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Full simulation models for flexible air-breathing hypersonic vehicles include intricate couplings between the

engine and flight dynamics, along with complex interplay between flexible and rigid modes, resulting in intractable

systems for nonlinear control design. In this paper, starting from a high-fidelity model, a control-oriented model in

closed form is obtained by replacing complex force and moment functions with curve-fitted approximations,

neglecting certain weak couplings, and neglecting slower portions of the system dynamics. The process itself allows

an understanding of the system-theoretic properties of the model, and enables the applicability of model-based

nonlinear control techniques.Although the focus of this paper is on thedevelopment of the control-orientedmodel, an

example of control design based on approximate feedback linearization is provided. Simulation results demonstrate

that this technique achieves excellent tracking performance, even in the presence of moderate parameter variations.

The fidelity of the truth model is then increased by including additional flexible effects, which render the original

control design ineffective. A more elaborate model with an additional actuator is then employed to enhance the

control authority of the vehicle, required to compensate for the new flexible effects, and a new design is provided.

Nomenclature

A��� = decoupling matrix of Lie derivatives
CD��; �e� = drag coefficient
C�

i

D = ith order coefficient of � contribution to
CD��; �e�

C�
i
e
D = ith order coefficient of �e contribution to

CD��; �e�
C0
D = constant term in CD��; �e�
CL��; �e� = lift coefficient
C�

i

L = ith order coefficient of � contribution to
CL��; �e�

C�eL = coefficient of �e contribution to CL��; �e�
C0
L = constant term in CL��; �e�
CM;Q��;Q� = contribution to moment due to pitch rate
CM;���� = contribution to moment due to angle of attack
CM;�e��e; �c� = control surfaces contribution to moment
C�

i

M;� = ith order coefficient of � contribution to
CM;����

C0
M;� = constant term in CM;����
C�

i

T ��� = ith order coefficient of � in T
�c = mean aerodynamic chord
cc = canard coefficient in CM;�e ��e; �c�
ce = elevator coefficient in CM;�e ��e; �c�
D = drag
Fx = xB direction force component
Fz = zB direction force component
g = acceleration due to gravity
h = altitude
href = altitude reference trajectory
h0 = nominal altitude for air density approximation
Iyy = moment of inertia
KV = LQR gain for outer-loop V controller
K� = LQR gain for outer-loop � controller
kec = Eelevator/canard interconnection gain
ki = 1� ~ i=Iyy
L = lift
Lv = vehicle length
Lf’ = Lie derivative of the function ’ along the vector

field f
M = pitching moment
M1 = freestream Mach number
m = vehicle mass
Ni = ith generalized force
N�

j

i = jth order contribution of � to Ni
N0
i = constant term in Ni

N�e2 = contribution of �e to N2

Q = pitch rate
QV = LQR design weight for V loop
Q� = LQR design weight for � loop
�q = dynamic pressure
RV = LQR control weight for V loop
R� = LQR control weight for � loop
S = reference area
T = thrust
U = velocity component in the xB direction
uV = control input for outer V loop
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u� = control input for outer � loop
V = velocity
Vref = velocity reference trajectory
W = velocity component in the zB direction
x = state of the control-oriented model
xB = body axis coordinate frame x direction
xCFM = state of the curve-fitted model
xTM = state of the truth model
xTMH = state of the truth model with heave coupling
x0 = trim condition
z = state of the control-oriented model in normal

form
zB = body axis coordinate frame z direction
zT = thrust to moment coupling coefficient
z0 = trim condition
� = angle of attack
�i�h; �q� = ith thrust fit parameter
��x� = diffeomorphism corresponding to normal form

of COM
� = flight path angle, � � � � �
�ref = reference trajectory for �
�T0 = total temperature change across combustor
�c = canard angular deflection
�e = elevator angular deflection
� = damping ratio for the � dynamics
�i = damping ratio for elastic mode �i
�i = ith generalized elastic coordinate
� = pitch angle
�i = inertial coupling terms for ith elastic mode
	 = air density
� = stoichiometrically normalized fuel-to-air ratio
�c = commanded value of �
~ i = constrained beam coupling constant for �i
! = natural frequency for the � dynamics
!i = natural frequency for elastic mode �i
1=hs = air density decay rate

Introduction

A IR-BREATHING hypersonic vehicles may eventually allow
dramatic reductions in flight times for both commercial and

military applications. Direct access to Earth orbit without the use of
separate boosting stages may also become possible as scramjet-
powered aircraft enter service. Although numerous challenges
remain, recent successes with NASA’s X-43a and renewed research
activities throughout the aerospace community suggest that this
technology may be on its way to assuming a role in the next
generation of aviation.

The design of guidance and control systems for air-breathing
hypersonic vehicles requires the control engineer to deal with strong
couplings between propulsive and aerodynamic effects while also
addressing the significant flexibility associated with the slender
geometries required for these aircraft [1–3]. Most control schemes
proposed to date have been limited in their scope to the longitudinal
dynamics of hypersonic vehicles. A wide range of control laws have
been developed for linearized versions of hypersonic models [1,2,4–
6], whereas a few have also attempted to incorporate guidance [7,8].
Tournes et al. employed a nonlinear variable structure control
approach in [9], whereas several other nonlinear control approaches
have been proposed for nearly nonflexible models [10–13] This
paper builds on results presented in [14] and now includes more
extensive analysis along with a control design for a more
sophisticated version of the model.

