Example: Minimum order Taylor polynomial to achieve a
given precision
Let f(x) = /2. Find the smallest n such that the approximation

error for the n-th order Taylor polynomial with xg = 1 is
guaranteed to be less than 0.1 over the interval [-1, 3].

We want |f(x) — pn(x)| = |Rn(x)| < 0.1 for all x € [-1,3]. Since
|Rn(x)| < |Bn(x)|, we ensure that |B,(x)| < 0.1 for all x € [-1,3].
Note that the worst (largest) B, always occurs at an endpoint of
the interval.
-1— 1‘n+1
Bn(—1) = (1) gy [ZL 21
(=1) = max | O+
1 n+1
_ o2 2
2n+1 (n+1)!
1/2

T (n+ 1)

Example (cont.)

Similarly at x = 3, we have

3 — 1‘n+1
Bn(3) = floen(gy B2
(3) = max IO
_ 1 63/2 on+1
2n+1 (n+1)!
&3/2

(n+ 1)V

Example (cont.)

Again, we tabulate the error bound for each n as follows.
k| Bo(—=1) Bn(3)

0| 1.6487 4.4817

1| 0.8244 2.2408

2| 0.2748 0.7469

3

0.1867
4| 00137 [0.0373

Hence the minimum order n to achieve a precision of 0.1 over
[—1,3] is 4.

Floating-point operations

The number of floating-point operations (FLOPs) roughly
corresponds with the computational cost.

The two common floating-point operations are
addition-subtraction “A” and multiplication-division “M".

In many cases, it's possible to optimize away a few FLOPs when
evaluating polynomials.

Counting FLOPs

3

For example, to evaluate p(x) = x — %5 + E—? — a terrible
implementation may actually compute
XXX X X+ XXX
X — 2A + 14M
3x2x1 5x4x3x2x1 (24 +)

whereas a better implementation may precompute the constants
and store x? and x3 as intermediate variables and reuse them.

We'll introduce a general method for evaluating polynomials
efficiently next time.

