MAE 289A: Mathematical Analysis for Applications Take-Home Final Due Thursday, 15 June, 5pm

(Complete list of problems.)

- 1. (5) Let $(\mathcal{X}, \langle, \cdot, \cdot\rangle)$ be an inner product space over the real field, \mathbb{R} . Let $y, z \in \mathcal{X}$. Show that if $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in \mathcal{X}$, then y = z.
- 2. (10) Let $(\mathcal{X}, \langle, \cdot, \cdot\rangle)$ be an inner product space over the real field, \mathbb{R} . Let $x, y \in \mathcal{X}$. Show that x and y are orthogonal (i.e., $\langle x, y \rangle = 0$) if and only if $||x + \alpha y|| \ge ||x||$ for all $\alpha \in \mathbb{R}$.
- 3. (10) Let $(\mathcal{X}, \langle, \cdot, \cdot\rangle)$ be a Hilbert space over the real field, \mathbb{R} . Let $\mathcal{G} \subset \mathcal{X}$ be convex. Consider a sequence, $\{x_n\}$, such that $x_n \in \mathcal{G}$ for all n, and such that $||x_n|| \to \inf_{x \in \mathcal{G}} ||x||$. Show that there exists $\bar{x} \in \mathcal{X}$ such that $x_n \to \bar{x}$.
- 4. (10) Consider the space $(\ell_{\infty}, \|\cdot\|_{\infty})$, which is the space of bounded infinite sequences of real numbers where for $x = \{x_n\}_{n=1}^{\infty}, \|x\|_{\infty} \doteq \sup_{n \in \mathbb{N}} |x_n|$. Also consider the space $(\ell_1, \|\cdot\|_1)$, which is the space of infinite sequences of real numbers, $x = \{x_n\}_{n=1}^{\infty}$, such that $\|x\|_1 \doteq \sum_{n=1}^{\infty} |x_n| < \infty$. Show that ℓ_1 is a subspace of ℓ_{∞} . Is it a closed subspace? Support your answer.
- 5. (10) Let our space be $L_2(0,\pi)$, which we recall has inner product $\langle x, y \rangle \doteq \int_0^{\pi} x(t)y(t) dt$. Consider $f: L_2(0,\pi) \to \mathbb{R}$ given by

$$f(x) \doteq \int_0^\pi \sin(t) x^2(t) \, dt$$

for all $x \in L_2(0, \pi)$. What is the Fréchet derivative, Df(x)? In particular, find a function, say $y \in L_2(0, \pi)$, such that

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - \langle y, h \rangle|}{\|h\|} = 0,$$
(1)

in which case Df(x) = y. Provide a proof that your asserted function is indeed the Fréchet derivative, i.e., that (1) holds.

- 6. (10) Recall that the inner product on $H_{1,2}(0,2)$ is given by $\langle x,y \rangle \doteq \int_0^2 x(t)y(t) + \dot{x}(t)\dot{y}(t) dt$. Let $g: H_{1,2}(0,2) \to \mathbb{R}$ be given by $g(x) \doteq x(0)$. Prove that this is linear on $H_{1,2}(0,2)$. Can you find a $y \in H_{1,2}(0,2)$ such that $\langle x,y \rangle = g(x)$ for all $x \in H_{1,2}(0,2)$? Prove your claim.
- 7. (10) Recall that the inner product on $H_{1,2}(0,2)$ is given by $\langle x,y \rangle \doteq \int_0^2 x(t)y(t) + \dot{x}(t)\dot{y}(t) dt$. Using the approach indicated in class, minimize

$$J(x) \doteq \int_0^2 [x(t)]^2 + 4[\dot{x}(t)]^2 dt$$

over $x \in H_{1,2}(0,2)$, subject to the constraint

$$x(0) = 3.$$