
MAE 142 Air Vehicles. . .
Take-Home Final

Due date/time: Saturday, 14 Dec., 2024; 6pm

Please note that an additional two-hour window for late arrivals
will be provided, but this extension deadline is a hard limit

You must show all work, including your codes, in order to get credit.

1. (15 points) Consider our aircraft from class and homework, with lift, drag, attitude
and thrust such that it is making a constant-speed, constant-altitude turn. Suppose
the average wind velocity is zero, and that the (constant) groundspeed is s̄ = 0.26
km/sec, and that the (constant) angular rate is ω = 0.026 radians/sec (turning
counterclockwise from when looking from above), yielding a turn radius of approxi-
mately R = 10 km. Suppose the (constant) altitude is H = 5 km. Let the nominal
vehicle dynamics model and nominal/expected initial state be

dx

dt
(t) =

d

dt


r1
r2
r3
v1
v2
v3

 (t) = Âx(t) + B̂u(t)
.
=

(
03 I3
03 03

)
x(t) +

(
03

I3

)
u(t),

x̄′(0) = (r̄′(0), v̄′(0)) =
(
R/2, 0, 0, 0, s̄, 0

)
,

where r = (r1, r2, r3)
′ denotes the aircraft position, v = (v1, v2, v3)

′ denotes the
aircraft velocity, u = (u1, u2, u3)

′ denotes the nominal aircraft acceleration (control),
I3 denotes the 3-by-3 identity matrix and 03 denotes the 3-by-3 zero matrix. In
particular, u(t) = −ω2r(t) km/sec2. Let us take a simple model for the noise
process, where in particular, we let the actual dynamics be given by

dX̂

dt
(t) = ÂX̂(t) + B̂u(t) +

(
03

σ̂I3

)
˙̂w(t),

where σ̂ = 0.005, and ˙̂w(t) formally denotes the “derivative” of a three-dimensional
Brownian motion. Note that the expectation of X̂(0) is E[X̂(0)] = x̄(0).

Let the covariance of the initial state be

C0 =

(
c1,0I3 c2,0I3
c2,0I3 c3,0I3

)
,

with c1,0 = 0.001 km2, c2,0 = 0 and c3,0 = 0.0001 km2/sec2. (N.B.: this is even
more unrealistic wrt the third and sixth components than the other details of the
problem, but it’s simpler for our needs here.)
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We discretize time as {t0, t1, t2 . . . } with t0 = 0 and tk+1 − tk = ∆t
.
= 1.0 sec for all

k ≥ 0. The discretized model of the true dynamics is

Xk+1 = AXk +

(
03

σI3

)
wk, X0 ∼ N (x̄(0), C0), (1)

where σ
.
=
√

∆t σ̂ and the wk are independent, identically-distributed random vari-
ables, all with mean zero and covariance Cw = I3.

(a) What should A be?

(b) Plot r2(t) versus r1(t) for t ∈ [0, 2π/ω]. In this same plot window, using some
markers, say points or circles, plot the zero-noise trajectory points over this
same time interval. That is, plot the second versus the first components of
what one obtains from Xk+1 = AXk for k = 0, 1, 2 . . . K for appropriate K,
with X0 = x̄(0).

(c) In this same plot window, using different markers, over this same time interval,
plot the second versus the first components of what one obtains from (1) for
k = 0, 1, 2 . . . K for appropriate K, with X0 = x̄(0) and the random sequence,
wk, being generated with the aid of the “randn” function in matlab.

(d) In a separate plot window, make 1000 runs, each with a new random sequence,
and plot all the resulting first, second and third components of X25 and of
X100 values as points and circles (or differing markers of your own choice),
respectively. (That is, use matlab’s plot3 function.) Do the same for the
fourth, fifth and sixth components.

(e) Propagate the covariances of theXk, which we will denote by Ck, by the method
we obtained in class. Discuss plots you obtained in response to question 1d in
the context of the standard deviations obtained here.

(f) Discuss the nonzero components of the off-diagonal blocks of the Ck covariance
matrices. By “off-diagonal blocks”, we mean the [Ck]i,j elements of the matrices
for i ∈ {1, 2, 3} with j ∈ {4, 5, 6} and vice-versa.

