Limit notation

Example (Continuous function) $\lim_{x\to 0} e^{x/2} = e^{0/2} = 1$. Example (Heaviside function h)

$$h = \begin{cases} -1 & x < 0, \\ 0 & x = 0, \\ 1 & x > 0. \end{cases}$$
$$\lim_{x \downarrow 0} h(x) = 1, \qquad \lim_{x \uparrow 0} h(x) = -1.$$

Example (Asymptotic behavior) $\lim_{x\to\infty} 2^{-x} = 0$.

Example of asymptotic order

Let
$$f(x) = \frac{10^{-3}}{x}$$
, $g(x) = 2^{-x}$.

X	f(x)	g(x)
1	10^{-3}	0.5
10	10^{-4}	$2^{-10} \approx 10^{-3}$
100	10^{-5}	$2^{-100} \approx 10^{-30}$

Although f(x) was for small x, g(x) was much smaller as x gets large.

Asymptotic order $(x \downarrow 0)$

We say $f(x) = \mathcal{O}(x^n)$ (f is order of x^n) as $x \downarrow 0$ if there exists some finite C and some $\delta > 0$ such that

$$|f(x)| \le Cx^n$$
 for all $x \in (0, \delta)$;

equivalently, $-Cx^n \le f(x) \le Cx^n$ for all $x \in (0, \delta)$.

Find the asymptotic order of $f(x) = 5x^2 - 20x^4$ as $x \downarrow 0$. We have

$$|f(x)| = |5x^2 - 20x^4| \le |5x^2| + |20x^4| = 5x^2 + 20x^4.$$

Recall that $x^4 \le x^2$ if $x \in [0,1]$. Therefore,

$$|f(x)| \le 5x^2 + 20x^2 = 25x^2$$
 for all $x \in [0, 1]$.

By choosing C=25 and $\delta=1$, we see that $f(x)=\mathcal{O}(x^2)$.

It is implicit that we look for the "tightest" order (that is, largest n).

Asymptotic order $(x \to \infty)$

We say $f(x) = \mathcal{O}(x^{-k})$ as $x \to \infty$ if there exists some finite C and D such that

$$|f(x)| \le Cx^{-k}$$
 for all $x > D$;

equivalently,
$$-Cx^{-k} \le f(x) \le Cx^{-k}$$
 for all $x > D$.

Find the asymptotic order of $f(x) = 5x^{-2} - 20x^{-4}$ as $x \to \infty$. We have

$$|f(x)| = |5x^{-2} - 20x^{-4}| \le |5x^{-2}| + |20x^{-4}| = 5x^{-2} + 20x^{-4}.$$

Recall that $x^{-4} \le x^{-2}$ if $x \ge 1$. Therefore,

$$|f(x)| \le 5x^{-2} + 20x^{-2} = 25x^{-2}$$
 for all $x \in [0,1]$.

By choosing C=25 and D=1, we see that $f(x)=\mathcal{O}(x^{-2})$.

Find the asymptotic order of $f(x) = \frac{1}{x^2 + 4x^5}$ as $x \to \infty$. We have

$$|f(x)| = \frac{1}{x^2 + 4x^5} \le \frac{1}{4x^5}$$
 for all $x > 0$.

By choosing $C=\frac{1}{4}$, D=0 (or any positive real number), we see that $f(x)=\mathcal{O}(x^{-5})$.

Find the asymptotic order of $f(x) = \max\{\frac{1}{x^2}, \frac{5}{x^5}\}$ as $x \to \infty$. We have

$$|f(x)| = \max\{\frac{1}{x^2}, \frac{5}{x^5}\} = \frac{1}{x^2}$$
 for all x such that $\frac{5}{x^5} \le \frac{1}{x^2}$.

Note that $\frac{5}{x^5} \le \frac{1}{x^2}$ holds when $x \ge \sqrt[3]{5}$. By choosing C = 1, $D = \sqrt[3]{5}$, we see that $f(x) = \mathcal{O}(x^{-2})$.