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standard deviation in density would exceed one-thousandth &
mean density? Assume that the number of particles in a given vois
V is a random variable with a Poisson distribution; that is,

(V)

B
is the probability of finding exactly k particles in the volw
where there are u particles per unit volume on the average. Far
at 68°F and one atmosphere pressure, u = 2.7 X 10" particles
cubic centimeter. i

s easily showr

ANSWER. The sample would be a cube with side equs .
3.3 X 10~ cm. 1

10.6 Common probability density functions

Uniform density function. The simplest density function for a ra
scalar is the uniform distribution: : : 1/-
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Figure 10.6.1. The uniform density function.
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Gaussian density function for a random scalar. Perhaps the ¢

common distribution for a random scalar is the gaussian distributies for example, C
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Figure 10.6.2. The gaussian density function.
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zation for representing many complicated phenomena by

= density functions lies in the central limit theorem,t which
Tk 8 if x is the sum of N independent random quantities having
P = c*12

zal density functions, then x tends to have a gaussian density
#s N— « (see Problems 1 and 2). The probability that x lies
£ —¢£and 1 + £ is given by
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of this “normal probability integral” or “error function” are

many places. Of particular interest are the values for ¢E=o,
7, given below:
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The “three sigma” (30) value is often used in practical pre

virtually the upper bound on the variation from the mean, S8
probability that x lies between —3a and +30 is .997. Analogos
concept of a generating function for the mass function, a & :
istic function for the density function of a random variable &=

by
M, (jo) & E(e%) = j * gmepydx, =Vl

-0

which is just the Fourier transform of the density function.
easily verified that

d=M,(jv)

E@=3r— a3

v=0

Problem 1. Using the results of Problem 1, Section 10.4, consas
case in which x, and x, are independent random scalars, & :
formly distributed on the interval (—%,%). With y =1, + &
that

Cfr=lyl,  lyl<1,
p(y)—{o A
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Figure 10.6.3. Density function of the sum of two unifc
distributed random variables.

Problem 2. Using the results of Problem 1 (and Problem 1 of 8
10.4 again), consider the case in whichx, , x,, and x, are inG&
random scalars, each uniformly distributed on the interval &=

Withy=x, +x, + %5, show that
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ply) is tending toward a gaussian distribution, as indicated
tral limit theorem.
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Show that the characteristic function of a gaussian random
is

em 1, Section JLUE &
dent random scaies
(—4,3). With g=

. . - Vo
MI(Jv)=exp[Jox— ) ]

-yl <L density function for a random vector
25
ly‘ sandom n-vector, where the components can take on a con-
- set of values, the most common probability density en-
3 in practice, and certainly the most important for this book,
ssian or normal distribution:{
1 = 3
i = &l 2 — FTP-1(y —
p(x) EMIETNE exp[ 5 (x — %)TP-'(x x)]. (10.7.1)
¥ ¢ shown thatf
1 :
‘ J’x .. -J’== plx)dx, - - -dx,=1, (10.7.2) :
y of the sum of two s =% !
E(x) = x = mean value of vector, (10.7.3)

4 Elx — %) (x — X)T] = P = covariance matrix of vector, (10.7.4)
blem 1 (and Proble
'}\ich x] ) xz ) and x‘l -
listributed on the 3

shorthand notation for this is “x is N(x,P).”
¢ Schlaifer (1961),.pp. 246 -251.




ec. 10.7 » G

310 Some Concepts of Probability + € .

1 js the matrix inverse where f(r)dr

where |P| is the determinant of P, P-
Simensional

Note that p(x) is completely characterized by giving only % and
If P is a diagonal matrix, then x — % has components that are s&
tically independent, since p(x) may then be factored into a pre 1 . \
of n scalar normal distributions. In other words, if the compe ' :
of a gaussian random vector are uncorrelated, they are statistics
independent. By virtue of its definition, P is a nonnegative detm ' : J
matrix; i.e., it has positive (or zero) eigenvalues. Hence, &%
orthogonal transformation, S,
g =Sle=%), (1€
it is always possible to diagonalize P. Another way of saying & particular
that the hypersurfaces of constant likelihood (constant values of g
ability density) in the x-space are hyperellipsoids, and, by a rots
of axes, it is possible to use the principal axes of these hyperellipss
as coordinate axes.
We are often intereste

hyperellipsoid:

d in the probability that x lies insik

(x — X)P-1x — %) =12, (105 These are

where [ is a constant. By transforming to principal axes, this exp
1 Cons

sion becomes .
: 0 and
2 2 2 p: »
11; + _g:_ + o o o + ylz = lz . (l v
oy 0y O 3
By another transformation, z, = (;/7;) s this expression becom =3

