Two-body problem

Consider two spherically symmetric objects with mass m; and m»
and position X1 and X2 respectively, interacting with each other via
gravity. The potential energy of the system is given by
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Equation of motion

The equation of motion for each object is given by
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Dividing by mass, we obtain
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Center of mass and relative position

Instead of X1, X2, we may also describe the system by its center of
mass and relative position from 1 to 2.
The center of mass of the system is given by
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The relative position is given by
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EOM for center of mass
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We conclude that the center of mass moves in a straight line; that
is,
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EOM for relative position
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In the case where object 1 is the Earth and object 2 is a
spacecraft, we may neglect the mass of the spacecraft and wrirte

the equation above as
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where o = Gm, ~ 398 600.4 km3/s2.



Specific angular momentum

The “specific angular momentum” is defined as h= R x ¥ (where
V=R).
Observe that
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Since & x (k&) = 0 for all scalars k and all vectors 3, by (), we
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By properties of cross product, his always orthogonal to R and V.
That is, R and ¥ lie in the plane whose normal vector is (parallel
to) h.

Let &, denote the unit vector in the direction of h. i), defines the
plane in which the spacecraft moves. Let h denote the magnitude
of h. h (partially) defines how the spacecraft moves in the plane.



Specific energy

Multiplying (%) by v (dot product), we have
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Indeed, the RHS may be rewritten as
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We see that £ = 5- — I% is constant. This is known as the

“specific energy”.