Real-world models rarely match the assumptions required for a
given control technique. As a result, modifications and/or simpli-
fications must be made to the mathematical model of the plant to
allow the application of a given technique, or a new methodology
must be devised. This paper chooses the former course to develop a
simplified control-oriented version of a rich hypersonic vehicle
model. The goal is to demonstrate the effectiveness of modeling
specifically for control design and to emphasize the advantages in

exploiting the inherent connections between modeling and control.
To this end, the presented material tracks the development of two
versions of the model, and highlights the required changes to the
control-oriented model as the complexity of the original plant is
increased. By carefully selecting the simplified version of the model
used for design, and by representing the neglected portion of the
dynamics as uncertainties or perturbations, the application of well-
established nonlinear control techniques, which was previously
prevented by the complexity of the original model, becomes a
possibility. As an example, a control design based on approximate
feedback linearization, a technique that has previously been applied
to other aircraft models with good results [15,16], is presented in this
paper.

Throughout this document, a variety ofmodels will be considered.
Indeed, one focus of this research is the development of simplified
models suitable first for analysis and later for control of an original
model that is analytically intractable. The term “truth model”will be
used to refer to a full simulation model that acts as the plant for
verification of the presented control designs. As already mentioned,
two truthmodelswill be considered in this document, beginningwith
the flexible air-breathing hypersonic vehicle developed by Bolender
and Doman [3]. In this work, compressible flow theory was
employed to obtain a more complex and accurate model than those
developed in earlier, similar efforts [18,19]. This first model will be
referred to as simply the truth model (TM) andwill be used solely for
simulation and control design verification. Following the successful
design of linear controllers [17] for theTM, the next logical step is the
synthesis of a nonlinear control law. The application of nonlinear
techniques avoids the need for gain scheduling or other similar
techniques by using a globally valid model for control design. In
addition, the modeling efforts required to complete a nonlinear
design offer insights into the structure of a plant that are lost by taking
a simple Jacobian linearization. The more intricate control law also
offers the potential for an increased domain of attraction for a
stabilized equilibrium and increased robustness. Naturally these
benefits are not guaranteed by the mere selection of a nonlinear
approach, but the potential for improved performance warrants the
exploration of these alternative techniques. In this initial study, a
feedback linearization approach will be pursued, because this
technique is the simplest one that takes full advantage from the
availability of a nonlinear control-oriented model.

Intricate interactions between the structural, aerodynamic, and
propulsion system equations in the TM result in exceedingly
complex expressions for the aerodynamic forces and coupling terms
between the flexible states and the other equations of motion. When
written in a form suitable for control, these equations are clearly
analytically intractable, even with the aid of a computer algebra
system. The first step in the control design process is the creation of a
curve-fitted model (CFM), which approximates the behavior of the
truth model with reduced complexity. Rather than linearizing the
model numerically or attempting to fit a nonlinear model to
simulation results, curve fits are calculated directly from the forces
and moments included in the truth model. The curve fits can then be
used analytically to study the behavior of the model from a control
engineer’s perspective. The resulting nonlinear CFM is atfirst glance
similar to those given in previous works [11,13]. However, as
opposed to the models considered in [11,13], the addition of flexible
states, increased complexity of the engine model, and additional
parasitic couplings between the control effectors and the
aerodynamic forces create an unstable zero dynamics with respect
to the controlled variables and drastically increase the complexity of
the vehicle’s governing equations. The nonminimumphase character
of this model stems from the pitch dynamics, which introduce a
single positive real transmission zerowith the given choice of control
input. The resulting system possesses vector relative degree twowith
7-D internal dynamics.

Rather than attempting to design a controller directly for this
unstable, nonminimum phase system, the model is further simplified
to allow the application of approximate feedback linearization
techniques [15]. The flexible states, altitude dynamics, and a set of
weak couplings are removed from the CFM and treated as a dynamic
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perturbation to a control-oriented model (COM), which can be
shown to possess full vector relative degree with appropriate
dynamic extension. Thus, a straightforward design of a feedback
linearization control law can be completed for the COM. An outer-
loop controller is then designed using linear quadratic regulator
(LQR) methods with integral augmentation and a reference model.
Simulation studies reveal that, despite the simplification of the plant
dynamics, this control law performs well on both the CFM and the
TM.

Next, a second, more elaborate, version of the truth model is
considered. This model, which includes heave coupling, will be
denoted the truthmodel with heave coupling (TMH). The term heave
coupling refers to excitation of the flexible modes by changes in the
body axis vertical acceleration. For small values of �, this

acceleration is nearly equivalent to �h. This coupling results in a
significantly more complex interconnection between the flexible and
rigid dynamics [3]. Unlike the TM, where the only nonminimum
phase zero originated from the pitch dynamics, the TMH includes an
additional complex conjugate pair of nonminimum phase zeros,
which arise due to the increased excitation of the flexible states. As a
result, the COM no longer constitutes a valid approximation of the
model, and the control law designed on the basis of the COM is
unable to stabilize the TMH. It has been recognized that to overcome
these difficulties, which manifest themselves in linearized models as
well, the control authority should be enhanced by an additional
control effector, specifically a canard [20]. In the cited reference, the
canard is used to suppress the nonminimum phase behavior of a
linearized version of the TMH. Here, this modification is
incorporated in a new version of the COM, and used to partially
cancel the coupling of the elevator deflection to the lift force,while its
contribution to the other aerodynamic forces is accounted for by a
modified curve-fitted model. It is shown that, by ganging the canard
with the elevator and carefully tuning the relative gain, the effect of
the perturbation introduced by the heave coupling is attenuated to an
extent that allows the COM to be effectively used for model-based
control design for the TMH.

Description of the Truth Model

The TM was developed by Bolender and Doman [3] and Groves
et al. [17] as an attempt to extend earlier work done by Chavez and
Schmidt [18]. It should be noted that [3] pertains to the richer truth
modelwith heave coupling discussed later in this paper, whereas [17]
addresses the TM specifically. In the present work, the total
temperature change across the combustor input�T0 used in [17] has
been replaced with the functionally equivalent control input �, the
fuel-to-air ratio. The change was made because � is a more natural
input choice for aerospace systems and to avoid numerical scaling
issues [3].

