MAE 289B Assignment 1 Due 11:59pm, Monday, 24 January

Problems to hand in (Not all problems will be graded.)

- 1. (3) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be subsets of space \mathcal{X} . Prove that $\mathcal{A} \cap (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{C}).$
- 2. (2) Let $f : \mathbb{R}^n \to \mathbb{R}$. Suppose that given any $\varepsilon > 0$, there exists $x \in \mathbb{R}^n$ such that $f(x) \leq 2 + \varepsilon$. Prove, by contradiction, that $\inf_{x \in \mathbb{R}^n} f(x) \leq 2$.
- 3. (5) Let Σ_1 and Σ_2 be two σ -algebras on some set \mathcal{X} . Prove that $\Sigma_3 \doteq \Sigma_1 \cap \Sigma_2$ is a σ -algebra.
- 4. (5) Let \mathbb{N} denote the set of natural numbers. Indicate two distinct σ algebras on \mathbb{N} , neither of which has only a finite number of elements, and further, such that one is contained within the other. (You may want to prove and use the following. Lemma: Let \mathcal{X} and \mathcal{Y} be spaces, and suppose f maps \mathcal{X} onto \mathcal{Y} . Let $\Sigma_{\mathcal{Y}}$ be a σ -algebra on \mathcal{Y} , and let $\Sigma_{\mathcal{X}} \doteq \{f^{-1}(\mathcal{A}) \mid \mathcal{A} \in \Sigma_{\mathcal{Y}}\}$. Then $\Sigma_{\mathcal{X}}$ is a σ -algebra on \mathcal{X} . There may be other methods.)
- 5. (5) Royden, Problem 2.35 (2.34 in 2nd ed.): Prove the following proposition (using the Heine-Borel Theorem and De Morgan's laws). Let \mathcal{C} be a collection of closed sets (in \mathbb{R}) such that every finite subcollection has a nonempty intersection, and suppose that at least one of the sets is bounded. Then $\bigcap_{\mathcal{F}\in\mathcal{C}} \mathcal{F} \neq \emptyset$.
- 6. (5) Prove that every accumulation point of the Cantor ternary set is an element of the set. (Recall that x is an accumulation point of set \mathcal{A} if it is in the closure of $\mathcal{A} \setminus \{x\}$.)
- 7. (5) Royden, Problem 3.7: Prove that m^* is translation invariant.
- 8. (5) Suppose $\mathcal{E} \in \Sigma_{\mathcal{L}}$ (i.e., Lebesgue measurable) with $m(\mathcal{E}) > 0$. Prove that for any $\alpha \in (0, 1)$, there exists an open interval, \mathcal{I} , such that $m(\mathcal{E} \cap \mathcal{I}) = \alpha m(\mathcal{E})$. (You may take intervals such as $(-\infty, b)$ and (a, ∞) if you like.)