2. (15 points) Now suppose we have some satellite-based observations. Consider the
same situation as in problem 1, but with the following changes.

• Take σ̂ = 0.005 (still with σ
.
=
√

∆t σ̂).

• Let c1,0 = 10.0 km2, c2,0 = 0 and c3,0 = 1.0 km2/sec2.

• Let ∆t = 4.0 sec (still with Cw = I3 though).

For simplicity, we will assume that the satellites are in fixed positions, with states
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given by

xs,1 =


8000
100
800
0
0
0

 , xs,2 =


100
8000
800
0
0
0

 , xs,3 =


1000
2000
5000

0
0
0

 , xs,4 =


2000
100
2000

0
0
0

 .

Suppose the satellites emit signals exactly once per time-step and all at the same
moment for simplicity. At each time tk+1, the air vehicle receives the four observa-
tions

yjk+1 = |rk+1 − rs,j|+ tk+1 + νjk+1,

where tk+1 denotes the signal emission time (i.e., (k + 1)∆t), r
k+1 denotes the actual

air vehicle position at time tk+1 (i.e., the first three components of its actual state,
generated from equation (1)), rs,j denotes the position of the jth satellite and νjk+1

denotes the noise affecting the yjk+1 observation. Let the variance in the noise be
σ2 = 10−4 for each observation. Note that we are taking the speed of light to
be c = 1.0 km/sec for simplicity, and to avoid any concerns with catastrophic
subtraction. At each time-step, you should take the a priori variance of tk+1 to be
σ2
t = 100.0 sec, roughly corresponding to very little knowledge of the actual signal

emission time. (With regard to this seemingly large value of σ2
t = 100.0, keep in

mind that we’re simplifying with c = 1.0 km/sec!)

(a) What should Hk+1 be? Note that in the observation-update portion of the
Kalman filter for navigation with this type of observation, you should append
your state to include the time of signal emission. If you process each observation
separately, this yields, in the case of our air vehicle model, a 1 × 7 Hk+1,
three components each for position and velocity, and the one component for
signal emission time. If you process all satellite observations together, Hk+1

will have dimension nsat × 7, where nsat is the number of satellites generating
observations.

N.B.: The a priori covariance will also need to be appended with σ2
t in the (7, 7)

entry and zeros in the (j, 7) and (7, j) entires for j ∈ {1, 2 . . . 6}.) Further, in
that case, you will need to keep the emission-time estimate as part of the state
estimate between each of the observation updates, until all three or four of
these have been completed. You should drop the emission-time component of
the state estimate and covariance, before continuing with the dynamics update.
That is, during the observation updates, you work with a seven-dimensional
state, and during the dynamics updates, you work with a six-dimensional state.

(b) Suppose you only took one observation step, and no dynamics propagation,
that is, you only take the satellite-based observations of the air vehicle initial
state. In the case of observations by all four satellites, what would the resulting
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a posteriori covariance for the air vehicle state be? What would it be if you
only had observations from the first three satellites?

(c) Simulate the system again, and plot the resulting observations, subtracting the
time of each observation from them in order to normalize the plots a bit.

(d) The steps below are the final boss takedown.

(e) Build the Kalman-filter based navigator for this problem, and embed it in your
simulation.

(f) Run your resulting navigator simulation with all four satellites. Use matlab’s
plot3 to generate the following, all in the same plot window. First plot the
nominal/zero-noise air vehicle trajectory. In the same window, with markers
such as red points, plot the position-components of the discrete-time model tra-
jectory given by equation (1). In the same window, with different markers, plot
the a priori position-components of the state trajectory estimate. In the same
window, with yet different markers, plot the a posteriori position-components
of the state trajectory estimate. Generate the same plots for the case where
only the first three satellites are functioning.

(g) Create analogous plots as in item 2f, but for the velocity components instead
of position. Was the satellite data useful for estimating the velocity?

(h) What were the a priori and a posteriori state-covariance matrices at the termi-
nal time? In words compare the square-roots of the diagonal elements of these
matrices with the errors in the state estimates at the terminal time.

(i) Could you propagate the a priori and a posteriori covariance matrices without
actually generating the observations?
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