Figure 1 illustrates the basic geometry of the vehicle model, which
incorporates only the longitudinal dynamics and assumes unit depth
into the page. Because [3] offers an extensive explanation of the
model derivation, only a brief summary of the employed techniques
will be given here. Note that [3] also includes additional coupling
effects that are not considered until later in this document. Rather
than using the relatively simple approach of Newtonian Impact

Theory [18], the model was derived using compressible flow theory.
A combination of oblique shock and Prandtl–Meyer flow theory was
used to determine the pressures across the range of possible angles of
attack and structural bending conditions. The engine model is a
scramjet taken directly from the paper by Chavez and Schmidt [18].
Because the angle of attack plays a significant role in determining the
air flow properties into the scramjet engine, the thrust becomes
heavily dependent on �. In addition, the underslung nature of the
scramjet in this model produces a nose-up pitching moment directly
proportional to thrust. The result is a loop interconnection between
the propulsive and aerodynamic effects that must be carefully
accounted for during control design. Themodel also includesflexible
effects. For simplicity, the hypersonic vehicle (HSV) is modeled as a
pair of cantilever beams, assumed to obey Hook’s law, that are
clamped at the craft’s center of gravity. A derivation based on
Lagrange’s equations yields the equations of motion of the
longitudinal dynamics for the HSV given by

_h� V sin�� � �� _V � 1

m
�T cos � �D� � g sin�� � ��

_�� 1

mV
��T sin� � L� �Q� g

V
cos�� � �� _��Q

Iyy _Q�M� ~ 1 ��1 � ~ 2 ��2

k1 ��1 ��2�1!1 _�1 � !2
1�1 � N1 � ~ 1

M

Iyy
�

~ 1
~ 2 ��2
Iyy

k2 ��2 ��2�2!2 _�2 � !2
2�2 � N2 � ~ 2

M

Iyy
�

~ 2
~ 1 ��1
Iyy

where the system state xTM 2 R9 is composed of the nine state
variables h, V, �, �,Q, �1, �2, _�1, and _�2. Several physical constants
derived from the vehicle geometry, aerodynamic conditions, and
assumed elastic mode shapes are also included in the equations
[3,17].

The control inputs∗∗ �e and � do not appear explicitly in the
equations of motion. Instead, they enter through the forces and
moments T, M, L, D, N1, and N2. Because the precise analytical
expressions for the forces and moments are too complex to be
included here, we refer the interested reader to [3] for details. The
next section will begin by deriving a set of tractable approximations
for these terms.

Derivation of the Curve-Fitted Model

The TM presented in the preceding section provides a rich model
for simulation and verification of control design. If possible, the
control law synthesis would begin by analyzing the structural
properties of the truth model symbolically to determine its suitability
for various nonlinear techniques. Unfortunately, direct application of
nonlinear designmethodologies such as feedback linearization to the
TM governing equations is not possible. Indeed, several of the

Shear LayerBow Shock

x B

zB

α
M ∞

L v

δe

Elevator

Oblique Shock

Fig. 1 Geometry of the hypersonic vehicle model.

∗∗Because only two control inputs are required for functional
controllability of the model, the additional input Ad used in [17] will be
fixed at its nominal value Ad � 1 for the remainder of this study.
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relevant equations are implicit functions of the state and input
variables. Thus a closed-form representation of the system’s vector
field is not available. In addition, the lift, drag, thrust, pitching
moment, and the two generalized forces are complex functions of
both the system state and the inputs that must be simplified to render
the model analytically tractable. Therefore, this section will proceed
by deriving a simplified, closed-form model that retains the essential
character of the TM.

Although attempts to represent the force mappings in the TM
with cubic-spline interpolated lookup tables were very successful
[21], these approximations are not suitable for symbolic analysis
with the tools of geometric nonlinear control theory [22]. Thus,
drawing on earlier work done with a nonflexible vehicle [11,13],
the following approximations to these mappings will be adopted
for this study:

L� 1

2
	V2SCL��; �e� D� 1

2
	V2SCD��; �e�

M� zTT �
1

2
	V2S �c�CM;���� � CM;�e��e�	

T � C�3T �3 � C�
2

T �
2 � C�T�� C0

T

N1 � N�
2

1 �
2 � N�1�� N0

1

N2 � N�
2

2 �
2 � N�2�� N

�e
2 �e � N0

2

(1)

The expressions for L and D are the same as those given in [13].
Note that the expression for M contains the additional term zTT,
where zT is a known quantity, to account for the pitching moment
produced by the underslung scramjet engine in the model [3]. The
contribution of the pitch rate to themoment, whichwould be denoted
CM;Q��;Q�, has also been neglected, because it proved
inconsequential for this vehicle. The numerical studies completed
by Groves [21] support approximating the N1 force as a quadratic
function of the angle of attack and theN2 force as a quadratic function
of the angle of attackwith a linear elevator deflection term. The forms
for the functions appearing in Eqs. (1) and the generalized forces are
selected as

CL � C�L�� C
�e
L �e � C0

L

CD � C�
2

D �
2 � C�D�� C

�2e
D �

2
e � C�eD �e � C0

D

CM;� � C�
2

M;��
2 � C�M;��� C0

M;� CM;�e � ce�e
C�

3

T � �1�h; �q��� �2�h; �q� C�
2

T � �3�h; �q��� �4�h; �q�
C�T � �5�h; �q��� �6�h; �q� C0

T � �7�h; �q��� �8�h; �q�
(2)

where �q� 1=2	V2 denotes dynamic pressure, and an exponential
model of the form 	� 	0 exp���h � h0�=hs	 is adopted for the air
density. The expressions for the lift, drag, and moment terms in
Eqs. (2) are similar to those in [13], with minor notation changes and
the addition of elevator terms in the lift and drag coefficients. The
scramjet engine included in the model produces a thrust force T,
which depends strongly on the states h,V, and�, alongwith the input
�. The mapping is approximately cubic in the angle of attack,
whereas each coefficient of this polynomial is a linear function of�.
The eight �i�h; �q� coefficients vary with the dynamic pressure and
altitude. Because these values change on a much slower time scale
than� and �, the values of �i are assumed to be constant for control
design. In implementation, the coefficients are obtained using a
cubic-spline interpolated lookup table based on coefficients derived
for 225 different flight conditions. Although functional forms for
these �i were derived, their use proved to be more cumbersome and
less accurate than the use of lookup tables.

