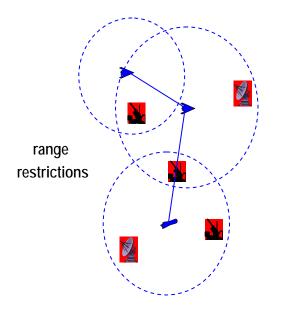
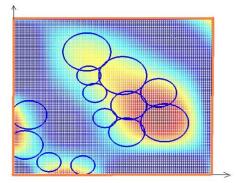
Forecasting in Game Theoretic Learning

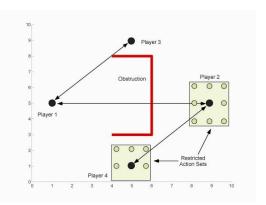
Jeff Shamma Electrical and Computer Engineering Georgia Institute of Technology

Joint work with S. Mannor & G. Arslan

Networked Control Systems: Game Theoretic Perspective





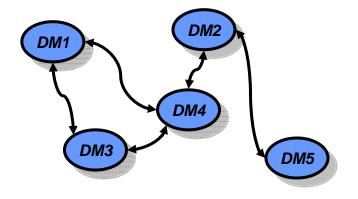


- Examples:
 - Vehicle target assignment
 - Mobile sensor allocation
 - Vehicle rendezvous

- Desirable features:
 - Distributed information & computation
 - Capability of dynamic reconfiguration
 - Circumvention of closed form characterizations
 - Adaptation to actual environment

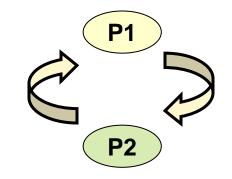
Learning in Games

- Setup (repeated matrix games):
 - Multiple decision makers
 - Evolving strategies
 - Restricted information
- Focus: Dynamics *away* from equilibrium
- Extensive prior work, e.g.:
 - Theory of Learning in Games, Fudenberg & Levine, 1998
 - Individual Strategy & Social Structure, Young, 1998
 - Strategic Learning and Its Limits, Young, 2004
 - Population Games and Evolutionary Dynamics, Sandholm, forthcoming
- Key Challenges:
 - Learning/adaptation in an environment of other learners
 - Descriptive vs prescriptive vs *hybrid* agenda



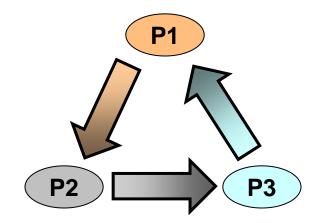
Shapley "Fashion" Game

- 2 players, each with 3 moves: {*Red, Green, Blue*}
 - Player1: Fashion leader wants to differ from Player2
 - Player2: Fashion follower wants to copy Player1
- Key assumption: Players do *not* announce preferences
- Daily routine:
 - Play game
 - Observe actions
 - Update strategies



Jordan "Anti-coordination" Game

- 3 players, each with 2 moves: {*Left, Right*}
 - Player1 wants to differ from Player2
 - Player2 wants to differ from Player3
 - Player3 wants to differ from Player1
- Players do *not* announce preferences
- Daily routine:
 - Play game
 - Observe actions
 - Update strategies



- Constraint: $p_k(k) = F(\text{information up to time } k)$
- Opponent action measurements:
 - Forecast opponent strategy
 - Play best response to forecast
 - Observe opponent actions
 - Revise forecast & repeat

Forecasting

- Finite number of possible outcomes
- Repeated in time
- Objective: Predict *probability* of outcome
- Performance measurements:
 - Model based consistency: Classes of sources
 - Universal consistency: All sources

