An example application: solving partial differential
equations

Suppose we'd like to solve the partial differential equation
Wi (t, x) = F(x, Wi (t, x)).1
Suppose the domain of the PDE has been discretized uniformly

and we have xg, x1, - , Xn.
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Denote h = x1 — xo(= x20 — x1 = ---). Then

W (6, xk) = W(0, xk) + d W, (0, xx)
(0, xx) + O F (x, Wi (0, xk))
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An example application: solving partial differential
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But this numerical scheme cannot be applied at the boundary
k =0 and k = n (because we have no information about x_; or

Xn+1)-
This motivates the asymmetric finite differences such as

—3W(0,x0) + 2W(0,x1) — 2 W(0, %)

WX(O7X0) ~ h .




Second derivative

Observe that
f(xo + h) — f(x0)

f/(Xo) ~ Dh(XO) =

f(Xo) — f(XO — h)
h .

f/(Xo - h) ~ Dh(Xo - h) =

Therefore,

£1(x9) ~ f'(x0) = f'(xo — h) _ f(xo+ h) —2f(x0) + f(xo — h)
X0) & .

h - h2
D%(x0)




Error analysis

From the Taylor expansion of f at xp, we have

f‘// f‘///

fxo + h) = F(x0) + F'(x0)h + (2X°) W+ éXO) 3+ Ry(xo + h)
1 "

f(xo—h) = f(xo) — f'(x0)h + f (2X0)h2 _f ((3"0)/9 + R3(xo + h)

f(x0) = f(x0)

Combining them to form the numerator as in the last slide,

f(xo+ h)—2f(x0) +f(xo—h
(0 + h) /(720) bo—h) _ f"(x0) h*+R3(x0+h)+Rs(xo—h).

Using the bound on R3, we have

|Dh(x0) — f"(x0)| = O(h).




Solving ODEs

initial value problem

Suppose we'd like to solve x(t) = f(t,x(t)), x(0) = xo from t =0
to t = T. First, we discretize the interval [0, T] into n time steps.

r—o——0—0—0 0
O=ty t1 B2 t3 ta t5 th=T
Let h= % and let x, denote our approximate solution at tx. Since
x(t) = f(t,x(t)), we have
. X1 — X0
X(O) ~ h ~ X1 = Xg + f(l’o,Xo)h.

For subsequent steps, ‘xk = Xx—1 + (tk—1,%Xk—1)h ‘




Error analysis |

Denote the (true/exact) solution of the ODE x(t) = f(t,x(t)) as
X. Then

)_((tl) = Xp Jr)._<(t0)(l’1 — to) + Rl(tl — to)
= Xxp + f(to,Xo)h + Rl(tl — to).

Note that t; — tp = h. Comparing this with our approximation xi,

we see that
%
[x(t1) = x| = |Ru(h) < = max [%(r)]
%
=5 max £ (r, X(r)) + fi(r, X(r)) f(r, X(r))] -

K>

Suppose X is bounded and denote the bound by K>. Then
‘)_((tl) — X1| < %h?



Error analysis [l

For the next step, we have

)_((tz) = )_<(t1) -l-)._((tl)(tz — tl) + Rl(tg — tl)
=Xx(t1) + f(t1,x1)h+ Ri(t2 — t1)
Xo = X1 + hf(t,XQ).

%(t2) — x| = [%(t1) — x1 + (x(t1) — f(t1,x1))h + Ru(t2 — t1)]
< [R(t) —xal+| x(t)  —f(txa)lh+ [Ru(t — t1)].
——

f(t1,x(t1))



Error analysis Il

Assume now
|f(t,x) — f(t,y)] < Ki|x — y| for all x,y.
Then

|)_((t2) — X2| < ’)?(tl) — X1| +K1|)_((t1) — X1|h + |R1(t2 — t1)| .
S —— —_—
O(h?) O(h?)
Using the bound [X(t1) — x1| < %hz. We see that
|X(t2) — x2| = O(h?). Repeating this process, we see that for a
fixed n, e,k = |X(tk) — xk| = O(h?) for each k =1,--- ,n.
Since h = % as we increase n and thereby reduce h, we must take

more steps. Hence the error at the final time T converges to 0 on
the order of h (i.e. en, = O(h).)