All the approximations given in Eqs. (2) are linear in their fit
parameters. The values for S and �c are known constants. The other
parameters in Eqs. (2) have been obtained through a least-squares
approach by fitting the functions to TM data calculated over the
ranges given in Table 1. Naturally, the variation in �q is obtained by

appropriate variation of V. Even if a given force approximation does
not explicitly depend on a particular state or input, that value will still
be varied so as to capture its average effect. The flexible states �i and
_�i are set to zero during the calculation of the data for the least-
squares fits, because their effects on the forces and moments are
neglected in the selected approximations. The conditions within
these ranges that are not physically realizable for the model are
simply ignored by the curve-fitting algorithm. Figure 2 includes
sample plots of aerodynamic data derived from the TM and the curve
fits used by the control algorithms developed in the following
sections (“Full Fit”). The generalized forcefits are fairly accurate, but
are omitted because they are not part of the COM developed in the
sequel. The thrust and moment fits are almost exact matches with the
truth model, due to the complexity of the functions used to
approximate them, whereas the lift and drag fits capture only the
general structure of the actual forces. Lift and drag fits with the
elevator terms removed are also provided (“Simplified Fit” in the
legend).

Despite the simplifications that the CFM includes, the model
mimics the dynamics of the TM with a reasonable degree of
accuracy. Nevertheless, significant mismatch between the TM and
the CFM does exist, particularly at extreme values of the system
state. As a result, any control law designed on the basis of analytical
models derived from the CFM will have to be robust to these
modeling inaccuracies. Figure 3 shows the map of the poles and the
transmission zeros of the Jacobian linearization of the TM and the
CFM at the trim condition given in Table 2. The transmission zeros
are computed with respect to the input u� �
; �e	 and the output
y� �V; �	. For completeness, the CFM coefficient values
corresponding to this trim condition are provided as an Appendix.
The similarity between the two plots in Fig. 3 suggests that the curve
fits capture the dominant terms in the TM’s behavior around the
considered trim condition. In particular, the CFM retains the
nonminimum phase transmission zero that originates in the pitch
dynamics, allowing an analysis based on the CFM to account for this
effect in the TM. The resulting CFM remains complicated with
significant couplings between the various subsystems. However, in
this form, the behavior of the model can be studied analytically. In
what follows, an analysis of the CFMwill be provided using the tools
of geometric control.

First, the structure of theCFMmust be analyzed to determinewhat
simplifications are required to arrive at the COM. One may calculate
the relative degree of the CFM given in the preceding section,
including both altitude and the four flexible states. Recall that the
state xCFM 2 R9 contains the state variables discussed in the pre-
ceding section. The outputs were selected as y1 � V and y2 � �.
Finally, the two control inputs are �e and �. For this input/output
combination, the decoupling matrix A�xCFM� of Lie derivatives is
nonsingular over the range of interest, that is, the anticipated
operating envelope given in Table 1. Unfortunately, the vector
relative degree is only 2, meaning that the system possesses a 7-D
internal dynamics with respect to the regulated output. The internal
dynamics includes h, the pitch dynamics � and Q, and the four
flexible states.

The linearization around the trim condition given in Table 2 of
both the TM and the CFM that are shown in Fig. 3 include seven
zeros, as expected. The two complex conjugate pairs correspond to
the flexible dynamics, indicating that they are minimum phase and
supporting the decision to remove them from the COM as a first step
in deriving the COM. The pair of zeros that appear to be symmetric
about the j! axis correspond to the pitch dynamics. These

Table 1 Parameter ranges for curve fitting

Parameter Lower bound Upper bound

h 85,000 ft 135,000 ft
� 0.1 1.2
�e �15 deg 15 deg
� �10 deg 10 deg
�q 500 lb � ft�2 2000 lb � ft�2
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nonminimum phase dynamics will need to be addressed in the
control design. The final zero resides at the origin and corresponds to
the altitude state. This result should not be surprising, because the
altitude dynamics behave as an undriven integrator when the output
� is forced to zero. The linearization also reveals that the plant is
exponentially unstable, as evidenced by open-loop simulation results
[3].

The nonminimum phase behavior of the model stems from the
coupling of the elevator to the lift and drag forces.When the elevator
is actuated to produce a nose-up moment, the aircraft experiences a
loss of lift from the elevator [3]. Eventually, the angle of attack begins
to change and overcomes this effect. This parasitic coupling is
undesirable and responsible for the low relative degree of the model.
By including this coupling, �e appears in lower-order derivatives of

V and �. By ignoring the weak elevator couplings, in particular

setting to zero the termsC�eL ,C
�e
D , andC

�2e
D in Eq. (2), the nonminimum

phase behavior can be removed from the model. Figure 2 shows the
effect of neglecting these couplings on the curve fits for lift and drag.
Although still present, these effects are dominated by the terms
depending on �.

After removing the weak elevator couplings, the decoupling
matrix A�x� becomes singular over the operating range of interest.
Thus, a dynamic extension [22] is required to obtain a model with
vector relative degree. A second-order actuator model is appended to
the input �, selecting the commanded value �c as the new input,

����2�! _� � !2�� !2�c (3)
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Rather than simply adding a chain of two integrators, this choice has
the added benefit of increasing the model fidelity by incorporating
the lag associated with actuating � in a real vehicle. The actuator
dynamics are chosen to impose a damping ratio �� 0:7 and a natural
frequency !� 20. With dynamic extension due to the appended
actuator dynamics, symbolic calculations reveal that the COM has
full vector relative degree 6 over the operating range of interest. Each
output must be differentiated three times before an input appears,
allowing the model to be decoupled into two chains of three
integrators.

