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Coarse Models:  A rich collection of model reduction techniques

Many of today’s participants have contributed to this research.
A biased list:
Many of today’s participants have contributed to this research.
A biased list:

Fluid models:   Law of Large Numbers scaling, 
  most likely paths in large deviations    
 

Clustering: spectral graph theory
  Markov spectral theory

Large population limits:  Interacting particle systems 

Singular perturbations

Workload relaxation for networks 
Heavy-traffic limits
 



Workload Relaxations

An example from CTCN:An example from CTCN:

Workload at two stations evolves as a two-dimensional system
Cost is projected onto these coordinates:
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Figure 7.1: Demand-driven model with routing, scheduling, and re-work.

Optimal policy for 
relaxation = hedging 
policy for full network

Figure 7.2: Optimal policies for two instances of the network shown in Figure 7.1.
In each figure the optimal stochastic control region RSTO is compared with the optimal
region R∗ obtained for the two dimensional fluid model.



Workload Relaxations and Simulation
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An example from CTCN:An example from CTCN:

DP and simulations accelerated 
 using fluid value function for workload relaxation
DP and simulations accelerated 
 using fluid value function for workload relaxation

Decision making at stations 1 & 2
e.g., setting safety-stock levels
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What To Do With a Coarse Model?
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Setting:  we have qualitative or partial quantitative 
 insight regarding optimal control
Setting:  we have qualitative or partial quantitative 
 insight regarding optimal control

The network examples relied on specific network structureThe network examples relied on specific network structure

What about other models?What about other models?
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Setting:  we have qualitative or partial quantitative 
 insight regarding optimal control
Setting:  we have qualitative or partial quantitative 
 insight regarding optimal control

The network examples relied on specific network structureThe network examples relied on specific network structure

An answer lies in a new formulation of Q-learningAn answer lies in a new formulation of Q-learning

What about other models?What about other models?



What is Q learning?
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Idea is similar to Mayne & Jacobson’s 
  differential dynamic programming
Idea is similar to Mayne & Jacobson’s 
  differential dynamic programming Differential dynamic programming 

D. H. Jacobson and D. Q. Mayne
American Elsevier Pub. Co.  1970

Q-Learning
C. J. C. H.  Watkins and P. Dayan 
Machine Learning,  1992
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Deterministic formulation:  Nonlinear system on Euclidean space,Deterministic formulation:  Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Idea is similar to Mayne & Jacobson’s 
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d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

Differential dynamic programming 
D. H. Jacobson and D. Q. Mayne
American Elsevier Pub. Co.  1970

Q-Learning
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Machine Learning,  1992



What is Q learning?
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Deterministic formulation:  Nonlinear system on Euclidean space,Deterministic formulation:  Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Differential generator:  For any smooth function h,Differential generator:  For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

Duh (x) := (∇h (x))Tf(x,u)
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c(x,u) + DuJ∗ (x) = γJ∗(x)

Duh (x) := (∇h (x))Tf(x,u)
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Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

The Q-function of Q-learning is this function of two variablesThe Q-function of Q-learning is this function of two variables
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Q learning - Steps towards an algorithm
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Sequence of five steps:Sequence of five steps:

Step 1: Recognize fixed point equation for the Q-function
Step 2:  Find a stabilizing policy that is ergodic   
Step 3:  Optimality criterion - minimize Bellman error
Step 4:  Adjoint operation
Step 5:  Interpret and simulate! 
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Q-function: Q-function: 

Its minimum:Its minimum:

Fixed point equation:Fixed point equation:

c(x,u) +DuJ∗∗ (x)=H (x,u)

H∗(x) := min
u∈U

H∗(x,u) = γJ∗(x)

DuH∗ (x) = −γ(c(x,u)−H∗(x,u))
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Step 2:  Find a stabilizing policy that is ergodic   
Step 3:  Optimality criterion - minimize Bellman error
Step 4:  Adjoint operation
Step 5:  Interpret and simulate! 

DuH∗ (x) = d
dtH

∗(x(t))
x=x(t)
u=u(t)

Step 1: Recognize fixed point equation for the Q-functionStep 1: Recognize fixed point equation for the Q-function

Q-function: Q-function: 

Its minimum:Its minimum:

Fixed point equation:Fixed point equation:

Key observation for learning:  For any input-output pair,Key observation for learning:  For any input-output pair,
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DuH∗ (x) = −γ(c(x,u)−H∗(x,u))



Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2:  Find a stabilizing policy that is ergodic   
Step 3:  Optimality criterion - minimize Bellman error
Step 4:  Adjoint operation
Step 5:  Interpret and simulate! 

After Step 5:  Not quite adaptive control:After Step 5:  Not quite adaptive control:

Ergodic input appliedErgodic input applied

Desired behavior
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and learn Inputs

Outputs

Complex system
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After Step 5:  Not quite adaptive control:After Step 5:  Not quite adaptive control:

Ergodic input applied
Based on observations minimize the mean-square Bellman error:
Ergodic input applied
Based on observations minimize the mean-square Bellman error:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system



Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:
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d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2
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Q learning - Local Learning
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Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Basis:Basis:
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Multi-agent model
M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass
behavior and decentralized ε-Nash equilibria. IEEE Trans. Auto.
Control, 52(9):1560–1571, 2007.

Huang et. al.  Local optimization for global coordinationHuang et. al.  Local optimization for global coordination



Multi-agent model

Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB:  Individual state + global average HJB:  Individual state + global average 

Basis:  Consistent with low dimensional LQG modelBasis:  Consistent with low dimensional LQG model

Results from five agent model:Results from five agent model:
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Multi-agent model

Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB:  Individual state + global average HJB:  Individual state + global average 

Basis:  Consistent with low dimensional LQG modelBasis:  Consistent with low dimensional LQG model
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Gains for agent 4:  Q-learning sample paths
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Current research:    Current research:    Algorithm analysis and improvements
Applications in biology and economics
Analysis of game-theoretic issues 
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