Last lecture

▶ True anomaly as a function of time.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

▶ Position and velocity formulae.

Vis-viva equation

From the velocity equation, we obtain

$$
\begin{split} |\vec{v}|^2 &= \frac{\mu}{a(1 - e^2)} (\sin^2(\nu) + (e + \cos(\nu))^2) \\ &= \frac{m u}{a(1 - e)^2} (\sin^2(\nu)^2 + \cos^2(\nu) + 2e \cos(\nu) + e^2) \\ &= \frac{m u}{a(1 - e)^2} (2(1 + e \cos(\nu)) + e^2 - 1) = \frac{2\mu(1 + e \cos(\nu))}{a(1 - e^2)} - \frac{\mu}{a} \\ &= \frac{2\mu}{R} - \frac{\mu}{a}. \end{split}
$$

That is, $\frac{v^2}{2} = \frac{\mu}{R} - \frac{\mu}{2a}$ $\frac{\mu}{2a}$. More generally, for non-elliptical orbits, we still have

$$
\frac{v^2}{2}=\frac{\mu}{R}-\frac{\mu^2(1-e^2)}{2h^2}, \text{ or } \mathcal{E}=\frac{v^2}{2}-\frac{\mu}{R}=-\frac{\mu^2(1-e^2)}{2h^2}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Eccentricity

From the boxed equation in the previous slide, we see that

- ▶ $\mathcal{E} < 0 \iff e \in [0, 1)$ (elliptic), and in this case $R < -\frac{\mu}{\mathcal{E}}$ $\frac{\mu}{\mathcal{E}}$;
- ▶ If $\mathcal{E} = 0 \iff e = 1$ (parabolic), and in this case $R \to \infty$ as $\nu \rightarrow +\pi$;
- ▶ If $\mathcal{E} > 0 \iff e > 1$ (hyperbolic), and in this case $R \to \infty$ as $\nu \rightarrow \pm \arccos(-e^{-1}).$

The escape speed is therefore given by solving $\mathcal{E} = 0$ for v, yielding

$$
v=\sqrt{\frac{2\mu}{R}}.
$$

KORKAR KERKER SAGA

Earth-centered Inertial (ECI) system

ECI is a right-handed coordinate system centered at the Earth. We refer to its 3 coordinate axes as I^1 , I^2 and I^3 axes (in lieu of $x,\,y,\,z)$. Its $I³$ -axis is aligned with the rotation axis of the Earth (i.e. from the south pole to the north pole).

For a given orbit, the intersection of the orbit plane and the I^1 - I^2 plane is known as the line of nodes. The angle between the I^1 axis and the line of nodes is the longitude of node Ω. The (dihedral) angle from the I^1 - I^2 plane to the orbit plane is the inclination i .

We rotate the ECI axes by Ω about the I^3 axis first and then by i about the i axis, thus obtaining a new coordinate system $\hat{\hat{I}}^{1,2,3}$ in which the orbit plane coincides with the $\hat{\hat{I}}^1\text{-}\hat{\hat{I}}^2$ plane and the angular momentum is in the direction of $\hat{\hat{I}}^3$. In the \hat{j}^{1} - \hat{j}^{2} plane, the angle from \hat{j}^{1} to the line from the origin is the argument of periapsis $\omega.$ Hence lastly, we rotate about $\hat{\hat{I}}^3$ axis by $\omega,$ so that periapsis is on (the positive) $\hat{\hat{I}}^1$ axis.