To summarize, the COM is obtained from the CFM by removing
the altitude and flexible states and setting to zero the weak elevator
couplings. A second-order dynamic extension is then added to � to
obtain a 6-D model with full vector relative degree. The completed
COM is given by the following set of equations:

_V � 1

m
�T cos� �D� � g sin�� � ��

_�� 1

mV
��T sin� � L� �Q� g

V
cos�� � �� _��Q

Iyy _Q�M

where

L� 1

2
	V2SCL��; �e� D� 1

2
	V2SCD��; �e�

M� zTT �
1

2
	V2S �c�CM;���� � CM;�e ��e�	

T � C�3T �3 � C�
2

T �
2 � C�T�� C0

T

and

CL � C�L�� C0
L CD � C�

2

D �
2 � C�D�� C0

D

CM;� � C�
2

M;��
2 � C�M;��� C0

M;� CM;�e � ce�e
C�

3

T � �1�h; �q��� �2�h; �q� C�
2

T � �3�h; �q��� �4�h; �q�
C�T � �5�h; �q��� �6�h; �q� C0

T � �7�h; �q��� �8�h; �q�

It should be emphasized that the eight�i coefficients will be assumed
to be constant when using the COM for design. In reality, these
coefficients are functions of the relatively slow-changing variables h
and �q, which are approximated by table lookup in simulation.

Analysis and Control-Oriented Modeling

Before any model-based controller can be designed (in particular,
nonlinear inversion-based controllers), the relevant properties of the
model in terms of its relative degree, functional controllability, and
behavior of the internal dynamics must be analyzed. As mentioned
briefly in the preceding section, a few additional simplifications will
be made to arrive at a control-oriented version of the model.

Rather than selecting the output as �V; h	 as was done in numerous
references [11,13,14], the output will be selected as �V; �	. The
choice of the flight path angle is more appropriate for use by an inner-
loop controller or by a human pilot, whereas the altitude choice is
more logical for use by a guidance loop. As mentioned earlier, the
input is chosen as u� ��e;�	 to obtain a system having the same
number of inputs and outputs. Intuitively, one would expect that the
input �e will be primarily used to modulate the angle of attack (hence
flight path angle), whereas � will be used to control the thrust, and

hence velocity. This intuition will provide the key simplification
used in the COM.

First, several states can be removed from the CFM without
significantly reducing its fidelity. The altitude h�t� changes at a very
slow rate when compared to the other system states. Thus, for the
purposes of control design, altitude will be assumed to be constant.
The elimination of these dynamics will simplify the following
calculations and has been shown in simulation to have very little
impact on the controller performance. As a further simplification, the
flexible states will be removed from the CFM. Because these modes
are relatively weakly coupled to the rigid bodymodes, although only
lightly damped, the design will not address them directly. The
appropriateness of this assumption will be fully evaluated in
simulation. When additional flexibility effects are added in the next
section, additional measures will be required to reestablish
consistence of the COM with the truth model. The following
subsection will provide an analysis of the CFM using the tools of
geometric control.

Control Design and Simulation Results
for the Truth Model

The inner-loop control law will be designed using the COM. The
results given in [23] and references therein suggest that this design
will have the potential to perform well on the CFM and the TM,
provided that the neglected coupling terms are sufficiently small. In
the following subsections the control law will be derived and the
simulation results for the TM will be observed.

Normal Form

The state of the COM comprises the four rigid body states V, �, �,
and Q along with the two states associated with the actuator

dynamics (� and _�). The input is selected as ��e;�c	, whereas the
output is given as �V; �	. As explained in the preceding section, the
COM has full vector relative degree, allowing a normal form to be
explicitly derived [22,23]. The transformation in normal form was
completed using a generic feedback linearization code for square
multi-input/multi-output (MIMO) systems that was developed using
Matlab symbolic toolbox. The system is rewritten in normal form by
using the appropriate change of coordinates

z� ��x�; ��x� �
h
V LfV L2

fV � Lf� L2
f�

i
T

to obtain the system

_z1� z2 _z2� z3 _z3�L3
fV�

�
L�c

L2
fV

�
�c�

�
L�eL

2
fV

�
�e

_z4� z5 _z5� z6 _z6�L3
f��

�
L�c

L2
f�
�
�c�

�
L�eL

2
f�
�
�e

It should be noted that this structure is obtained as a direct result of the
decision to eliminate the weak elevator couplings from the model. If
the same coordinate change is performed with these couplings
included, the system reads as

_z1 � z2 � �L�eV��e _z2 � z3 � �L�eLfV��e

_z3 � L3
fV �

�
L�c

L2
fV

�
�c �

�
L�eL

2
fV

�
�e

_z4 � z5 � �L�e���e _z5 � z6 � �L�eLf���e

_z6 � L3
f� �

�
L�c

L2
f�
�
�c �

�
L�eL

2
f�
�
�e

Designing a control law that accounts directly for the perturbation
terms introduced into the first and second derivatives of the outputs
by the elevator couplings is quite a challenging task, which goes
beyond the scope of this work. Although this issue is currently being
investigated, in this paper a simpler design approach based on
approximate feedback linearization [15,23] will be pursued.
According to the methodology in question, the weak coupling terms
will simply be neglected, and a feedback linearization controller
applied to the COM. Denoting by uV and u� the outer-loop control

Table 2 Trim condition for the truth model

State Value State Value Input Value

h 85,000 ft �1 1.5122 
 0.2514
V 7702:0808 ft � s�1 _�1 0 �e 11.4635 deg
� 1.5153 deg �2 1.2114
� 1.5153 deg _�2 0
Q 0 deg �s�1

