Example: Asymptotic order

Let $f(x) = \cos(x) - 1$. Find the order of f(x) as $x \downarrow 0$.

Write $f(x) = p_2(x) + R_2(x)$ with $x_0 = 0$. $p_2(x)$ in this case is given by

$$p_2(x) = \frac{-1}{2!}(x-0)^2 = -\frac{x^2}{2}.$$

For R_2 , we have

$$|R_2(x)| \le B_2(x) = \frac{|x|^3}{3!} \max_{\zeta \in [0,x]} |f'''(\zeta)| \le \frac{|x|^3}{6}.$$

Hence $|f(x)| \le |p_2(x)| + |R_2(x)| \le \frac{x^2}{2} + \frac{x^3}{6}$ for all x > 0. Using the method from the previous lecture, we have

$$|f(x)| \le \frac{x^2}{2} + \frac{x^2}{6} = \frac{1}{3}x^2$$
 for all $x \in (0,1)$.

We see that $f(x) = \mathcal{O}(x^2)$.

Catastrophic subtraction I

Consider a 5-digit machine. Suppose we need to evaluate (the first-order finite difference approximation of the derivative of f)

$$f'(x) \approx \frac{f(x+\delta) - f(x)}{\delta}$$
 where $f(x) = x^3$

with some very small δ .

If we evaluated it with x=6 and $\delta=10^{-5}$, then

$$f(x) = 216$$
, $f(x + \delta) = 216.0010800018$.

But since the machine only keeps track of five digits, $f(x + \delta)$ would be treated as 216.00, and $\frac{f(x+\delta)-f(x)}{\delta}$ would be 0 on this machine.

Catastrophic subtraction II

If we evaluated it instead with $\delta=10^{-4}$, then

$$f(x) = 216$$
, $f(x + \delta) = 216.01080018$.

But since the machine only keeps track of five digits, $f(x + \delta)$ would be treated as 216.01, and $\frac{f(x+\delta)-f(x)}{\delta}$ would be $\frac{0.01}{10^{-4}}=100$ on this machine.

Compare this to the actual derivative f'(6) = 108.

Floating-point numbers

Single-precision number (32 bits): 1 sign bit + 8 bits for the exponent + 23 $_{(+1)}$ bits for the significand. The number is represented as

$$\pm \underbrace{(110110\cdots 10111)_{\rm bin}}_{\text{significand (24 bits)}} \times \underbrace{2^{(00110101)_{\rm bin}}}_{\text{exponent (8 bits)}}.$$

Double-precision number (64 bits): 1 sign bit + 11 bits for the exponent + 52 $_{(+1)}$ bits for the significand. The number is represented similarly.

The (+1) is because the significand (binary fraction) has a implicit integer part of 1 which is not stored, except for special values (denormals etc).

Horner's method I

Consider $f(x) = e^x$ and its Taylor expansion around x = 0, given by

$$f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

= $a_1 + a_2 x + a_3 x^2 + a_4 x^3 + a_5 x^4$.

Then we may rewrite the polynomial as

$$f(x) = a_1 + x(a_2 + a_3x + a_4x^2 + a_5x^3)$$

= $a_1 + x(a_2 + x(a_3 + a_4x + a_5x^2))$
= $a_1 + x(a_2 + x(a_3 + x(a_4 + a_5x))).$

For a degree n polynomial, this requires n additions and n multiplications.

Horner's method II

Pseudocode for Horner's method

```
GIVEN x, a PTEM = a_5 FOR K FROM 4 DOWN TO 1 BY -1's PTEM = PTEM \cdot x + a_K END POUT = PTEM.
```