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This is illustrated in the two examples below.
In some estimation problems, the relationship between the param-
eters to be estimated and the available measurements is known onls
implicitly; i.e., we may not be able to write down explicitly the rela
tionship z(t) = h(x,0,t). On the other hand, we may still be able b
determine the differential relationship dz = (dh/ox) dx + v directl
and solve the linearized estimation problem. '
Also, by appropriate formulation, some dynamic estimation pro ‘e will let
lems can be reduced to parameter estimation problems. Example 2 the erro
illustrates this point. , E=0. L

Example 1. Position estimation from angle measurements. We wish
estimate the location (x,y) of a point A in a plane by angle meast
ments z; from several points B, (i=1,2,...,n) on a base line (&
Figure 12.2.1).
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I‘_—Ii_>

Figure 12.2.1. Position estimation using angle measurements
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Example: position estimation from angle measurements
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that we have

@ -2 =(30.22 - 30.1% = (122 = 0144,

(2, - 2,)" = (44.88 — 45,0) = (122 = 0144,
(& — 2z, = (73.73 - 73,6 = (13 = 0169 ..
we have

13 (3-2p 144+ 144+ 42 330
3__5_,‘1 > i RO

r; 2 2

ior expected value of this quantity was 3.00/2; thus, based on
ited sample of three Measurements, we might scale up the an-
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nt likelihood ellipse by the factor \/ 1.10=1.05
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