
Tridiagonal systems I

Sparse matrices are ones whose entries are mostly zeros. A simple
type of sparse matrices is a tridiagonal matrix like the following

× ×

× × ×

× . . .
. . .

. . .
. . .

. . .
. . .

. . . ×

× ×


where each × denotes a nonzero entry and the rest is zero.
Gaussian elimination is simpler for tridiagonal systems, because
there is only one row below the main diagonal that needs zeroing
and that row has only few nonzero entries.



FLOPs

In general, processing the n-th column an n × n tridiagonal system
requires (3M+ 2A) FLOPs, and we need to process from the
second row to the last (n − 1 rows in total).
Hence the total number of FLOPs for triangularization is O(n).

After triangularizing, the back substitution also requires O(n)
(2M+ 1A per row except for the last row).



1-D two-point boundary value problem I

Consider the equation

−cuxx(x) + u(x) = f (x), u(0) = b0, u(1) = b1. (∗)

First, we divide (grid) up the domain [0, 1] into n segments each
with length h = 1

n and denote the endpoints by

x0 = 0, x1 =
1
n , · · · , xk = k

n and xn = 1.



1-D two-point boundary value problem II

Recall the second derivative approximation

uxx(x) =
u(x − h) + u(x + h)− 2u(x)

h2
+O(h2).

Therfore,

uxx(xk) ≈
uk−1 + uk+1 − uk

h2
,

where uk = u(xk). Using this approximation in (∗), we have

−c
uk−1 + uk+1 − 2uk

h2
+ uk = f (xk).

The equation we just derived applies to u2 through un−2.



1-D two-point boundary value problem III

For u1 and un−1, we note that u0 and un are specified as the
boundary conditions of (∗) and therefore,

− c
h2
b0 + (1 + 2uk

h2
)u1 − c

h2
u2 = f1,

− c
h2
un−2 + (1 + 2uk

h2
)un−1 − c

h2
b1 = fn−1,

may be rearranged as

(1 + 2uk
h2

)u1 − c
h2
u2 = f1 +

c
h2
b0,

− c
h2
un−2 + (1 + 2uk

h2
)un−1 = fn−1 +

c
h2
b1.

Putting into the matrix form, we get a tridiagonal linear system
that corresponds to (∗).



Evolution PDEs I

Consider the PDE

ut(t, x) = c1uxx(t, x) + c2u(t, x) + f̂ (t, x),

with boundary conditions

u(0, x) = w(x), u(t, 0) = v0, u(t, 1) = v1.



Evolution PDEs II

In this settings, we divide both the spatial domain [0, 1] as before
and the time domain [0,T ]. Let h = 1

n and δ = 1
K . Let tk = kδ

and xl = kh and denote uk,l = u(tk , xl) and fk,l = f̂ (tk , xl).
Using the following derivative approximations from before,

uxx(tk , xl) =
1

h2
(uk,l−1 − 2uk,l + uk,l+1) +O(h2),

ut(tk+1, xl) =
1

δ
(uk+1,l − uk,l) +O(δ),

we get

1

δ
(uk+1,l − uk,l) =

c1
h2

(uk,l−1 − 2uk,l + uk,l+1) + c2uk,l + fk,l .



Evolution PDEs III

The boundary conditions can be treated the same way as for the
boundary value problem before.
If we put uk,1, uk,2, · · · into a vector u⃗k , then the formula above is
in the form

u⃗k+1 = Au⃗k + b⃗k ,

where A is a tridiagonal matrix and b⃗k is a vector that depends on
f̂ and the boundary conditions.


