
Q-Learning and Coarse Models

Sean Meyn

Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
 University of Illinois

Joint work with Prashant Mehta
NSF support: ECS 0523620 and CMS 05-56352

Coarse Models: A rich collection of model reduction techniques

Many of today’s participants have contributed to this research.
A biased list:
Many of today’s participants have contributed to this research.
A biased list:

Fluid models: Law of Large Numbers scaling,
 most likely paths in large deviations

Clustering: spectral graph theory
 Markov spectral theory

Large population limits: Interacting particle systems

Singular perturbations

Workload relaxation for networks
Heavy-traffic limits

Workload Relaxations

An example from CTCN:An example from CTCN:

Workload at two stations evolves as a two-dimensional system
Cost is projected onto these coordinates:
Workload at two stations evolves as a two-dimensional system
Cost is projected onto these coordinates:

w2w2

-20 -10 0 10 20 30 40 50

-20

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

-20

-10

0

10

20

30

40

50

R∗
RSTO RSTO R∗

w1w1

−(1− ρ)−(1− ρ)

Figure 7.1: Demand-driven model with routing, scheduling, and re-work.

Optimal policy for
relaxation = hedging
policy for full network

Figure 7.2: Optimal policies for two instances of the network shown in Figure 7.1.
In each figure the optimal stochastic control region RSTO is compared with the optimal
region R∗ obtained for the two dimensional fluid model.

Workload Relaxations and Simulation

50 100 150 200 250 300

10
20

30
40

50
60

10
20

30
40

50
60

10
20

30
40

50
60

20
30

40
50

60

VIA initialized with Simulated mean with
 and without control variate:

Zero
Fluid value function

An example from CTCN:An example from CTCN:

DP and simulations accelerated
 using fluid value function for workload relaxation
DP and simulations accelerated
 using fluid value function for workload relaxation

Decision making at stations 1 & 2
e.g., setting safety-stock levels

safety-stock levels

Station 1





Station 2





α

α

µµ

µµ

A
ve

ra
g

e
co

st

A
ve

ra
g

e
co

st

Iteration

What To Do With a Coarse Model?

50 100 150 200 250 300

VIA initialized with

Zero
Fluid value function

A
ve

ra
g

e
co

st

Iteration

Setting: we have qualitative or partial quantitative
 insight regarding optimal control
Setting: we have qualitative or partial quantitative
 insight regarding optimal control

The network examples relied on specific network structureThe network examples relied on specific network structure

What about other models?What about other models?

What To Do With a Coarse Model?

50 100 150 200 250 300

VIA initialized with

Zero
Fluid value function

A
ve

ra
g

e
co

st

Iteration

Setting: we have qualitative or partial quantitative
 insight regarding optimal control
Setting: we have qualitative or partial quantitative
 insight regarding optimal control

The network examples relied on specific network structureThe network examples relied on specific network structure

An answer lies in a new formulation of Q-learningAn answer lies in a new formulation of Q-learning

What about other models?What about other models?

What is Q learning?

50 100 150 200 250 300

VIA initialized with

Zero
Fluid value function

A
ve

ra
g

e
co

st

Iteration

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Idea is similar to Mayne & Jacobson’s
 differential dynamic programming
Idea is similar to Mayne & Jacobson’s
 differential dynamic programming Differential dynamic programming

D. H. Jacobson and D. Q. Mayne
American Elsevier Pub. Co. 1970

Q-Learning
C. J. C. H. Watkins and P. Dayan
Machine Learning, 1992

What is Q learning?

50 100 150 200 250 300

VIA initialized with

Zero
Fluid value function

A
ve

ra
g

e
co

st

Iteration

Watkin’s 1992 formulation applied to finite state space MDPsWatkin’s 1992 formulation applied to finite state space MDPs

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Idea is similar to Mayne & Jacobson’s
 differential dynamic programming
Idea is similar to Mayne & Jacobson’s
 differential dynamic programming

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

Differential dynamic programming
D. H. Jacobson and D. Q. Mayne
American Elsevier Pub. Co. 1970

Q-Learning
C. J. C. H. Watkins and P. Dayan
Machine Learning, 1992

What is Q learning?

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Differential generator: For any smooth function h,Differential generator: For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

Duh (x) := (∇h (x))Tf(x,u)

What is Q learning?

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

Differential generator: For any smooth function h,Differential generator: For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

HJB equation:HJB equation: min
u

c(x,u) + DuJ∗ (x) = γJ∗(x)

Duh (x) := (∇h (x))Tf(x,u)

What is Q learning?

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Deterministic formulation: Nonlinear system on Euclidean space,Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,Infinite-horizon discounted cost criterion,

with c a non-negative cost function.with c a non-negative cost function.