PARKER ET AL. 861

D
ow

nl
oa

de
d 

by
 "

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

" 
on

 S
ep

te
m

be
r 

24
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.2
78

30
 



inputs, the control law

�c

�e

� �
� A�x��1 uV � L3

fV
u� � L3

f�

� �
; A�x� � L�c

L2
fV L�eL

2
fV

L�c
L2
f� L�eL

2
f�

� �

renders the input/output map of the COM linear, yielding

V�3� � uV ��3� � u�

The outer-loop linear controllers for the two decoupled integrator
chains are designed using LQR with integral augmentation and a
model reference. A conceptual block diagram of the controller is
provided in Fig. 4. After a few trial-and-error iterations, the weights
for the LQR cost function have been selected as

QV � diag�10; 1; 1; 1�; RV � 1; Q� � I4
4
R� � 0:1

To obtain a reference model for each linear system, the reference
signals for V�t� and ��t� are filtered using fast low-pass filters with
unity DC gain. The outputs of the reference model include Vref�t�,
�ref�t�, and higher-order derivatives. Denoting with KV and K� the
LQR design gains, the outer-loop controller is given by

uV�t� � V�3�ref � KV

V � Vref

LfV � _Vref

L2
fV � �VrefR

t
0 �V��� � Vref���	 d�

2
664

3
775

uh�t� � h�3�ref � Kh

h � href
Lfh � _href
L2
fh � �hrefR

t
0 �h��� � href���	 d�

2
664

3
775

The decoupling matrix A�x� has been verified to be nonsingular over
the operating range of interest, which is the range of parameter values
used in the curve fits, and the controller is guaranteed by design to
perform well on the COM. Simulations verify that the controller
linearizes the COM up to the numerical accuracy of the algorithm
used to integrate the nonlinear differential equations, provided that
the variation of �i is removed and the terms depending on h are held
constant (recall that the slow variation of�i with �q and h is neglected
in the control design.) Even with these variations in place, the input/
output map from the outer-loop inputs to �V; �	 is very nearly linear.
Simulation results on the CFM demonstrate good tracking
performance, as expected. These results will be omitted both for
brevity and due to their similarity to the TM results, which are
presented in the following subsection.

Truth Model Simulation Results

The truth model is implemented in Simulink using dedicated S-
functions. All simulations used a variable step Dormand–Prince
integration method with a maximum step size of 0.1 s. The selected
reference trajectory begins at �q� 2000 lb � ft�2 and h� 85; 000 ft.
The aircraft climbs at a steady 50 ft � s�1, while maintaining a
constant dynamic pressure. Once the HSV reaches Mach 10 at time
t� 220 s, the Mach number is held constant and the climb rate
increases to 139 ft � s�1 until leveling off at 115,000 ft. This
trajectory was determined to be a plausible operating trajectory for

the vehicle, and the ramp increase in altitude provides a moderately
aggressive tracking challenge to the controller. It should be noted that
the available thrust limits the climb rate for this reference trajectory.
If a faster climb rate is selected for the first leg, the required
acceleration cannot be achieved without violating amplitude and rate

limits on � (see [3]). The relationship _href � Vref sin��ref� is used to
obtain the desired reference trajectory �ref , shown in Figs. 5a and 5b.

Figures 5c, 5d, and 6 show the simulation results for the test
trajectory on the truth model under the proposed controller. The
tracking performance is excellent throughout the entire maneuver,
and both the flexible states and pitch dynamics remain stable and
well-behaved. Although the tracking performance is also a result of
the selection and filtering of the reference trajectory, the results
demonstrate the effectiveness of the control law design. Figure 7
shows a simulation result for the truth model without the inclusion of
integral augmentation. The tracking performance suffers signifi-
cantly, particularly in the � response, emphasizing the need for
integrators in the outer loop to compensate for themismatch between
the COM and TM. Naturally, this controller uses different LQR
tuning weights than those chosen for the controller with integral
augmentation.

Heave Model Control Design

The original TMdoes not include heave coupling,which describes
the excitation of the flexible effects by acceleration in the body axis

normal direction, which is nearly equal to �h for small angles of attack.
The more recent model includes these effects, along with a few other
small modifications [3], and shall be denoted the truth model with
heave coupling. The heave coupling significantly complicates the
equations of motion. The body axis equations are given as

_h�U sin � �W cos �

m _U��mQW �mg sin � � _Q��2�2 � �1�1�
� 2Q��2 _�2 � �1 _�1� � Fx

m _W �mQU�mg cos � � �2 ��2 � �1 ��1
�Q2��2�2 � �1�1� � Fz�
Iyy � �22 � �21

�
_Q��� _U�QW���2�2 � �1�1�

� 2Q��2 _�2 � �1 _�1� � ~ 2 ��2 � ~ 1 ��1 �M

��1 ��� _W �QU��1 � _Q ~ 1 � 2�1!1 _�1 �
�
!2
1 �Q2

�
�1 � N1

��2 ��� _W �QU��2 � _Q ~ 2 � 2�2!2 _�2 �
�
!2
2 �Q2

�
�2 � N2

These equations can be converted to the stability axis coordinate
frame used in the preceding sections using the relations

tan��W=U; V2 �U2 �W2

L� Fx sin� � Fz cos�; D��Fx cos � � Fz sin�

Unfortunately, the equations expressed in the stability frame are too
lengthy to be included here and too cumbersome to be manipulated
analytically. Because the flexible modes appear explicitly in the

Robust
outer-loop
controller

z

xΦc, δeFeedback
Linearization
Using COM

Truth ModelActuator
Model

Φ, Φ̇

Φ, δe
Reference

Model

uV , uγzref

Fig. 4 Conceptual controller block diagram.
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equations of motion, the complexity of the governing equations is
substantially increased. The new level of interaction between the
flexible modes and the rigid body dynamics severely affects the
capability of the COM to approximate the TMH, up to the point that

its use is no longer justified. As a matter of fact, the control law
designed in the preceding section based on the COM results in
instability when applied to the TMH, as seen in Fig. 8. It should be
remarked that changing theweights of the outer-loop LQR controller
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Fig. 5 Reference trajectories and simulation results for the truth model.
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proved to be ineffective to achieving stabilization of the closed-loop
system, a clear sign of severe model mismatch.

