UCSD MAE288A Optimal Control

CLASS WILL START AT 5PM

Spring 2024 Lecture 18

Viscosity Solutions and the Method of Characteristics

Recall Continuous-Time/Continuous-Space Deterministic Control Problem

• Problem definition:

$$\dot{\xi}_t = f(\xi_t, u_t),\tag{D}$$

$$\xi_s = x \in \mathbb{R}^n, \tag{IC}$$

$$U \subseteq \mathbb{R}^m, \quad \mathcal{U}_{s,T} \doteq L_2((s,T);U),$$

$$J(s, x, u) \doteq \int_{s}^{T} L(\xi_t, u_t) dt + \psi(\xi_T), \tag{P}$$

$$\bar{V}(s,x) \doteq \inf_{u \in \mathcal{U}_{s,T}} J(s,x,u) \ \forall (s,x) \in [0,T] \times \mathbb{R}^n, \tag{V}.$$

• Assumed f, L, Ψ continuous (stronger than necessary) and:

$$|K_f < \infty \text{ s.t. } |f(x,v) - f(y,v)| \le K_f |x-y| \ \forall x, y \in \mathbb{R}^n, v \in U, \tag{A.1}$$

$$\exists C_f < \infty \text{ s.t. } |f(x,v)| \le C_f (1+|v|) \ \forall x \in \mathbb{R}^n, v \in U.$$
(A.2)

$$0 \le L(x, v) \le C_L(1+|x|^2+|v|^2) \ \forall x \in \mathbb{R}^n, \ v \in U,$$
(A.3)

$$0 \le \psi(x) \le C_{\psi}(1+|x|^2) \quad \forall x \in \mathbf{R}^n. \tag{A.4}$$

• Results can be obtained under weaker assumptions (with sufficient effort...).

HJ PDE Problem

• The associated Hamilton-Jacobi PDE (HJ PDE) problem is given by

$$0 = -V_{s} + H(s, x, \nabla_{x} V) - V_{s} - \inf_{v \in U} \{ L(x, v) + V_{t}(s, x) + \nabla_{x} V(s, x) \cdot f(x, v) \},$$
(DPE)
$$V(T, x) = \Psi(x).$$
(TC)

- Solve this on $(0, T) \times \mathbb{R}^n$.
- If we solve this, then we expect to obtain the optimal control [as a feedback!] given by $\bar{u}(t,x) \in \operatorname{argmin}_{v \in U} \{L(x,v) + \nabla_x V(s,x) \cdot f(x,v)\}.$

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 5/1

Viscosity Solution Definition

• Signs matter here! Write the HJ PDE as:

$$0 = -V_s + H(s, x, \nabla_x V) \qquad (HJPDE)$$

where $H(s, x, p) \doteq -\inf_{v \in U} \{L(x, v) + p \cdot f(x, v)\}.$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition:

Let $\mathcal{D} \doteq (0, T) \times \mathbb{R}^n$, and suppose $V \in C(\mathcal{D})$.

1) Suppose that for all $g \in C^1(\mathcal{D})$ and all $(\bar{s}, \bar{x}) \in \mathcal{D}$ s.t. V - g has a local maximum at (\bar{s}, \bar{x}) with $V(\bar{s}, \bar{x}) = g(\bar{s}, \bar{x})$, $-g_{\varsigma}(\bar{s}, \bar{x}) + H(\bar{s}, \bar{x}, \nabla_{\chi}g(\bar{s}, \bar{x})) < 0.$

Then V is a viscosity subsolution of (HJPDE) on \mathcal{D} .

2) Suppose that for all $g \in C^1(\mathcal{D})$ and all $(\bar{s}, \bar{x}) \in \mathcal{D}$ s.t. V - g has a local minimum at (\bar{s}, \bar{x}) with $V(\bar{s}, \bar{x}) = g(\bar{s}, \bar{x})$,

 $-g_s(\bar{s},\bar{x}) + H(\bar{s},\bar{x},\nabla_x g(\bar{s},\bar{x})) \geq 0.$

Then V is a viscosity supersolution of (HJPDE) on \mathcal{D} .

3) If V is both a viscosity subsolution and a viscosity supersolution on \mathcal{D} , then it is a viscosity solution on \mathcal{D} .

