
An example application: solving partial differential
equations

Suppose we’d like to solve the partial differential equation
Wt(t, x) = F (x ,Wx(t, x)).

1

Suppose the domain of the PDE has been discretized uniformly
and we have x0, x1, · · · , xn.

x0 x1 x2 x3 x4 x5
......

xn

Denote h = x1 − x0(= x2 − x1 = · · · ). Then

W (δ, xk) ≈ W (0, xk) + δWt(0, xk)

= W (0, xk) + δF (xk ,Wx(0, xk))

= W (0, xk) +
W (0, xk+1)−W (0, xk−1)

h
.

1Wt =
∂W
∂t

, Wx = ∂W
∂x

.



An example application: solving partial differential
equations

But this numerical scheme cannot be applied at the boundary
k = 0 and k = n (because we have no information about x−1 or
xn+1).
This motivates the asymmetric finite differences such as

Wx(0, x0) ≈
−3

2W (0, x0) + 2W (0, x1)− 1
2W (0, x2)

h
.



Second derivative

Observe that

f ′(x0) ≈ Dh(x0) =
f (x0 + h)− f (x0)

h

f ′(x0 − h) ≈ Dh(x0 − h) =
f (x0)− f (x0 − h)

h
.

Therefore,

f ′′(x0) ≈
f ′(x0)− f ′(x0 − h)

h
≈ f (x0 + h)− 2f (x0) + f (x0 − h)

h2︸ ︷︷ ︸
D2

h(x0)

.



Error analysis

From the Taylor expansion of f at x0, we have

f (x0 + h) = f (x0) + f ′(x0)h +
f ′′(x0)

2
h2 +

f ′′′(x0)

6
h3 + R3(x0 + h)

f (x0 − h) = f (x0)− f ′(x0)h +
f ′′(x0)

2
h2 − f ′′′(x0)

6
h3 + R3(x0 + h)

f (x0) = f (x0)

Combining them to form the numerator as in the last slide,

f (x0 + h)− 2f (x0) + f (x0 − h)

h2
= f ′′(x0)h

2+R3(x0+h)+R3(x0−h).

Using the bound on R3, we have

|D2
h(x0)− f ′′(x0)| = O(h2).



Solving ODEs
initial value problem

Suppose we’d like to solve ẋ(t) = f (t, x(t)), x(0) = x0 from t = 0
to t = T . First, we discretize the interval [0,T ] into n time steps.

0 = t0 t1 t2 t3 t4 t5
......

tn = T

Let h = T
n and let xk denote our approximate solution at tk . Since

ẋ(t) = f (t, x(t)), we have

ẋ(0) ≈ x1 − x0
h

⇝ x1 = x0 + f (t0, x0)h.

For subsequent steps, xk = xk−1 + f (tk−1, xk−1)h .



Error analysis I

Denote the (true/exact) solution of the ODE ẋ(t) = f (t, x(t)) as
x̄ . Then

x̄(t1) = x0 + ˙̄x(t0)(t1 − t0) + R1(t1 − t0)

= x0 + f (t0, x0)h + R1(t1 − t0).

Note that t1 − t0 = h. Comparing this with our approximation x1,
we see that

|x̄(t1)− x1| = |R1(h)| ≤
h2

2
max
r∈[0,h]

|ẍ(r)|

=
h2

2
max
r∈[0,h]

|fr (r , x̄(r)) + fx(r , x̄(r))f (r , x̄(r))|︸ ︷︷ ︸
K2

.

Suppose ẍ is bounded and denote the bound by K2. Then
|x̄(t1)− x1| ≤ K2

2 h2.



Error analysis II

For the next step, we have

x̄(t2) = x̄(t1) + ˙̄x(t1)(t2 − t1) + R1(t2 − t1)

= x̄(t1) + f (t1, x1)h + R1(t2 − t1)

x2 = x1 + hf (t, x2).

|x̄(t2)− x2| = |x̄(t1)− x1 + ( ˙̄x(t1)− f (t1, x1))h + R1(t2 − t1)|
≤ |x̄(t1)− x1|+ | ˙̄x(t1)︸ ︷︷ ︸

f (t1,x̄(t1))

− f (t1, x1)|h + |R1(t2 − t1)|.



Error analysis III

Assume now

|f (t, x)− f (t, y)| ≤ K1|x − y | for all x , y .

Then

|x̄(t2)− x2| ≤ |x̄(t1)− x1|︸ ︷︷ ︸
O(h2)

+K1|x̄(t1)− x1|h + |R1(t2 − t1)|︸ ︷︷ ︸
O(h2)

.

Using the bound |x̄(t1)− x1| ≤ K2
2 h2. We see that

|x̄(t2)− x2| = O(h2). Repeating this process, we see that for a
fixed n, en,k = |x̄(tk)− xk | = O(h2) for each k = 1, · · · , n.
Since h = T

n , as we increase n and thereby reduce h, we must take
more steps. Hence the error at the final time T converges to 0 on
the order of h (i.e. en,n = O(h).)


