Problem 1.

Solution.
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Problem 2.
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Solution. Consider h = 7 x ¥. We see that

h=7FXxXU+7x1.
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But since 7 = ¥, we simply have

h=7xTft.
Case 1:
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We conclude that  is constant, and in particular, its direction does not change. But since h is
always orthogonal to both 7 and ¥ = 7, it follows that the the relative motion of the two bodies
stays in the same plane.
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We note that 7 x # = h. Hence h = —cyh. Despite that h # 0, the change of his always parallel

to h itself. Hence the direction of h does not change. Again, since h is orthogonal to both 7 and
¥ = 7, the the relative motion of the two bodies stays in the same plane.



Problem 3.

Recall that specific energy is an integral of motion. The specific energy can firstly be computed
using r = 6000 km and v = 5.6km/s, yielding
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~ 8.5419km? /2.

Then at r = 8000 km, we may solve for v again, getting
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