Last lecture

For any two-body problem,
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Coordinate system

We consider a cylindrical coordinate system whose third (i.e. z-)
axis points in the same direction as h. Recall that A is orthogonal
to both R and v. This implies that the trajectory of R is planar,
i.e. there is no motion along the z-axis.

We write
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Angular momentum revisited

Observe then
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This implies that || = R2§. (Note in particular that
4(R%0) = 2RR0 + R?0 = R(2R6 + RH) = 0.)
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Acceleration due to gravitation
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Let /1(0(t)) = | sin(A(t)) | and 2(0(t)) = [ cos(d(t)) |.
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Then R = RI%.
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whereas by the formula for gravitational force

Y |
a——ﬁl.

Equating these two expressions, we get the following equations:

R—Ré2+%:0, 2R + RO = 0.



Shape of the Orbit

If we think of R as a function of § (and € is in turn a function of

time), then the equation above may be rewritten as
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Dividing both sides by 62, we have
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Dividing again by R?, we arrive at
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The solution to the ODE above is of the form

p
R(0) =
(9) 1+ ecos(f —w)’

where p,e > 0, w € [0, 27).
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Eccentricity

The constant e in (}) is known as the “eccentricity”. If e =0, the
orbit is a circle. If e € (0,1), the orbit is an ellipse. The origin of
the coordinate system (i.e. the center of the planet) is the focus
(not the center) of the ellipse.

By (}), for e € [0,1), R reaches its minimum when § —w = 0 and
R reaches its maximum when 6§ — w = 7. Hence the semi-major
axis a of the orbit is given by
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