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plane with a uniform angular velocity o, which is set as clas
27|T as possible, where T is the period of the orbit;

(b) a horizon sensor mounted in the cylinder, which measuse
angle a(t) between the line of sight to the Earth’s center and 3
erence line on the rotating cylinder. This reference "
chosen so that «(T,) =0; that is, a = 0 at perigee. In the abse
measurement error, a(t) is a periodic function, well defined &
parameters e, 4@, T, @ and «(T,); e.g., if the orbit is circu&
alt) =0 if  =27/T exactly. Any deviation of the orbit from =
will cause the rotating reference line to periodically lead
behind the line of sight. The problem here is to improve &=
mates of e, a, T, , o, and «(T,), based on noisy measuremer

The relationship between «a, at a time ¢, and the paramete
T,,w, and o(T,) is given implicitly as follows:1

a=¢p—m; cos¢=—l—c%;—s%; M=E —esmE

27wt —T 4
M= ul T B . m=olt-T)-a,; o=cl)s
2
T = a3/2 3
RVg
Here the angles ¢, M, and E are known as the true, mean,
tric anomalies respectively, g = acceleration of gravity at &he
surface, and R = radius of Earth. Note that m =M if 0=2
a,=0. 4
By taking differentials of the relationships above and &
d¢, dM, dE, dm, and dT, the following relation may be obiz

do 0o gz B g0y 9 gy + T do+ d i
da de T, Caeis? ** 3

da 3n. Tyl = e?)sinE da (1 — e?)sh
¥=aTsin¢(l—ecosE)3’ Ee—=sind>(l—-eb
da 27 (1 —e?)sinE :
-6—’17=w_7 sind(l —ecos EP’
and these partial derivatives are evaluated with the bes

mates of a, e, T, , », &, at the time of the measurement.
The measurement z(t) is assumed to contain a rands
I o G oy P S

tSee, for example, J. M. A. Danby, Fundamental of Celestial Mec
Macmillan, 1962.
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' ar relation can then be used to estimate da,de, dT,, dw , and
__cosE-e M-E the measurement z(t) — alt).

z(t)=alt) + v,

(v)=0,E(v®)=R,andR is known. Let &(¢) be the predicted
Fement, using the best current estimates of
- Then we have

a, e, Ta,w, a,, at

2(t) — a(t) = da(t) + v

" 1—ecosE’

~ In Equation (12.2.1), assume that x and v are independent
vectors with gaussian density functions. Show that the joint

function p(x,v) is proportional to exp(—J), where J is as

in Equation (12.2.5). Thus, x=2%2, v=2-H% maximize p(x,v),
z the name “maximum likelihood estimate.”

~o(t-T)-a,; a=

. are known as the true. 2
g = acceleration of graws
Earth. Note that m=M

i Establish the relations
P=M - MHT(HMHT + R)-'HM , (a)
PHTR-' = MHT(HMHT + R)-1. ' (b)

£ these relations involve inverting matrices of smaller dimen-

ermine P and K than Equation (12.2.8) if R is of smaller
| than P ie.,ifp<n. Equations (a) and (12.2.8) are known
iafrix inversion pair” (see Problem 4, Section 1.3).

:‘the relationships above
> following relation mas ‘

- de + :;f dT,+ T, de~4

n E da a3 _K . omplete the square in Equation (12.2.5) and show that
SEP’ e sindll #x — % = PH'R\(z ~ HE)J"P-1[x — £ - PHR-1(z — H7)]
:e’) sinE = 3(z - HXR-\(R - HPH")R-'(z — Hx).

— ecosE)P’ ,- minimized by choosing x = £, where

are evaluated with the
> time of the measureme: ’
assumed to contain 2 =

_ % =% + PH'R-(z — H#) :
agreement with Equation (12.2.7),

FPandomental of Celestial iven two correlated gaussian random vectors
. Fundamental of Cele.

x and z
b values x,Z and covariance matrices P, P,

. » respectively,

>
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and correlation E[(x — %) (z — 2)T] = P_,, show that the condits )= 102 (de
density function p(x/z) is gaussian, with 3 _ E(T -
E(x/z) =%+ P_P;} (z — 2) =%, ‘ f
E{[(x — %) (x — £Fl/z} =P, — P, PP, . ,
1 all covariar

Problem 5. In Problem 4, let z=Hx + v, where H is a known = er than Equ
and v is independent of x, with mean value zero and covari

LetP,. =M and show that

P_—R+HMHT, P,=MH', Zi=-Hi. msider a sys
te 1 accordin

imal filteril

Using these relations in Problem 4, verify Equations (12

(12.2.8) (you will also need the results of Problem 2).

