
Problem 1.

Solution.

Write r⃗ =

r1
r2
r3

 and v⃗ =

v1
v2
v3

. We have

d

dt
(r⃗ × v⃗) =

d

dt

r2v3 − r3v2
r3v1 − r1v3
r1v2 − r2v1

 =
d

dt

r2v3
r3v1
r1v2

−

r3v2
r1v3
r2v1


=

ṙ2v3
ṙ3v1
ṙ1v2

+

r2v̇3
r3v̇1
r1v̇2

−

ṙ3v2
ṙ1v3
ṙ2v1

−

r3v̇2
r1v̇3
r2v̇1


=

ṙ2v3
ṙ3v1
ṙ1v2

−

ṙ3v2
ṙ1v3
ṙ2v1


︸ ︷︷ ︸

+

r2v̇3
r3v̇1
r1v̇2

−

r3v̇2
r1v̇3
r2v̇1


︸ ︷︷ ︸

= ˙⃗r × v⃗ + r⃗ × ˙⃗v.

Problem 2.

Solution. Consider h⃗ = r⃗ × v⃗. We see that

˙⃗
h = ˙⃗r × v⃗ + r⃗ × ˙⃗v.

But since ˙⃗r = v⃗, we simply have
˙⃗
h = r⃗ × r̈.

Case 1:
˙⃗
h = r⃗ ×

(
−c1

e−|r⃗| + 1

|r⃗|3
r⃗

)
= −c1

e−|r⃗| + 1

|r⃗|3
���r⃗ × r⃗ = 0.

We conclude that h⃗ is constant, and in particular, its direction does not change. But since h⃗ is
always orthogonal to both r⃗ and v⃗ = ˙⃗r, it follows that the the relative motion of the two bodies
stays in the same plane.
Case 2:

˙⃗
h = r⃗ ×

(
−c1

e−|r⃗| + 1

|r⃗|3
r⃗ − c2 ˙⃗r

)
= −c1

e−|r⃗| + 1

|r⃗|3
���r⃗ × r⃗ − c2r⃗ × ˙⃗r = −c2r⃗ × ˙⃗r.

We note that r⃗ × ˙⃗r = h⃗. Hence
˙⃗
h = −c2h⃗. Despite that

˙⃗
h ̸= 0, the change of h⃗ is always parallel

to h⃗ itself. Hence the direction of h⃗ does not change. Again, since h⃗ is orthogonal to both r⃗ and
v⃗ = ˙⃗r, the the relative motion of the two bodies stays in the same plane.



Problem 3.

Recall that specific energy is an integral of motion. The specific energy can firstly be computed
using r = 6000 km and v = 5.6 km/s, yielding

E =
1

2
v2 − µMars

r
≈ 8.5419 km2/s2.

Then at r = 8000 km, we may solve for v again, getting

v =

√
2
(
E +

µMars

r

)
=

√
2

(
8.5419 km2/s2 +

42 828.4 km3/s2

8000 km

)
≈ 5.2717 km/s.