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 7/1

Theory relating the Control problem and the HJ PDE problem

- Using the Gronwall inequality and other tools (and skipping quite a bit), we showed that V
 is Lipschitz continuous, and hence differentiable almost everywhere.
- We have a definition of *continuous* viscosity solutions of HJ PDEs.
- There are two methods for relating the HJ PDE problem viscosity solution to the corresponding control problem:

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ Ξ · 의 Q (~ June 4, 2024 9/1

Main Theorem of the Section

Theorem

Value function, \overline{V} is a viscosity solution of the HJ PDE problem.

• Partial proof: $O = -V_{4} - inf_{1} \left\{ L(x, v) + \nabla_{x} V^{T} F(x, v) \right\}$ $(H \downarrow P A U^{S} V^{T} F(x, v) + \nabla_{x} V^{T} F(x, v) +$ • Partial proof: (TC) V(T,x)= 4 (2) (TG) 15 0 BV1005. PRUVE V SAT'S (HUPDE) IN VISCOSITY SENSE. SUPPOSE V NOT & VISC. SUBSOLUTION. THUN $\exists geC', (\xi, \xi) \in \mathbb{D}$ W/V-q LOC MAY AT (T, x) S.T - 2

Blank page $\exists \Theta > 0 S.t.$
$(1) - g_{a} - inf_{v \in v} \left\{ L(x_{v}) + \nabla x g(\overline{x}, \overline{x}) + f(\overline{x}, \overline{v}) \right\} = 0$
ASSUMED U COMPACT, AND (1) IS CONTININT.
$=) \int \overline{k} \in \mathcal{O} 5.7.$ $= \int (\overline{x}, \sqrt{r}) - \nabla_x g(\overline{z}, \overline{z}) f(\overline{z}, \overline{r}) = G_7 \cup$ $= \int (\overline{x}, \sqrt{r}) - \nabla_x g(\overline{z}, \overline{z}) f(\overline{z}, \overline{r}) = G_7 \cup$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Rightarrow -g_2(\pi/\epsilon) - l(\ell, u_{\ell}) = (\chi)(\pi/\epsilon) + (\chi)(\pi/\epsilon)$
By geciplite C, Joron Je 70
By $g \in C_{1}^{*} L_{1}^{*} t \in C_{1}^{*} = 50^{-1} f(x_{1}, u_{2}^{*}) = \frac{1}{2} = 0^{-1} g_{4}(t_{1}, x_{1}^{*}) - L(x_{1}, u_{2}^{*}) = \frac{1}{2} = 0^{-1} f(x_{1}, u_{2}^{*}) = 0^{-1} f(x$

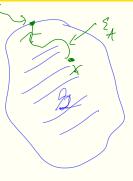
Blank page らいみ (つ) ー (6) $0 \in \int_{A}^{k} L(\tilde{t}_{n}, u_{n}) dt + g(\tilde{t}_{1}, \tilde{t}_{1}) - g(\tilde{t}_{1}, \tilde{t}_{1})$ SINCE GEC $= \int_{0}^{t} \mathcal{L}\left(\varsigma_{n}^{\circ}, u_{n}^{\circ}\right) + g_{\mathbf{A}}\left(n, \varsigma_{n}^{\circ}\right) + \nabla_{\mathbf{X}}g\left(n, \varsigma_{\nu}^{\circ}\right) + \left[\varsigma_{n}^{\circ}, u_{n}^{\circ}\right] ds$ $BY(5) = \int_{-\infty}^{\infty} - f_{-\infty} dt = -f_{-\infty}(f - \sigma)$ CUNTRADIGTION . V IS A VISC. SUBSOL. SOTEDISOL 15 EXGRECISE! ・ロト ・ 四ト ・ ヨト ・ ヨト … æ

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 14/1

Exit Problem case

• Exit problem:

$$\begin{split} \dot{\xi}_t &= f(\xi_t, u_t), \\ \xi_0 &= x \in \mathcal{G}, \quad (\mathcal{G} \text{ open}), \\ u &\in \mathcal{U}_{0,\infty} \doteq L_2^{loc}((0,\infty); U), \\ \tau &\doteq \inf_{t \geq 0} \{\xi_t \not\in \mathcal{G}\}, \\ J(x, u) &\doteq \int_0^\tau L(\xi_t, u_t) \, dt + \psi(\xi_\tau), \\ \bar{V}(x) &\doteq \inf_{u \in L_r^{loc}} J(x, u). \end{split}$$