Preliminary Model Modification

The instability shown in Fig. 8 is the result of the more intricate
coupling between the flexible and rigid dynamics, creating a highly
unstable closed-loop aeroelasticmode inherited by the unstable zeros
of the open-loop dynamics. The nonminimum phase behavior of the
rigid modes results from the momentary loss of lift that occurs when
the elevator is actuated to initiate a climb [20]. Because of the
coupling with the flexible modes, this effect is significantly stronger
than the one exhibited by the TMwithout heave coupling, and can no
longer be neglected. It is postulated that reducing this nonminimum
phase effect will contribute to alleviate the mismatch between the
COM and the TMH. An additional effector can be used to
compensate for the undesirable contribution of the elevator to lift,

which appears in the equations as C�eL , in such a way that it can be
safely ignored in the COM. The strategy does not seek to directly
impact the flexible modes. Instead, it is designed to render the rigid
dynamics minimum phase, or as nearly so as possible, while at the
same time providing additional control authority to the elevator to
help suppress the unstable flexible oscillations that are observed in
the TMH. For this study, a canard will be added to the airframe’s
forebody as discussed in [20]. The canard is placed near the nose of
the aircraft, forward of the center of gravity as shown in Fig. 9. The
deflection of the canard will be ganged with the elevator deflection
using a negative gain. As a result, the lift contributions from these
two effectors will have opposite signs, whereas their contributions to
the moment will have the same sign. Thus, from the COM point of

view, the coefficientC�eL will bemade smaller, whileC�eM will become

larger. Because the COM assumed that C�eL � 0, the interconnection
gain kec between the canard and elevator will be chosen to cancel the
lift contribution of the elevator as closely as possible. To proceed
with the design, an additional curve fit of the lift force that included

the canard was completed. The functional form is given as

CL � C�L�� C
�e
L �e � C

�c
L �c � C0

L

where �c represents the canard deflection. Following the strategy
outlined earlier, and in accordance with the derivation given in [20],
the gain kec will be initially selected as

kec ��
C�eL

C�cL

which, when �c � kec�e, results in

CL � C�L�� C0
L

Note that, according to this relation, and if the preceding intuition is
correct, the addition of the canard should require little modifications
to any controller designed on the basis of the COM, because it serves
the purpose of canceling a term that the COM assumes to be zero.
However, the canard also contributes to the moment and drag force.
The drag contribution will be neglected in the COM, as is the drag
contribution from the elevator. However, the moment contribution is
significant and is included in the COM, because the canard is placed
well forward of the vehicle’s center of gravity. Therefore, a new
curve fit of the moment force was performed as

CM;�e � ce�e � cc�c
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Fig. 7 Simulation result for the truth model without integral augmentation.
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where the other moment terms remain the same. Thus, the original ce
term is simply changed to cnewe � ce � keccc.

COM Validation and TMH Controller

Aviable approach to validate the approach and to fine tune kec is to
evaluate the performance of the THMwith canard in closed loopwith
the controller based on feedback linearization of the COM. Figure 10
gives the results obtained using the initial choice kec ��0:82.
Unfortunately, whereas the controller performs well initially, it
drives the plant into an unstable oscillation beginning around
t� 267 s. To understand the reason for the instability observed with

the C�eL term compensated, it is necessary to understand how the
selection of kec also affects the flexible dynamics of the closed-loop
system. It is speculated that the interaction of the flexible modes with
the rigid body requires the gain kec to be chosen using other

considerations than simple cancellation of C�eL . The choice of kec to
cancel the lift contribution of the elevator was made purely from an
analysis of the zero dynamics of the rigid body.As already discussed,
the interaction of the flexible modes with the rigid body creates an

aeroelastic mode that is unstable without a canard. The behavior of
this mode as a function of kec must be explored to determine why the
gain kec ��0:82 was not successful.

Figure 11 shows the pole zero map of the closed-loop system for
four different values of kec. The linearization is performed with the
dynamic inversion inner loop and the LQR outer loop in place, but
with the reference model removed and the reference inputs chosen as
the desired setpoint. First, notice that there are nine zeros: four
coming from the flexible states, two originating with the pitch
dynamics, and the zero at the origin corresponding to altitude. The
two additional minimum phase zeros are from the error integrators
included in the outer-loop LQR controller. The features of interest on
these plots are the pair of poles marked as the aeroelastic mode and
the pitch dynamics zeros. When kec � 0, one of the pitch zeros is
nonminimum phase, and the aeroelastic mode is extremely unstable.
The addition of a canard with kec ��0:82 partially alleviates these
problems. The aeroelastic mode becomes stable, although it remains
fairly close to the j! axis. At the same time, as expected [20], the
pitch zeros are forced farther away from the j! axis and likely out of
the control bandwidth. Nevertheless, they remain real-valued and
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Fig. 10 Simulation result for the TMH: canard gain kec ��0:82.
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Fig. 11 Pole/transmission zero maps of the linearized closed-loop system for various values of kec. Input: u� ��; �e�; output y� �V; ��.
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nonminimum phase. It is also interesting to note that the addition of
the canard changes the imaginary component of the aeroelastic
mode, due to the stronger interaction between the elevator and the
pitch dynamics induced by the canard ganging. Increasing the
magnitude of the canard actuation to kec ��1:2 causes the pitch
dynamics zeros to migrate into a stable complex conjugate pair and
increases the stability margin of the aeroelastic mode. Selecting
kec ��1:5 increases the stability of the aeroelastic mode even
further, but also brings the three pairs of complex conjugate zeros
closer to the imaginary axis.

