Problem 1.

Solution.

n = 1:

Divide the interval [0,T] into n=1 step; $h=\frac{T}{n}=2$.

Using the iteration formula for Euler's method, we have $x(0) = x_0 = 3$,

$$x_1 = x_0 + hf(t_0, x_0) = \boxed{5}.$$

n = 2:

Divide the interval [0,T] into n=2 steps; $h=\frac{T}{n}=1.$

Using the iteration formula for Euler's method,

$$x_0 = 3$$

 $x_1 = x_0 + hf(t_0, x_0) = 4$
 $x_2 = x_1 + hf(t_1, x_1) = \boxed{5.5}$

n = 4:

Divide the interval [0,T] into n=4 steps; $h=\frac{T}{n}=0.5$.

Using the iteration formula for Euler's method,

$$x_0 = 3$$

$$x_1 = x_0 + hf(t_0, x_0) = 3.5$$

$$x_2 = x_1 + hf(t_1, x_1) = 4.125$$

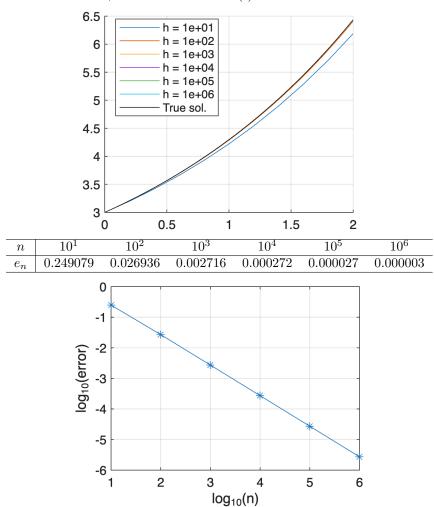
$$x_3 = x_2 + hf(t_2, x_2) = 4.90625$$

$$x_4 = x_3 + hf(t_3, x_3) = \boxed{5.8828125}.$$

The true solution to the ODE is given by $\bar{x}(t)=2e^{t/2}+1$ and therefore $\bar{x}(T)=2e+1=\boxed{6.4366}$. The actual errors are $e_1=1.4366, e_2=0.9366$ and $e_4=0.5538$.

Problem 2.

Solution. As in Problem 1, the true solution is $\bar{x}(t) = 2e^{t/2} + 1$.

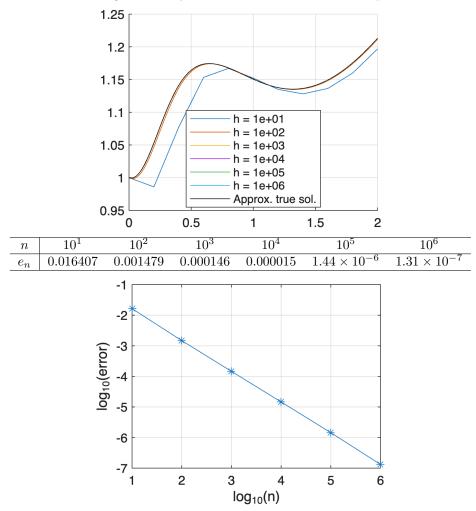


The slope in the error plot corrresponds to the order. In this plot, the slope is -1, which agrees with the Taylor polynomial based order estiamte $\mathcal{O}(n^{-1})$.

Problem 3.

Solution.

In this case, we do not have a closed form solution to the ODE. Instead, using the method from class, we take the solution generated by Euler's method with $n = 10^7$ steps as the "true solution".



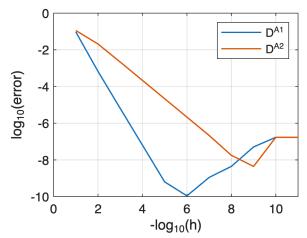
The slope in the error plot corrresponds to the order. In this plot, the slope is -1, which agrees with the Taylor polynomial based order estiamte $\mathcal{O}(n^{-1})$.

Problem 4.

Solution.

Using the same function from Problem 6 in HW2 $(f(x) = \cos(\pi x) \exp(-2x))$.

h	$e_h^{ m A1}$	$e_h^{ m A2}$
10^{-1}	9.46×10^{-2}	1.13×10^{-1}
10^{-2}	6.66×10^{-4}	2.07×10^{-2}
10^{-3}	6.39×10^{-6}	2.15×10^{-3}
10^{-4}	6.37×10^{-8}	2.15×10^{-4}
10^{-5}	6.34×10^{-10}	2.15×10^{-5}
10^{-6}	1.10×10^{-10}	2.15×10^{-6}
10^{-7}	1.11×10^{-9}	2.15×10^{-7}
10^{-8}	4.44×10^{-9}	1.78×10^{-8}
10^{-9}	5.11×10^{-8}	4.44×10^{-9}
10^{-10}	1.71×10^{-7}	1.71×10^{-7}
10^{-11}	1.71×10^{-7}	1.71×10^{-7}



From the log-log plot, one sees that D^{A1} is $\mathcal{O}(h^2)$, whereas D^{A2} is $\mathcal{O}(h)$. Therefore, we'd choose D^{A1} .