• Corresponding HJ PDE problem:

$$0 = -\inf_{v \in R} \{ L(x, v) + \nabla_x V^T f(x, v) \} \quad \forall x \in \mathcal{G},$$

$$V(x) = \psi(x) \quad \forall x \in \partial \mathcal{G}.$$

	June 4, 2024										15 / 1	
0		۰.	< 🗗	- Þ.		≡≻	- 4	2	۰.	- 2	うく	C~

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 16/1

Simplest viscosity-solution problem example

Exar

xample 1:
$$f_{X}$$
 is PROBLEM, $g = (-1, 1)$
 $\dot{s}_{+} = u_{+}, \quad \dot{s}_{0} = x \in M$
 $u \in \mathcal{U}_{0,\infty} = \mathcal{L}_{X}^{bot}((0,\infty), \mathbb{R})$
 $\int (x, u) = \int_{0}^{\mathbb{T}} 1 + \frac{u^{2}}{2} dt$
 $\overline{V}(x) = iuf \left[\int [x, u,] \right]$
 $u \in \mathcal{U}_{0,\infty}$
 $\int (1 + \frac{v^{2}}{2} + \sqrt{x} \sqrt{x})$
 $\int (-\frac{u}{v \in \mathbb{R}} (1 + \frac{v^{2}}{2} + \sqrt{x} \sqrt{x})$
 $\int (-\frac{u}{v \in \mathbb{R}} (1 + \frac{v^{2}}{2} + \sqrt{x} \sqrt{x})$

$\mathcal{O} = \mathcal{N} + \mathcal{V}_{\mathsf{X}} \rightarrow \mathcal{N}^{\mathsf{X}} = -\mathcal{V}_{\mathsf{X}}$

Blank page

 $0 = - \left[1 - \frac{V_{x}}{2} \right] = \frac{V_{x}^{2}}{2} - ($ (χ) > =) V/2=2 14 1= 52 Vx= = 52 $TRY \quad \widetilde{V} = -\sqrt{2} + \sqrt{2} |x| = \sqrt{2} (|x| - 1)$ $\nabla \in C((-1, 0) \cup (0, 1))$ NOTE =) OFLY CHECK CLASSIC THORS Vy = JJZ = D.K. AWAY FROM X=0. AT X=0, CHECK V. SOL. COND'S IF V- & LOC MIN AT X=0

18 19×(3)=UZ Blank page $= \frac{1}{9} \frac{9}{2} \frac{(0)^2}{1} - 1 = \frac{(02)^2}{2} - 1 = 0$ $|f = y(u) = -\sqrt{2} \Rightarrow y(u) = 0$ $= |g_{(0)}|^2 - |g_{(0)}|^2 = 0$ RUT = V NOT A V. SUBERSOL => NOT to V. SOL IF V-& LOCAL MAX AT D, gec' =) 1gx(0) 1 = JZ =) 192017-150 イロト イロト イヨト イヨト Ξ

The (nearly only) classical-solution example \mathcal{A} \mathcal{A}

Example 2:

 $\frac{\dot{s}_{\pm}}{\tilde{s}_{\pm}} = A \frac{s_{\pm}}{t} + B u_{\pm}, \quad \hat{s}_{\pm} = x \in \mathbb{R}^{m}$ $J(a, x, w) = \int_{0}^{T} \frac{1}{2} s_{\pm}^{T} C \frac{s_{\pm}}{t} + \frac{1}{2} u_{\pm}^{T} D u_{\pm} dt + \frac{1}{2} \frac{s_{\pm}^{T}}{t} F \frac{s_{\pm}}{t}$ $\bar{v}(a, k) = \int_{0}^{T} \frac{1}{2} s_{\pm}^{T} C \frac{s_{\pm}}{t} + \frac{1}{2} u_{\pm}^{T} D u_{\pm} dt + \frac{1}{2} \frac{s_{\pm}^{T}}{t} F \frac{s_{\pm}}{t}$ $\bar{v}(a, k) = \int_{0}^{T} \frac{1}{2} s_{\pm}^{T} C \frac{s_{\pm}}{t} + \frac{1}{2} u_{\pm}^{T} D u_{\pm} dt + \frac{1}{2} \frac{s_{\pm}}{t} F \frac{s_{\pm}}{t}$

