is obtained numerically by a gradient ascent method using Theorem 6.16 and

Remark 6.17. Figure 1 depicts the true trajectory of the small body as well as the trajectories of five large
bodies. Figure 2 depicts the true trajectory ξ̂ and the approximate solution of the TPBVP. As the bulk of
the motion is in the first two coordinates, the trajectories are projected onto the plane generated by these
coordinates.
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7.3 Example 2: ψ̄(x) = −x · v̄
Consider the same problem as in Example 1, but now we specify the terminal velocity v̄ ∈ IR3, rather than
the terminal position. Again this is accomplished by taking ψ̄(x)

.
= −x · v̄. In this case, once we obtain

the minimizer z∗
.
= z̄, we have an equivalent initial value problem with boundary conditions ξ0 = x and

u∗0 = −∇xW
∞
(t, x, ζ, z∗), and one may check by integration that this yields u∗t = v̄. More specifically, given

z ∈ IR3, the inner maximizing problem is solved via the numerical method introduced in Section 6, while
the outer problem of minimization over z was solved via a gradient descent method.

In addition to the initial position specified in Example 1, we specified a terminal velocity of ξ̇t = v̄ =
[40.4, 65.6, 2.9 × 10−5]T km/s. The piecewise constant potential energy control approximation over [0, t]
used a uniform grid, {τk | k ∈]0,K[ } with K = 400. The resulting error in the terminal velocity was
|u∗t − v̄|/|v̄| ≃ 0.005.
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