• Forecast: Empirical frequencies of opponent

$$q_{-i}(k+1) = q_{-i}(k) + \frac{1}{k+1}(a_{-i}(k) - q_{-i}(k))$$

• Play: Smooth best response to forecast

$$a_i(k) = \operatorname{rand}[\beta(q_{-i}(k))]$$

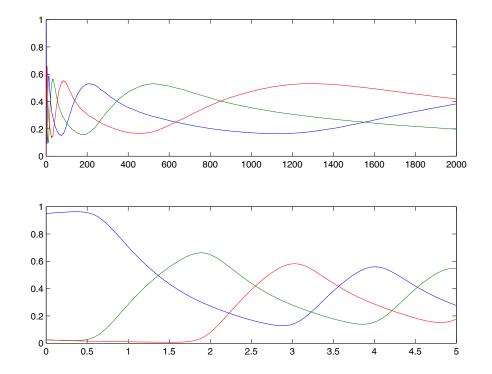
$$\beta(v) = \arg\max_{s \in \Delta} s^T M v + \tau \mathcal{H}(s)$$

- Presumption: Stationary opponent
- Memory requirement: #opponent actions

Convergence Properties for FP

- Convergent cases:
 - zero-sum games (1951)
 - 2x2 games (1961)
 - identical interest "team" games (1996)
 - potential games (2002)
 - 2xN games (2003)

- Counterexamples:
 - Shapley fashion game (1964)
 - Jordan anticoordination game (1993)
 - Foster/Young merry-go-round game (1998)

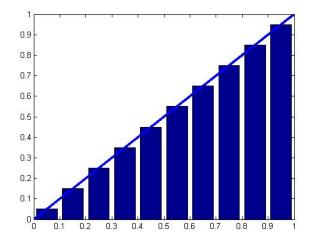


Calibrated Forecasts

- Finite collection of forecasts $f(k) \in \{f_1, f_2, ..., f_N\}$
- Calibration condition (asymptotically)

$$\frac{1}{K}\sum_{k=1}^{K} I_{[f(k)=f_i]}(a(k)-f_i) \leq \varepsilon$$

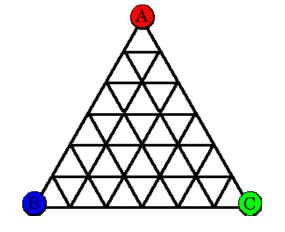
• Implication: Consistency for all *persistent* forecasts



Calibration & Learning

- Calibrated forecast of opponent (FV97):
 - Universal property against arbitrary opponent
 - Self play: Strategies converge to set of *correlated equilibria*
- Calibrated forecast of *joint* behavior (KF04):
 - Universal property against arbitrary opponent
 - Self play: Strategies converges to *convex hull of Nash equilibria*
- Memory requirement of existing algorithms: #forecasts

Grows exponentially in #outcomes



Trade-Offs

- Empirical frequencies
 - Low memory requirement
 - Calibrated vs stationary opponents
- Calibrated forecasts
 - Exponential memory requirements
 - Universally calibrated
- Tracking Forecasts
 - Memory requirements of empirical frequencies
 - Calibrated for *classes* of opponent models

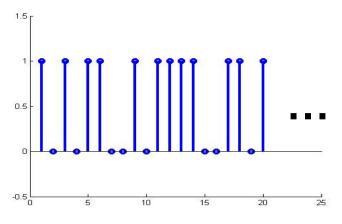
Tracking Forecast

$$f(k+1) = f(k) + \left(\frac{1}{k+1}\right)^{\rho} \left(a(k) - f(k)\right)$$
$$0 < \rho < 1$$

- Empirical frequencies: $\rho = 1$
- Smaller $\rho \Rightarrow$ Heavier weight on recent outcomes
- Same memory requirements as empirical frequencies
- No discretization
- Weakly calibrated for
 - Stationary opponent
 - And broader class of opponents

Analysis (via Stochastic Approximation)

- Theorem (Mannor, JSS, Arslan 2007): Tracking forecast is calibrated for
 - Binary sequences (0 < ρ < 1)



