Example: Minimum order Taylor polynomial to achieve a
given precision
Let f(x) = /2. Find the smallest n such that the approximation

error for the n-th order Taylor polynomial with xg = 1 is
guaranteed to be less than 0.1 over the interval [-1, 3].

We want |f(x) — pn(x)| = |Rn(x)| < 0.1 for all x € [-1,3]. Since
|Rn(x)| < |Bn(x)|, we ensure that |B,(x)| < 0.1 for all x € [-1,3].
Note that the worst (largest) B, always occurs at an endpoint of
the interval.
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Example (cont.)

Similarly at x = 3, we have
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Example (cont.)

Again, we tabulate the error bound for each n as follows.
k| Bo(—=1)  Bn(3)

0| 1.6487  4.4817

1| 0.8244  2.2408

2| 0.2748  0.7469

3

0.1867
4| 00137 [0.0373

Hence the minimum order n to achieve a precision of 0.1 over
[—1,3] is 4.




Floating-point operations

The number of floating-point operations (FLOPs) roughly
corresponds with the computational cost.

The two common floating-point operations are
addition-subtraction “A” and multiplication-division “M".

In many cases, it's possible to optimize away a few FLOPs when
evaluating polynomials.



Counting FLOPs
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For example, to evaluate p(x) = x — %5 + E—? — a terrible
implementation may actually compute
XXX X X+ XXX
X — 2A + 14M
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whereas a better implementation may precompute the constants
and store x? and x3 as intermediate variables and reuse them.

We'll introduce a general method for evaluating polynomials
efficiently next time.