equation for a hypersphere in n dimensions: ERECT Ve
2 2 e 2 — 2
2+ 25+ + 2% =15

The probability of finding z inside this hypersphere is

JI .- -J'(—%:—)n/;exp{—%[z?+---+zﬁ]}dz,,. . vy 0% >0
14 3

. the eig
ration is carried out over the volume V of the hs ] g

where the integ
sphere, 7, where

r=z2+2+ +2. (105 ‘
] e likelih

In the z space |P| =1, since all the variances are unity and
variances are zero. Thus the probability of finding x inside the b

ellipsoid (x — %)'P~(x — %) = I2is ‘ :
- e shown
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r)dr is the spherically symmetric volume element in an n-

t of P, P! is the mat
snal space. For n=1,2,3, this probability is given by

haracterized by giving
en x — % has componesis
r) may then be factors
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- definition, P is a ne

(or zero) eigenvalues

Vol r exp(—3r?)dr= erf(l/V2),

fl exp(—3m)rdr=1— exp(—$[2), (10.7.12)

0

N f ! exp(— 4722 dr = erf(l/V/2) — VaTm Lexp(—412).

v=S(x—f),

nalize P. Another was

tant likelihood (const:
e are hyperellipsoids. =2
e principal axes of these S

'_ ar interest are the values for [ =1,2,3:

n/l 1 2 3

1 683  .955 997
2 394 .865 989
3 200 739 971

n the probability that =

YP-1(x — %) = 12,

; are often called the one-, two-, or three-sigma probabilities.
nsforming to principal

snsider a normally distributed two-dimensional vector with

P=[PHP,2]=[4,1]_
PP |1

avalues of this covariance matrix are given by

4—-02,1
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z.' 5 (y,/O',) N thlS exp = .
n n dimensions: 1

50

3 = 92
Bt - -+2=1

inside this hypersphere &

o —502+3=0, > 02=4.30, o2=.70,

I
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sigenvectors are proportional to

sl [-s0):

4,11 [x
(xlaxz) [1 ! l] I:x;] o lz
= in Figure 10.7.1 for [ = 1,2,3. The probability of finding x

he 1 =1 ellipse is .394, inside the [ =2 ellipse is .865, and
I =3 ellipse is .989.

ried out over the volumse

B2+ 28 y
o2 2 slihood ellipses

ce all the variances are ==
- probability of finding x'_
- 2 is 4

;] J: exp(— %ﬁ) flr)dr.
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Figure 10.7.1. Likelihood ellipses for the example of two di- ,
mensional gaussian random vectors. : g exp{

An important property of gaussian random vectors. The re
part of this book depends heavily on one important propesss _ ?
gaussian random vectors; that is, a linear combination of gauss
random vectors is also a gaussian random vector. Stated analytic:
if x is a gaussian random vector with mean x and covariance P
y = Ax + b where A is a constant matrix and b is a constant ves
then y is a gaussian random vector with mean § and covariane

where

hich was

em 1. D
malogous t

E , and s]
g=Ax+b, (1032

P,= AP,AT. (107

The relations (10.7.13) and (16.7.14) follow very simply from
definition of expected values: ;
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1y -9 -9 = [ [Ac -0 - DA ds, - - - ds,

= AP, AT,

w that y is a gaussian random vector is also quite simple if A
ingular matrix.t The probability that y lies in a certain region
pace, R, is equal to the probability that x lies in the corre-
ag region R, of the x-space, that is, we have

> = i N - -J’p(y)dyI == ody; =[ .- -fp(x)dx, % 7 sida s S(10E7.15)
, =, Ry
' mzing variables of integration in the right-hand integral, using

dx, - - -dx, = |AAT|- 2 dy, - - - dy, , (10.7.16)

= result

|(AAT)|-12
(2m)n2| P, |12

AT|-11 p(x) =

sllipses for the example @

vectors. - {—é(y — (AP Ay — !7)} with  x=A"1(y —b)

sssian random vectors. ¥
eavily on one importam
is, a linear combinatam
an random vector. Stase
r with mean % and cos:

ant matrix and b is 2 o
.ctor with mean g and

M
p(y) =W6Xp{—§ (=) y~ y)} , (10.7.17)

to be shown.

Define the joint characteristic function of a random vector
to (10.6.10) via the use of multidimensional Fourier trans-
ad show that, for gaussian x,

M_(jv) = exp(ju'x — $3vTPv).

enport and Root, Introduction to Random Signals and Noise,
Hill, 1958, p. 153.)

=Ax+ b,
= AP AT.
16.7.14) follow very s=

Prove (10.7.13) and (10.7.14) for arbitrary A by using the
Problem 1 (see Cramer (1946), p. 312).

x)dx, - - -dx

n

e

. If b is a gaussian random vector independent of x, with
and covariance P, , show that Equations (10.7.13) and (10.7.14)
sified to

of the case in which A is singular, try Problem 2 or see Cramer (1946).