 $(POEV) O = -V_{0} - inf \qquad \begin{cases} \frac{1}{2}x^{T}Cx + \frac{1}{2}v^{T}Dv \\ we remain \end{cases}$ + VXV T (AX+Bv)}

 $(TC) V(T,X) = \frac{1}{2}X^T F_2$ $LOOK FOR \tilde{V}(Q,X) = \frac{1}{2}X^T P_Q X + D_Q \quad (7)$

NO NEED FOR V. SUL, 3 . CLASSIE AL SULLED F= 9900 June 4, 2024 20/1 Blank page FURM (7) NOTE $V_{\alpha}(x_{1}x_{1}=\pm x^{T}P_{\alpha}x+n_{\lambda})$ (8) $\nabla_{\mathbf{x}}\widetilde{\mathbf{v}}(\mathbf{x},\mathbf{x}) = \widehat{\mathbf{r}}_{\mathbf{x}}\mathbf{x}$ BY (TCI) P+=F, J-=0 SUB (8) -> (PDE1) TO GET ODE'S FOR P., R. $0 = -\frac{1}{2} \times^{+} P_{n} \times -\frac{1}{n_{n}} = m_{n} \begin{cases} 1 \times ^{+} C \times +\frac{1}{2} n^{+} D n^{-} \\ n^{-} C & n \end{cases}$ + (PA) TAX+ BNJ3 = - 2x Px - 2 - 2x Cx - 2x PAx - 2x A Px - M SENTON + NT B PX 3 DN-X+BPK=0 Not - D'BPX

Blank page + ZxTP_BD'B'P_X COLLECTING QUADRATIC TERMS, $U = -P_{2} - C - (P_{2}A + A'P_{2}) + P_{2}30'B'P_{2}$ 05-M2 => M2=U (RECALC RT=U) $\dot{p} = P_B D' B' P - P_A - A' P_A -$ PT = F V (A, K)= 13 × P.K AND イロト イ団ト イヨト イヨトー E 990

Generalization of simplest viscosity-solution problem example

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ ・ の へ の ・

Example 3:

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) < . June 4, 2024 25/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 26/1

Some Solution Methods

• The method of [generalized] characteristics (partially motivational).

• Finite elements specifically designed for HJ PDE.

• Max-plus/curse-of-dimensionality-free methods.

The [Generalized] Method of Characteristics

 Might as well use the exit-problem case for development of the method; it works as well for other problem forms.

> $0 = -H(x, \nabla_x V(x)), \quad x \in \mathcal{G},$ $V(x) = g(x), \quad x \in \partial \mathcal{G}.$

- Refs and relations: L.C. Evans, Fritz-John; Hamiltonian Mechanics; Schr odnger equation; etc.
- Very formal development
- Consider a (state) trajectory, ξ_t moving into the interior from the boundary.
- Let ϕ_t denote the gradient of the solution, V(x), at ξ_t (i.e., the "co-state").
- Finish.

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 29/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 30/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) < . June 4, 2024 31/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ Ξ · 의 Q (~ June 4, 2024 32/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ Ξ · 의 Q (~ June 4, 2024 33/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ Ξ · 의 Q (~ June 4, 2024 34/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) < ↔ June 4, 2024 35/1

Comments Regarding the [Generalized] Method of Characteristics

• The standard method of characteristics needs LOTS of assumptions to be satisfied for it to work.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Problems analogous to shocks and rarefaction waves.
- Generalized characteristics (cf. A. Melikyan) address these at the cost of seriously problematic "bookkeeping" issues.

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ Ξ · 의 Q (~ June 4, 2024 37/1

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ Ξ < 𝔅
 June 4, 2024
 38/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ Ξ · 의 Q (~ June 4, 2024 39/1

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ 를 ∽) Q (~ June 4, 2024 40/1

Temporary page!

 $\[mathbb{E}T_{E}X\]$ was unable to guess the total number of pages correctly. As there was unprocessed data that should have been added to the final page this extra padded to receive it.

If you rerun the document (without altering it) this surplus page will go aware PT_EX now knows how many pages to expect for this document.