To summarize these observations, increasing the magnitude of kec
lessens and eventually eliminates the nonminimum phase character
of the pitch dynamics while also serving to stabilize the aeroelastic
mode with an ever-increasing stability margin. However, increasing
this value also moves the zeros associated with the flexible effects
closer to the j! axis. A compromise was reached between these
effects by selecting kec ��1:5. It should be noted that this analysis is
based solely on linearization about a single trim condition for the
plant. Thus, even though this linearization was stable for
kec ��0:82, nearness of the aeroelastic poles to the j! axis makes
it unsurprising that the full nonlinear TMH can become unstable
under dynamic inversion. The choice of larger kec prevents the
unstable oscillations from developing by increasing the stability
margins. It should be emphasized that the elevator itself is
unchanged. The additional control authority stems from the
additional force produced by the coordinated actuation of the canard.

Figure 12 shows the simulation results for kec ��1:5 on the
TMH. This choice of the canard ganging gain allows successful

tracking of the reference trajectory that is comparable to the results
achieved on the TM without heave coupling.

Parameter Variation Case Study

The control law designed for the TMH includes a robust outer-
loop LQR alongwith integral augmentation. As a result, the design is
moderately insensitive to plant parameter variations. Although an
exhaustive attempt to verify and validate this designwas not pursued,
a few test cases were provided to qualitatively assess the robustness
of the approach. For simplicity, only the moment of inertia Iyy, the
vehicle length Lv, and the mass m will be varied. As a result of fuel
consumption and thermal expansion of the aircraft during flight,
these quantities will probably vary during the course of a typical
mission. Thus, any practical controller designed for a HSV would
need to be resistant to small deviations of these parameters from their
nominal values. The test trajectorywill be the one used in all previous
simulations to simplify comparison of the results. Table 3 gives the
parameter values for the three test cases, along with the nominal
parameter values and the values of the key stability derivatives at
trim.

In Fig. 13, simulation results for case 1 and case 2 are compared
with those obtained for the nominal model. Notice that the reduction
in vehicle mass and pitching moment for case 1 results in lower
required control energy, as expected. Although the tracking error
performance is inferior to the nominal parameter case, the control law
still tracks the entire reference with nearly negligible tracking error.
The results for case 2 reveal that the increases in mass and moment
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Fig. 12 Simulation result for the TMH: canard gain kec ��1:5.

Table 3 Test cases for parameter variation simulations

Case Lv Iyy 
 105 m @L=@� 
 106 @M=@� 
 108

Nominal 100 ft 5 lb � ft 300 lb � ft�1 8:3631 lb � ft�1 � deg�1 1:2470 lb � ft � deg�1
1 90 ft 4 lb � ft 240 lb � ft�1 7:4089 lb � ft�1 � deg�1 0:0741 lb � ft � deg�1
2 110 ft 6 lb � ft 300 lb � ft�1 9:1746 lb � ft�1 � deg�1 1:7063 lb � ft � deg�1
3 50 ft 4 lb � ft 150 lb � ft�1 4:3707 lb � ft�1 � deg�1 �0:0657 lb � ft � deg�1
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require additional control energy from both the elevator and engine.
Because the vehicle is thrust-limited, further increases in these
values, particularly mass, render the reference trajectory infeasible
for the aircraft. Finally, the extreme parameter variation of case 3
results in instability as observed in Fig. 14. The main challenge
presented to the control system by these three test cases is the
variation in vehicle length. As the aircraft becomes shorter, damping
of the flexible modes is reduced. Eventually, the aeroelastic coupling
with the rigid modes causes the system to become unstable. Overall,
this brief study indicates that the control law is robust to mild plant
parameter variations.

It should be emphasized that this brief case study is not an attempt
to validate this design for practical use. The focus of this study is the
control-oriented modeling of a hypersonic vehicle. Once the
properties of the model, and the required model fidelity to obtain
adequate controller performance, are clearly understood, then
detailed nonlinear control designs can be developed. At that point, an
extensive design process that incorporates robustness in its

formulation can be pursued. The results in this section merely serve
to illustrate that a qualitative degree of robustness is achieved by the
included design without including this objective directly in the
problem formulation.

Conclusions

This paper has explored control-oriented modeling of an air-
breathing hypersonic vehicle. Whereas earlier works dealt with
models that could be directly feedback-linearized, the truthmodels in
this document were not symbolically tractable. By developing
approximations to complex expressions and neglecting slow
dynamics and weak couplings, intractably complex models can be
rendered amenable to using nonlinear control methods. Although
this modeling phase is time-consuming and results in a significantly
more complex control law, this approach does not require gain
scheduling or other similar techniques thatwould accompany a linear
control approach. Also, the design of the outer-loop controller is
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greatly simplified by inner-loop dynamic inversion techniques, and
the design of the inner loop itself is completely standard once a
suitable model is obtained. Thus, the nonlinear approach results in a
simpler design process, albeit at the expense of additional modeling
effort. An added benefit resulting from the effort spent in developing
the control-oriented model is a thorough understanding of the
system-theoretic properties of the system. The analysis of the zero
dynamics of a more complex truth models with added coupling
between the flexible modes and the rigid body modes led to the
decision to include an additional control surface, namely, a canard.
The canard helps to eliminate the nonminimumphase behavior of the
rigid dynamics and results in stabilization of a high-frequency
aeroelastic mode introduced by the heave coupling. The control
design process provided insights on the vehicle design, just as
modifications to the model required adjustments to the control
algorithm. These interactions highlight the benefits of control-
oriented modeling carried out in conjunction with the early phases of
vehicle design.

Appendix

Tables A1–A7 provide the coefficients for the CFM
corresponding to the trim condition given in Table 2. With the
exception of the eight �i thrust coefficients, which vary with h and �q,
these values are used for all flight conditions.
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