
1

Forecasting in Game Theoretic Learning

Jeff Shamma
Electrical and Computer Engineering

Georgia Institute of Technology

Joint work with S. Mannor & G. Arslan



2

• Examples:
– Vehicle target assignment

– Mobile sensor allocation

– Vehicle rendezvous

Networked Control Systems: Game Theoretic Perspective 

range 
restrictions

• Desirable features:
– Distributed information & computation
– Capability of dynamic reconfiguration
– Circumvention of closed form characterizations
– Adaptation to actual environment
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Learning in Games

• Setup (repeated matrix games):
– Multiple decision makers
– Evolving strategies
– Restricted information

• Focus: Dynamics away from equilibrium
• Extensive prior work, e.g.:

– Theory of Learning in Games, Fudenberg & Levine, 1998
– Individual Strategy & Social Structure, Young, 1998
– Strategic Learning and Its Limits, Young, 2004
– Population Games and Evolutionary Dynamics, Sandholm, forthcoming

• Key Challenges: 
– Learning/adaptation in an environment of other learners
– Descriptive vs prescriptive vs hybrid agenda
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Shapley “Fashion” Game

• 2 players, each with 3 moves: {Red, Green, Blue}
– Player1: Fashion leader wants to differ from Player2

– Player2: Fashion follower wants to copy Player1

• Key assumption: Players do not announce preferences

• Daily routine:
– Play game

– Observe actions

– Update strategies

P1

P2
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Jordan “Anti-coordination” Game

• 3 players, each with 2 moves: {Left, Right}
– Player1 wants to differ from Player2

– Player2 wants to differ from Player3

– Player3 wants to differ from Player1

• Players do not announce preferences

• Daily routine:
– Play game

– Observe actions

– Update strategies

P2

P1

P3
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Best Response to Myopic Forecast

• Constraint: pi(k) = F(information up to time k)

• Opponent action measurements:
– Forecast opponent strategy

– Play best response to forecast

– Observe opponent actions

– Revise forecast & repeat
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Forecasting

• Finite number of possible outcomes

• Repeated in time

• Objective: Predict probability of outcome

• Performance measurements:
– Model based consistency: Classes of sources

– Universal consistency: All sources
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Example: Smooth Fictitious Play

• Forecast: Empirical frequencies of opponent

• Play: Smooth best response to forecast

• Presumption: Stationary opponent

• Memory requirement: #opponent actions
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Convergence Properties for FP

• Convergent cases:
– zero-sum games (1951)

– 2x2 games (1961)

– identical interest “team” games (1996)

– potential games (2002)

– 2xN games (2003)
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• Counterexamples:
– Shapley fashion game (1964)
– Jordan anticoordination game (1993)
– Foster/Young merry-go-round game (1998)
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Calibrated Forecasts

• Finite collection of forecasts f(k) ∈ {f1, f2, …, fN}

• Calibration condition (asymptotically)

• Implication: Consistency for all persistent forecasts
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Calibration & Learning

• Calibrated forecast of opponent (FV97):
– Universal property against arbitrary opponent
– Self play: Strategies converge to set of correlated equilibria

• Calibrated forecast of joint behavior (KF04):
– Universal property against arbitrary opponent
– Self play: Strategies converges to convex hull of Nash equilibria

• Memory requirement of existing algorithms: #forecasts

Grows exponentially in #outcomes
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Trade-Offs

• Empirical frequencies
– Low memory requirement

– Calibrated vs stationary opponents

• Calibrated forecasts
– Exponential memory requirements

– Universally calibrated

• Tracking Forecasts
– Memory requirements of empirical frequencies

– Calibrated for classes of opponent models
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Tracking Forecast

• Empirical frequencies: ρ = 1

• Smaller ρ⇒ Heavier weight on recent outcomes

• Same memory requirements as empirical frequencies

• No discretization

• Weakly calibrated for
– Stationary opponent

– And broader class of opponents
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Analysis (via Stochastic Approximation)

• Theorem (Mannor, JSS, Arslan 2007): Tracking forecast is calibrated for
– Binary sequences (0 < ρ < 1)

– “Relatively slow” sequences (1/2 < ρ < 1) (e.g., FP, external regret matching)

…
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Implication for Learning in Games

• Opponent: Smooth fictitious play (“slow”)

• Strategy: Best response to tracking forecast

• Consequence: Play best response to opponent’s current strategy
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Simulations: TF vs FP

FP vs FP. Avg rewards = (1/2,1/2) TF vs FP. Avg rewards = (1/3,1/3)
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Simulations: TF vs TF

• Thin lines: Tracking forecasts

• Thick lines: Empirical frequencies “flatten out”
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Simulations: TF/FP vs TF/FP

• Forecast = Convex combination of TF & Empirical Frequencies

• Analysis: Characterize when convergence  to Nash Equilibrium possible

• Similar convergence for Jordan Game
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Final Remarks

• Recap:
– Tracking forecast & trade-offs
– Parallel efforts: Game theoretic methods for networked systems

• Key issue: Equally capable/rational agents
– e.g., Foster & Young, 2001: “On the impossibility of predicting the behavior of rational 

agents”
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