Last lecture

Geodetic coordinates (conversion from and to ECEF)

ENU coordinates

The East-North-Up coordinate system is a local coordinate system with coordinate axes in the direction of east, north, and (geodetic) upward direction. Suppose the coordinate system is centered at some point $\vec{R}_{\rm g}^{\rm EF}$ on the Earth with longitude λ and (geodetic) latitude ϕ , which we refer to as the ground station. Suppose there is a spacecraft at \vec{R}^{EF} . Let $\vec{R}^{\text{EF}}_{\Delta}=\vec{R}^{\text{EF}}-\vec{R}^{\text{EF}}_{\mathcal{g}}$. This is the relative position from the ground station to the spacecraft. The conversion from ECEF coordinates to ENU coordinates is as follows:

$$
\vec{\mathcal{R}}^{\mathrm{ENU}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \, \mathcal{G}_2^{-\phi} \mathcal{G}_3^{\lambda} \vec{\mathcal{R}}^{\mathrm{EF}}_{\Delta}.
$$

KORK EXTERNE PROVIDE

Ground track

We shall assume that the Earth is spherical for this part. Consider an orbit with $e = 0$, $i = 0$, $\omega = 0$, $\Omega = 0$. Let $a = 42164$ km so that $n=\sqrt{\frac{\mu}{a^3}}=\omega_e$. Suppose at $t = 0$, the true anomaly $\nu(0) = \nu_0$, then $\nu(t) = E(t) = M(t) = \nu_0 + \omega_e t$. Then

$$
\vec{R}^{\text{peri}}(t) = a \begin{pmatrix} \cos \nu(t) \\ \sin \nu(t) \\ 0 \end{pmatrix} = a \begin{pmatrix} \cos(\nu_0 + \omega_e t) \\ \sin(\nu_0 + \omega_e t) \\ 0 \end{pmatrix}.
$$

Converting it into ECEF (assuming that ECEF aligned with ECI at $t = 0$, we have

$$
\begin{aligned} \vec{R}^{\text{EF}}(t) &= \mathsf{G}_3^{\omega_e t} \vec{R}^{\text{ECI}}(t) = \mathsf{G}_3^{\omega_e t}[(\mathsf{G}_3^\Omega)^\top (\mathsf{G}_1')^\top (\mathsf{G}_3^\omega)^\top \vec{R}^{\text{peri}}(t)] \\ &= \mathsf{G}_3^{\omega_e t} \vec{R}^{\text{peri}}(t) = \mathsf{a} \begin{pmatrix} \cos \nu_0 \\ \sin \nu_0 \\ 0 \end{pmatrix}. \end{aligned}
$$

KORKARA REPASA DA VOCA

Satellites in this orbit hover over a point on the equator.

Ground track

We shall assume that the Earth is spherical for this part. Consider an orbit with $a = 42164$ km, $e = 0$, $i \neq 0$, $\omega = 0$, $\Omega = 0$. We also assume that $\nu(0) = 0$. Then

$$
\vec{R}^{\text{peri}}(t) = a \begin{pmatrix} \cos(\omega_e t) \\ \sin(\omega_e t) \\ 0 \end{pmatrix}.
$$

We have

$$
\begin{aligned} \vec{\mathsf{R}}^{\mathrm{EF}}(t) &= G_3^{\omega_e t} \vec{\mathsf{R}}^{\mathrm{ECI}}(t) = G_3^{\omega_e t}[(G_3^\Omega)^\top (G_1^i)^\top (G_3^\omega)^\top \vec{\mathsf{R}}^{\mathrm{peri}}(t)] \\ &= G_3^{\omega_e t} (G_1^i)^\top \vec{\mathsf{R}}^{\mathrm{peri}}(t) \\ &= G_3^{\omega_e t} \begin{pmatrix} \cos(\omega_e t) \\ \cos(i) \sin(\omega_e t) \\ \sin(i) \sin(\omega_e t) \end{pmatrix} = \begin{pmatrix} \cos^2(\omega_e t) + \cos i \sin^2(\omega_e t) \\ \cos(\omega_e t) \sin(\omega_e t) [\cos(i) - 1] \\ \sin(i) \sin(\omega_e t) \end{pmatrix}. \end{aligned}
$$

Ground track

We shall assume that the Earth is spherical for this part. The plot below visualizes the ground track for several inclinations.

 QQ 4 0 F 4 f F + 4 三下 \sim $=$ \rightarrow э