The Q-function of Q-learning is this function of two variablesThe Q-function of Q-learning is this function of two variables

Differential generator: For any smooth function h,Differential generator: For any smooth function h,

d
dtx(t) = f(x(t),u(t)), t≥ 0

J∗(x) = inf
∞

0

e−γsc(x(s),u(s)) ds, x(0) = x

HJB equation:HJB equation: min
u

c(x,u) + DuJ∗ (x) = γJ∗(x)

Duh (x) := (∇h (x))Tf(x,u)

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Sequence of five steps:Sequence of five steps:

Step 1: Recognize fixed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

Step 1: Recognize fixed point equation for the Q-functionStep 1: Recognize fixed point equation for the Q-function

Q-function: Q-function:

Its minimum:Its minimum:

Fixed point equation:Fixed point equation:

c(x,u) +DuJ∗∗ (x)=H (x,u)

H∗(x) := min
u∈U

H∗(x,u) = γJ∗(x)

DuH∗ (x) = −γ(c(x,u)−H∗(x,u))

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

DuH∗ (x) = d
dtH

∗(x(t))
x=x(t)
u=u(t)

Step 1: Recognize fixed point equation for the Q-functionStep 1: Recognize fixed point equation for the Q-function

Q-function: Q-function:

Its minimum:Its minimum:

Fixed point equation:Fixed point equation:

Key observation for learning: For any input-output pair,Key observation for learning: For any input-output pair,

c(x,u) +DuJ∗∗ (x)=H (x,u)

H∗(x) := min
u∈U

H∗(x,u) = γJ∗(x)

DuH∗ (x) = −γ(c(x,u)−H∗(x,u))

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

Step 1: Recognize �xed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!

After Step 5: Not quite adaptive control:After Step 5: Not quite adaptive control:

Ergodic input appliedErgodic input applied

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

Q learning - Steps towards an algorithm

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

After Step 5: Not quite adaptive control:After Step 5: Not quite adaptive control:

Ergodic input applied
Based on observations minimize the mean-square Bellman error:
Ergodic input applied
Based on observations minimize the mean-square Bellman error:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)()

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Basis:Basis:

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)()

Hθ(x, u) = c(x, u) + θxx2 + θxu x

1 + 2x2
u

Q learning - Local Learning

Cubic nonlinearity:Cubic nonlinearity:

HJB:HJB:

Basis:Basis:

Low amplitude inputLow amplitude input High amplitude inputHigh amplitude input

Desired behavior

Measured behavior

Compare
and learn Inputs

Outputs

Complex system

0.01

0.02

0.03

0.04

0.05

0.06

−1 0 1
−1

0

1

Optimal policy

−1 0 1
−1

0

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Optimal policy

u(t) = A(sin(t) + sin(πt) + sin(et))

d
dtx = −x3 + u, c(x, u) = 1

2x2 + 1
2u2

min
u

1
2x2 + 1

2u2 + (−x3 + u)∇J∗(x) = γJ∗(x)()

Hθ(x, u) = c(x, u) + θxx2 + θxu x

1 + 2x2
u

Multi-agent model
M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass
behavior and decentralized ε-Nash equilibria. IEEE Trans. Auto.
Control, 52(9):1560–1571, 2007.

Huang et. al. Local optimization for global coordinationHuang et. al. Local optimization for global coordination

Multi-agent model

Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB: Individual state + global average HJB: Individual state + global average

Basis: Consistent with low dimensional LQG modelBasis: Consistent with low dimensional LQG model

Results from five agent model:Results from five agent model:

time

Es
ti

m
at

ed
 s

ta
te

 fe
ed

b
ac

k
g

ai
n

s
Es

ti
m

at
ed

 s
ta

te
 fe

ed
b

ac
k

g
ai

n
s

Multi-agent model

Model: Linear autonomous models - global cost objectiveModel: Linear autonomous models - global cost objective

HJB: Individual state + global average HJB: Individual state + global average

Basis: Consistent with low dimensional LQG modelBasis: Consistent with low dimensional LQG model

Estimated state feedback gainsEstimated state feedback gains

Gains for agent 4: Q-learning sample paths

and gains predicted from ∞-agent limit

Gains for agent 4: Q-learning sample paths

and gains predicted from ∞-agent limit

Results from five agent model:Results from five agent model:

0

1

-1

(individual state)

(ensemble state)

time

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses

Current research: Current research: Algorithm analysis and improvements
Applications in biology and economics
Analysis of game-theoretic issues
 in coupled systems

Algorithm analysis and improvements
Applications in biology and economics
Analysis of game-theoretic issues
 in coupled systems