- "Relatively slow" sequences (1/2 < ρ < 1) (e.g., FP, external regret matching)

$$X(k+1) = X(k) + \frac{1}{k+1}(F(X(k), e(k), f(k)) + M(k))$$

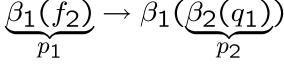
$$p(k) = h(X(k), e(k), f(k))$$

$$a(k) = rand[p(k)]$$

- Opponent: Smooth fictitious play ("slow")
- Strategy: Best response to *tracking* forecast
- Consequence: Play best response to opponent's *current* strategy

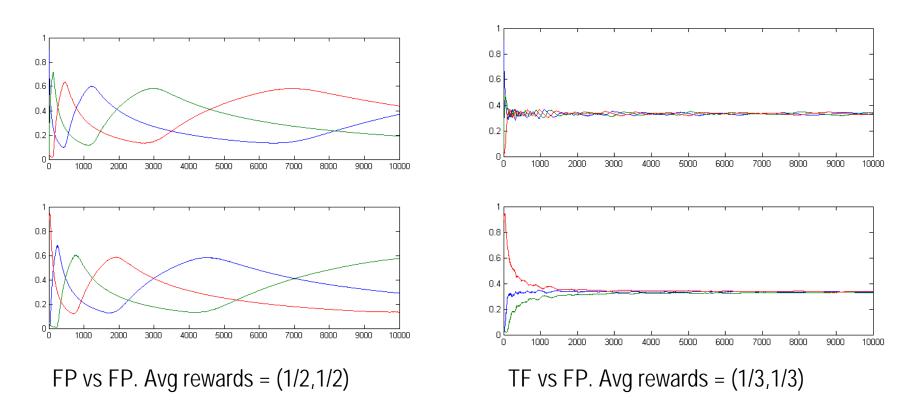
 $f_2 \to \beta_2(q_1)$

 \Rightarrow

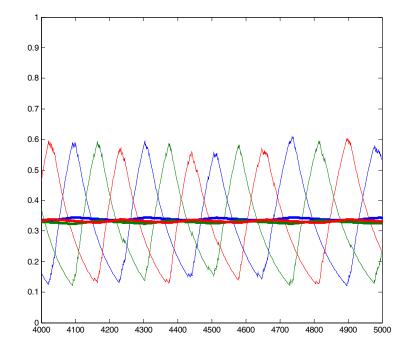


Simulations: TF vs FP

$$\begin{pmatrix} 0, 0 & 1, 0 & 0, 1 \\ 0, 1 & 0, 0 & 1, 0 \\ 1, 0 & 0, 1 & 0, 0 \end{pmatrix}$$

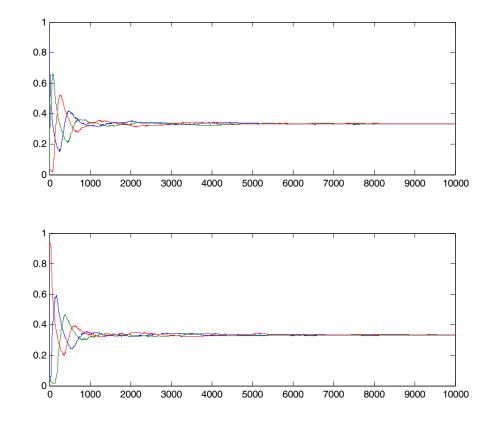


Simulations: TF vs TF



- Thin lines: Tracking forecasts
- Thick lines: Empirical frequencies "flatten out"

Simulations: TF/FP vs TF/FP



- Forecast = Convex combination of TF & Empirical Frequencies
- Analysis: Characterize when convergence to Nash Equilibrium possible
- Similar convergence for Jordan Game

Final Remarks

- Recap:
 - Tracking forecast & trade-offs
 - Parallel efforts: Game theoretic methods for networked systems
- Key issue: *Equally capable/rational agents*
 - e.g., Foster & Young, 2001: "On the impossibility of predicting the behavior of rational agents"

