An example application: solving partial differential equations

Suppose we'd like to solve the partial differential equation $W_t(t,x) = F(x,W_x(t,x))^{1}$

Suppose the domain of the PDE has been discretized uniformly and we have x_0, x_1, \dots, x_n .

$$x_0$$
 x_1 x_2 x_3 x_4 x_5 x_n

Denote $h = x_1 - x_0 (= x_2 - x_1 = \cdots)$. Then

$$W(\delta, x_k) \approx W(0, x_k) + \delta W_t(0, x_k)$$

$$= W(0, x_k) + \delta F(x_k, W_x(0, x_k))$$

$$= W(0, x_k) + \frac{W(0, x_{k+1}) - W(0, x_{k-1})}{h}.$$

 $^{^{1}}W_{t}=\frac{\partial W}{\partial t},\ W_{x}=\frac{\partial W}{\partial x}.$

An example application: solving partial differential equations

But this numerical scheme cannot be applied at the boundary k = 0 and k = n (because we have no information about x_{-1} or x_{n+1}).

This motivates the asymmetric finite differences such as

$$W_x(0,x_0) \approx \frac{-\frac{3}{2}W(0,x_0) + 2W(0,x_1) - \frac{1}{2}W(0,x_2)}{h}.$$

Second derivative

Observe that

$$f'(x_0) \approx D_h(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

 $f'(x_0 - h) \approx D_h(x_0 - h) = \frac{f(x_0) - f(x_0 - h)}{h}.$

Therefore,

$$f''(x_0) pprox rac{f'(x_0) - f'(x_0 - h)}{h} pprox \underbrace{rac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}}_{D_h^2(x_0)}.$$

Error analysis

From the Taylor expansion of f at x_0 , we have

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(x_0)}{6}h^3 + R_3(x_0 + h)$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{f''(x_0)}{2}h^2 - \frac{f'''(x_0)}{6}h^3 + R_3(x_0 + h)$$

$$f(x_0) = f(x_0)$$

Combining them to form the numerator as in the last slide,

$$\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}=f''(x_0)h^2+R_3(x_0+h)+R_3(x_0-h).$$

Using the bound on R_3 , we have

$$|D_h^2(x_0) - f''(x_0)| = \mathcal{O}(h^2).$$

Solving ODEs

initial value problem

Suppose we'd like to solve $\dot{x}(t) = f(t, x(t))$, $x(0) = x_0$ from t = 0 to t = T. First, we discretize the interval [0, T] into n time steps.

Let $h = \frac{T}{n}$ and let x_k denote our approximate solution at t_k . Since $\dot{x}(t) = f(t, x(t))$, we have

$$\dot{x}(0) pprox rac{x_1 - x_0}{h} \quad \rightsquigarrow \quad x_1 = x_0 + f(t_0, x_0)h.$$

For subsequent steps, $x_k = x_{k-1} + f(t_{k-1}, x_{k-1})h$.

Error analysis I

Denote the (true/exact) solution of the ODE $\dot{x}(t) = f(t,x(t))$ as \bar{x} . Then

$$\bar{x}(t_1) = x_0 + \dot{\bar{x}}(t_0)(t_1 - t_0) + R_1(t_1 - t_0)$$

= $x_0 + f(t_0, x_0)h + R_1(t_1 - t_0)$.

Note that $t_1 - t_0 = h$. Comparing this with our approximation x_1 , we see that

$$|\bar{x}(t_1) - x_1| = |R_1(h)| \le \frac{h^2}{2} \max_{r \in [0,h]} |\ddot{x}(r)|$$

$$= \frac{h^2}{2} \underbrace{\max_{r \in [0,h]} |f_r(r,\bar{x}(r)) + f_x(r,\bar{x}(r))f(r,\bar{x}(r))|}_{K_2}.$$

Suppose \ddot{x} is bounded and denote the bound by K_2 . Then $|\bar{x}(t_1) - x_1| \leq \frac{K_2}{2}h^2$.

Error analysis II

For the next step, we have

$$ar{x}(t_2) = ar{x}(t_1) + \dot{ar{x}}(t_1)(t_2 - t_1) + R_1(t_2 - t_1)$$

= $ar{x}(t_1) + f(t_1, x_1)h + R_1(t_2 - t_1)$
 $x_2 = x_1 + hf(t, x_2).$

$$\begin{aligned} |\bar{x}(t_2) - x_2| &= |\bar{x}(t_1) - x_1 + (\dot{\bar{x}}(t_1) - f(t_1, x_1))h + R_1(t_2 - t_1)| \\ &\leq |\bar{x}(t_1) - x_1| + |\underbrace{\dot{\bar{x}}(t_1)}_{f(t_1, \bar{x}(t_1))} - f(t_1, x_1)|h + |R_1(t_2 - t_1)|. \end{aligned}$$

Error analysis III

Assume now

$$|f(t,x)-f(t,y)| \leq K_1|x-y|$$
 for all x,y .

Then

$$|\bar{x}(t_2) - x_2| \leq \underbrace{|\bar{x}(t_1) - x_1|}_{\mathcal{O}(h^2)} + K_1|\bar{x}(t_1) - x_1|h + \underbrace{|R_1(t_2 - t_1)|}_{\mathcal{O}(h^2)}.$$

Using the bound $|\bar{x}(t_1) - x_1| \leq \frac{K_2}{2}h^2$. We see that $|\bar{x}(t_2) - x_2| = \mathcal{O}(h^2)$. Repeating this process, we see that for a fixed n, $e_{n,k} = |\bar{x}(t_k) - x_k| = \mathcal{O}(h^2)$ for each $k = 1, \dots, n$. Since $h = \frac{T}{n}$, as we increase n and thereby reduce h, we must take more steps. Hence the error at the final time T converges to 0 on the order of h (i.e. $e_{n,n} = \mathcal{O}(h)$.)