MAE 289B Assignment 3 Due 12:30pm, Tuesday, 8 March

Problems to hand in (Not all problems will be graded.)

- 1. (5) Construct an infinite sequence of piece-wise linear, linearly independent functions in C[0, 1].
- (5) Is the set of continuous, piece-wise linear functions (each consisting of a finite number of segments) a subspace of the normed (vector) space C[0,1]? Is it dense? Support your answers of course.
- 3. (5) Let $\mathcal{D} \doteq \{x \in \mathbb{R}^2 \mid |x| \leq 1\}$ and $1 \leq p \leq q < \infty$. (Note that we are not assuming that p, q are conjugate exponents in this problem.) Show that $L_q(\mathcal{D}) \subseteq L_p(\mathcal{D})$. Also, can you find a $k = k(p,q) \in (0,\infty)$ such that $\|x\|_{L_p} \leq k \|x\|_{L_q} \,\forall x \in L_q(\mathcal{D})$? If so, what is it? If possible, find the smallest k such that $\|x\|_{L_p} \leq k \|x\|_{L_p} \forall x \in L_q(\mathcal{D})$.
- 4. (5) Consider $L_2(0,1)$, and let $\bar{B}_1(0)$ denote the elements of the space such that $||x|| \leq 1$. Find a sequence of functions, say $\{x_n\}_{n=1}^{\infty}$, with $x_n \in \bar{B}_1(0) \subset L_2(0,1) \ \forall n$, and such that $||x_n - x_m||_{L_2} \geq 1/2 \ \forall m, n \in \mathbb{N}$.
- 5. (5) Prove that C[0, 1] is a closed, proper subspace of $L_{\infty}[0, 1]$. Consider the application of Riesz's Lemma in the case of $\mathcal{X} = \mathcal{Z} = L_{\infty}[0, 1]$, and $\mathcal{Y} \doteq C[0, 1]$. Indicate a $\bar{z} \in \mathcal{Z}$ satisfying the assertions of Riesz's Lemma applied to these spaces/subspaces with $\theta = \frac{1}{2}$. (In particular, you must show that your \bar{z} actually satisfies the assertions.)
- 6. (2) Let $(\mathcal{X}, \|\cdot\|_X)$ be a Banach space. Let $\mathcal{C} \subset \mathcal{X}$ be compact. Let $f : \mathcal{C} \to \mathbb{R}$ be continuous (but not necessarily linear). Prove that $\min_{x \in \mathcal{C}} f(x)$ exists.
- 7. (3) Let $S_1(0) \doteq \{x \in L_2(0,1) \mid ||x|| = 1\}$. Prove that $S_1(0)$ is closed. Prove that a continuous (not necessarily linear) function $f : S_1(0) \to \mathbb{R}$ does not necessarily achieve its minimum on $S_1(0)$, i.e., that $\min_{x \in S_1(0)} f(x)$ may not exist.

- 8. (3) Let $k \in C([1,3] \times [1,3])$ and $M_k \doteq \max \{ |k(s,t)| \mid (s,t) \in [1,3] \times [1,3] \}$. For $x \in \mathcal{X} \doteq L_2(1,3)$, let $[Tx](s) \doteq \int_1^3 k(s,t)x(t) dt$ for all $s \in (1,3)$. Show that T is a bounded linear operator from \mathcal{X} into \mathcal{X} , i.e., that $T \in \mathcal{B}(\mathcal{X}, \mathcal{X})$. What is the induced norm of T, $||T||_{\mathcal{B}(\mathcal{X}, \mathcal{X})}$?
- 9. (7) (from Royden) Let $g \in L_1(0, 1)$. Show that there exists a bounded, measurable $f: (0, 1) \to \mathbb{R}$ such that

$$\int_0^1 f(t)g(t) \, dt = \|g\|_{L_1} \|f\|_{L_\infty}.$$

Also, letting $g: (0,1) \to \mathbb{R}$ be bounded and measurable, and letting $\varepsilon > 0$, show that there exists $f \in L_1(0,1)$ such that

$$\int_0^1 f(t)g(t) \, dt \ge (\|g\|_{L_{\infty}} - \varepsilon) \|f\|_{L_1}$$

Note that, as in Royden, the spaces that the space containing f and the space containing g in the second part of the problem are reversed from what they were in the first part of the problem. (Hint: f may be taken to be a suitable characteristic function.) You may freely employ any results from Royden and/or the class notes.