
Example: Minimum order Taylor polynomial to achieve a
given precision

Let f (x) = ex/2. Find the smallest n such that the approximation
error for the n-th order Taylor polynomial with x0 = 1 is
guaranteed to be less than 0.1 over the interval [-1, 3].

We want |f (x)− pn(x)| = |Rn(x)| ≤ 0.1 for all x ∈ [−1, 3]. Since
|Rn(x)| ≤ |Bn(x)|, we ensure that |Bn(x)| ≤ 0.1 for all x ∈ [−1, 3].
Note that the worst (largest) Bn always occurs at an endpoint of
the interval.

Bn(−1) = max
ζ∈[−1,1]

|f (n+1)(ζ)| |−1− 1|n+1

(n + 1)!

=
1

2n+1
e1/2

2n+1

(n + 1)!

=
e1/2

(n + 1)!
.

Example (cont.)

Similarly at x = 3, we have

Bn(3) = max
ζ∈[1,3]

|f (n+1)(ζ)| |3− 1|n+1

(n + 1)!

=
1

2n+1
e3/2

2n+1

(n + 1)!

=
e3/2

(n + 1)!
.

Example (cont.)

Again, we tabulate the error bound for each n as follows.
k Bn(−1) Bn(3)

0 1.6487 4.4817
1 0.8244 2.2408
2 0.2748 0.7469

3 0.0687 0.1867

4 0.0137 0.0373
Hence the minimum order n to achieve a precision of 0.1 over
[−1, 3] is 4.

Floating-point operations

The number of floating-point operations (FLOPs) roughly
corresponds with the computational cost.

The two common floating-point operations are
addition-subtraction “A” and multiplication-division “M”.

In many cases, it’s possible to optimize away a few FLOPs when
evaluating polynomials.

Counting FLOPs

For example, to evaluate p(x) = x − x3

3! +
x5

5! — a terrible
implementation may actually compute

x − x · x · x
3× 2× 1

+
x · x · x · x · x

5× 4× 3× 2× 1
(2A + 14M),

whereas a better implementation may precompute the constants
and store x2 and x3 as intermediate variables and reuse them.

We’ll introduce a general method for evaluating polynomials
efficiently next time.