K = P_P-!, a most reasonable result! ) E - ¢
; =E ) = a Ki

Xz 22 2

Problem 6. In Problem 4, show that the gaussian random vects ix:

E(x/z) — x and z — Z are independent; i.e., we have Ele(z— =F . E(t
Problem 7. Suppose that the number of theoretical relationships -forcing vec
measured variables z and state variables x is less than the ¢ < QOP' T

ance ot
0 2

measured variables; for example, we have
F

Az = Hx + Av,
ermore, x,

where :
> s that x| i
A is a (g X p)-matrix, qg<p, H is a (gXxXn-= (11.2.7) th
Ew)=0, E(vT) =R isa (pXx p)-matrix. M, , given

Show that the estimation procedure of this section applie
replaced by Az and R by ARAT. P
g LO,T7 |
, rent from (.
3 inw, i
J =4z~ Half ; ir‘; (1:"3
Show that the error of the fit e =z — Hx is orthogonal ‘ he result (

% = H%, in the sense €2 =0. erage, decr
pose that v

ion to stat
stimate of -

Problem 8. Consider the usual problem of least square fit, ie
mining x to minimize -

Problem 9. In Example 2, suppose that initial estimates of 2=
a = 6,000 miles,e=1/6,T,=0,w= 2@IT , &,=0. Take |
miles, g = 32.2 ft sec’?, and make an improved estimate
w, and q, , using the single measurement :

z(t) = 16.7 deg at t = 1,357 sec, i B e
where - also depen
»’ - more precis
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2] = P.rz , show the
ssian, with
f‘l’P.arzP;z1 (z— z)=43

f)T]/z} = P.r.r o P-"" ,;l,xz‘

P10 (degl?,  E(a-a) =10 (miles), E(e- er =10,
E(T, - T,? = 10° (secl, E(w- ®)* = 10710 (sec)-2 |
E(e, - &, = 10~ (deg)?,

Covariances are zero. [HINT: Use Equation (a) of Problem 2,
an Equation (12.2.8), to find P.]

.= Hx +v, where H s &
vith mean value zero

al filtering for single-stage linear transitions

a system that makes a discr
reording to the linear relation

. p =MH, -8

blem 4, verify Equatss
:the results of Probis .

le result!

ete transition from state 0 to

x, =®x + Fat0s 5 (12.3.1)

=a known (n x n) transition matrix, I', =a known (n x 7)-

yw that the gaussian =
ependent; i.e., W€ have |

Ew)=w,, Ew,-®)w,-w)y=0, (1232

g vector, w,, is thus a random vector, with mean w, and co-

2, - The state x, is also a random vector, with mean %X, and
e P ; that is, we have

yumber of theoretical ==
tate variables x is less
mple, we have

E(x)=4,, E@ -x)(@ - x =P, (12.3.3)

Az=Hx + Av,

=, x, and w, are independent. From this information, it
x, is also a random vector, and from Section 11.2, Equa-

27) through (11.2.9), it has a mean value %, and a covari-
en by

E a<p. - H 8
(oo") =R isa (pX%

£ =05 +T,w,, (12.3.4)
M, =®P &7+ T,Q,IT, (12.3.5)

T by definition (12.3.2) is a nonnegative matrix, it is
o (12.3.5) that, on the average, the effect of the uncer-

in a transition of the type (12.3.1) is to increase the un-
* our knowledge of the state x, .t This is to be contrasted
(12.2.8), where it was shown that measurements, on
.@ecrease the uncertainty in our knowledge of the state. 11

at we make measurements, as in Section 12.2, after the

state 1. Then, from Equations (12.2.7) and (12.2.8), the
of x, is given by %, , where

%, =% +PH'R(z, - H3,), (12.3.6)

procedure of this se=
{RAT.

ual problem of least

J = 4= — HxlP -

he ﬁt e=z—Hf s
0.

uppose that initial s
T,=0,0= 21_rlT,'.
and make an impse
]le measurement

- %he uncertainty is increa
adent on the term ®,.

