Problem 1.

Solution. Mean motion $n = \sqrt{\frac{mu}{a^3}} = 2.69975 \times 10^{-4} \text{ rad/s.}$ Mean anomaly $M = n(t - \tau) = 2.69975 \times 10^{-4} \text{ rad/s} \times 2.5 \text{ hrs} = 2.42977 \text{ rad.}$ Eccentric anomaly E: use Newton's iteration to find E. If starting from $E_0 = M$, the first few iterations are

	κ	E_k
	0	2.429771612202175
	1	2.666685855513955
	2	2.660949960140585
	3	2.660947344723798
	4	2.660947344723250
We have $E \approx 2.660.95$ rad. Then $\nu = 2 \arctan\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}\right) \approx 2.860.49$ rad.		
Distance from the planet to spacecraft $R = \frac{a(1-e^2)}{1+e\cos\nu} = 20206.9\mathrm{km}.$		
Position $\vec{R} = R \begin{pmatrix} \cos \nu \\ \sin \nu \\ 0 \end{pmatrix} = \begin{pmatrix} -1941 \\ 5605.' \\ 0 \end{pmatrix}$ Velocity $\vec{v} = \sqrt{\frac{\mu}{a(1-e^2)}} \begin{pmatrix} -\sin \nu \\ e + \cos \nu \\ 0 \end{pmatrix}$	$ 3.8 \\ 71 $	km. $\begin{pmatrix} -1.21074 \\ -2.01088 \\ 0 \end{pmatrix}$ km/s.

Problem 2.

Solution.

Eccentric and True Anomaly vs. Mean anomaly $\left(e=0.1\right)$

Eccentric and True Anomaly vs. Mean anomaly (e = 0.1)

Problem 3.

Solution. By vis-viva equation, specific energy $\mathcal{E} = -\frac{\mu}{2a} = -3.569 \text{ MJ/kg}$. Given r = 5000 km, solving for v, we have

$$v = \sqrt{2\left(\mathcal{E} + \frac{\mu}{r}\right)} \approx 3.161\,20\,\mathrm{km/s}.$$

Given $v = 3.2 \,\mathrm{km/s}$, solving for r, we have

$$r = -\frac{\mu}{\mathcal{E} - \frac{v^2}{2}} \approx 4928.99 \,\mathrm{km}.$$

Problem 4.

Solution.

The distance from planet center to the vehicle is r = 2106 km + 50 km = 2156 km. By vis-viva equation, the minimum speed v to escape from this point satisfies

or by the escape speed formula directly

$$\mathcal{E} = 0 = \frac{v^2}{2} - \frac{\mu}{r} \quad \rightsquigarrow \quad v = \sqrt{\frac{2\mu}{r}} \approx 6.303\,10\,\mathrm{km/s}.$$

Problem 5.

Solution. Using vis-viva equation, we find

$$\mathcal{E} = -\frac{\mu^2(1-e^2)}{2h^2} \approx 2.599\,54\,\mathrm{MJ/kg}.$$

Given r = 4000, solving for v yields

$$v = \sqrt{2\left(\mathcal{E} + \frac{\mu}{r}\right)} \approx 5.15879 \,\mathrm{km/s}.$$

Similarly, for $r = 1 \times 10^4 \,\mathrm{km}$,

$$v = \sqrt{2\left(\mathcal{E} + \frac{\mu}{r}\right)} \approx 3.710\,08\,\mathrm{km/s}.$$

For $r = 1 \times 10^6 \,\mathrm{km}$,

$$v = \sqrt{2\left(\mathcal{E} + \frac{\mu}{r}\right)} \approx 2.298\,86\,\mathrm{km/s}.$$