MAE 288A

Assignment 1
Due 9pm, 22 Apr.

Problems to hand in (Not all problems may be graded.)

All work and explanations must be included for full credit.

1. (5) let $\Omega=\{a, b, c, d, e\}$. Let $X(a)=1, X(b)=1, X(c)=2$, $X(d)=2, X(e)=3$. Let $Y(a)=4, Y(b)=5, Y(c)=6, Y(d)=$ $4, Y(e)=5$. Suppose $P(\{a\})=P(\{b\})=P(\{c\})=0.25$, and $P(\{d\})=P(\{e\})=0.125$. What are $P(X \in\{1,2\}), P(Y \in\{5,6\})$, $P(X \in\{1,2\}, Y \in\{5,6\})$ and $P(X \in\{1,2\} \mid Y \in\{5,6\})$? Also, are X and Y independent?
2. (5) X_{1} and X_{2} are scalar random variables with joint density function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
P\left(X_{1} \leq u_{1}, X_{2} \leq u_{2}\right)=\int_{-\infty}^{u_{1}} \int_{-\infty}^{u_{2}} f\left(y_{1}, y_{2}\right) d y_{2} d y_{1}
$$

for all $\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$. Prove that

$$
P\left(X_{1} \in\left(l_{1}, u_{1}\right], X_{2} \in\left(l_{2}, u_{2}\right]\right)=\int_{l_{1}}^{u_{1}} \int_{l_{2}}^{u_{2}} f\left(y_{1}, y_{2}\right) d y_{2} d y_{1}
$$

for all $-\infty<l_{1} \leq u_{1}<\infty$ and $-\infty<l_{2} \leq u_{2}<\infty$. (You may use the result obtained in class if it is helpful.)
3. (5) Suppose X, Y and Z are independent random variables with ranges in $\mathbb{R}^{k}, \mathbb{R}^{m}$ and \mathbb{R}^{k}, resectively. Suppose $G \in C\left(\mathbb{R}^{k} \times \mathbb{R}^{m} ; \mathbb{R}^{m}\right)$, and that $U=G(X, Y)$. Prove that U and Z are independent.
4. (5) Let $X=\left(X_{1}, X_{2}\right)^{T}$ be a random variable taking values in \mathbb{R}^{2}, with density function given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} x_{2} \exp \left[\frac{-1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right] & \text { if } x_{1} \geq 0 \text { and } x_{2} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is $P\left(X_{1} \geq 1 \mid X_{2} \geq 1\right)$? Are X_{1} and X_{2} independent?
5. (10) Consider the Gauss-Markov process given by $\xi_{k+1}=A \xi_{k}+B w_{k}$ for all $k \in \mathcal{K}$ where $\mathcal{K} \doteq\{0,1,2 \ldots\}$ where $\left\{w_{k}\right\}_{k \in \mathcal{K}}$ is an IID sequence of random variables with $w_{k} \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right)$ for all $k \in \mathcal{K}$. Let $\xi_{0} \sim$ $\mathcal{N}\left(\bar{x}_{0}, C_{0}\right)$, and suppose ξ_{0} is independent of w_{k} for all k. Suppose

$$
A=\left(\begin{array}{cc}
0 & 0.5 \\
0.5 & 0
\end{array}\right), \quad B=\binom{2}{0} \quad \text { and } \quad \bar{x}_{0}=\binom{1}{2} .
$$

If possible, find a value of C_{0} such that $C_{k}=C_{0}$ for all k. If that is not possible, indicate why. How about $C_{2 k}=C_{0}$ for all k ?