=cisely, the uncertainty is decreased or left unchanged.

sed or left unchanged. The increase in P is,
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en by the sec
Here %, and M, are as given in (12.3.4) and (12.3.5). Note tha ) Izrewous -
the estimate of x, before measurement, whereas %, is the es E =%, + Ki(z, —
after measurement. Similarly, M, is the error covariance mat ix| -
measurement and P, is the error covariance matrix after measw

Symbolically, we can describe this process as follows:

P, = (M;' + HTR-'H, ) = M, - M,HT(H,M,H + R,)""HM, -

2 :
i = (M;' + H'R
is is the K
; man, 1960). N
covariance: Pp,— M,— P,. ] ne system (12.
nce between
sent Hx; . Th
atio between

Consider the linear, stochastic, multistage process describe . urements R,

x,,=®x +Tw, i=0,...,N-1, 3 sformation mz
N that:

12.4 Optimal filtering and prediction for linear multistage prc =

where j
; The propag
ations (12.4.]
Bz - Thus,
stored if the
s are given.
) The compu
12.4.12), in
sriance. Thus
ediction of tl
able, say stal

-
1S

Measurements z, are made while the system is in stage i
linearly related to the state x; by :

z; = Hx; + vy, i=0,..v,N;, y
RO,
where 3 4 y
-,‘ Te %, is obta
E(v,) =0, ; words, the |
E(vpT) = R; .. namely, u
. - with the filt
E(w,— w)oT =0} and E(x, — x,)0] =03 ider R, =
It is reasonable to expect (see the derivation in Section | -15), (12.4.1.

Chapter 13) that the weighted-least-square or maximums
estimate of the state x, , using only the measurements =

term %, , in (12

$The case in which w; and v; are correlated is considered in Chapter 13 51/ -
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= by the sequential use of the single-stage estimation procedure
_M‘HT(HIM,H,T +R, B i occiion:
g anhd (135.3;01‘ by = + Kz -Hz,), (i=0,...,k, where k=< N). (12.4.11)
arement, where , =
i is the error covz “
r covariance matrix affes

this process as follow =

0

X, =% +Tw, x, given, (12.4.12)%

K, = PHR:", (12.4.13)
@, zll M+ HIRDH)™ = M, - MHTHMH? + R)-HM,, (12.4.14)

i, _l_) i, — : M;,, = ®POT + T,QIT. (12.4.15) b
Q, R, is the Kalman filter for linear multistage processes (see
| ! 3 2. 1960). Note that the filter (12.4.11) and (12.4.12) is a model

Po———)Ml'_—)Pj‘ 1

wstem (12.4.1), with a correction term proportional to the dif-
- between the actual measurement z; and the predicted meas-

Hzx, . The proportionality matrix K; in (12.4.13) is essentially
» between uncertainty in the state P, and the uncertainty in the

sments R, ; the matrix H, is simply the state-to-measurement
ation matrix of (12.4.7)

ion for linear muits

e, multistage process &

D. , i=0,---,-\-

= propagation of the covariance of the error of the estimate,

s (12.4.14) and (12.4.15), is independent of the measure-

.. Thus, the covariance matrix can be computed beforehand

=d if the parameters of the system and the observation equa-

e given. 3
= computation of the updated estimate, Equations (12.4.11) 4

12), involves only the current measurement and error ;

2e. Thus, it can easily be carried out in real time.

#ion of the state beyond the stage where measurements are

®. say state m, can be done only by repeated use of (12.4.12);

E(x,) = %, »

é(wi) =,

=, 5 =M,

) (w; — ©)" = Q; 85-

E.) (xo £ fo)T =9

S T

while the system is &

by

. i=0,....N, f0 =%, =PE+TW;  i=mm+1,..., (12.4.16)

is obtained from the filter (12.4.11) through (12.4.15). In
o) =0 is, the best prediction we can make uses the expected value
e : emely, W, , in the transition relations (12.4.1), starting, how-
o) = R; 5

the filtering estimate of %, . Another way of seeing this is to

R, = for i=mm+1,.... In this case, (12.4.14) and
112.4.11) and (12.4.12) reduce to

P,,,=®P®T +T,QIT, (12.4.17)

j" and E(xo =

(see the derivation &=
ted-least-square or
ing only the meas

; in (12.4.12) is, of course, to be understood as E(x;,,/z,. . .,%) and not

srrelated is considered &= :



