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Coarse Models: Arich collection of model reduction techniques

Many of today’s participants have contributed to this research.
A biased list:
Control Techniques
—» Fluid models: Law of Large Numbers scaling, C°m°'e;oﬁet?°ffs
most likely paths in large deviations

—» Workload relaxation for networks
Heavy-traffic limits

Markov Chains and
Stochastic Stability

—» Clustering: spectral graph theory
Markov spectral theory

—» Singular perturbations

—» Large population limits: Interacting particle systems



control Techniques

Workload Relaxations

Sean Meyn

An example from CTCN:
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Figure 7.1: Demand-driven model with routing, scheduling, and re-work.

Workload at two stations evolves as a two-dimensional system
Cost is projected onto these coordinates:

NE ~ s ol
Optimal policy for
relaxation = hedging
policy for full network

Figure 7.2: Optimal policies for two instances of the network shown in Figure 7.1.
In each figure the optimal stochastic control region RS™ is compared with the optimal
region R* obtained for the two dimensional fluid model.



control Techniques

Workload Relaxations and Simulation e
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Decision making at stations 1 & 2 %
e.g., setting safety-stock levels

An example from CTCN:

DP and simulations accelerated
using fluid value function for workload relaxation

Average cost
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A VIAinitialized with
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Setting: we have qualitative or partial quantitative |

insight regarding optimal control

What To Do With a Coarse Model?

Average cost

The network examples relied on specific network structure

What about other models?
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What To Do With a Coarse Model? \

Iteration

Setting: we have qualitative or partial quantitative
insight regarding optimal control

The network examples relied on specific network structure

What about other models?

An answer lies in a new formulation of Q-learning
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What s Q learning?

Average cost

Watkin’s 1992 formulation applied to finite state space MDPs

Q-Learning

Idea is similar to Mayne & Jacobson’s oo Lo ooy "

Machine Learning, 1992

differen tial dyn amic programming Differential dynamic programming

D.H.Jacobson and D.Q. Mayne
American Elsevier Pub.Co. 1970
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American Elsevier Pub.Co. 1970

Deterministic formulation: Nonlinear system on Euclidean space,

Infinite-horizon discounted cost criterion,

J*(z) = inf /OOO e e(x(s), u(s))ds, z(0) =

with ¢ a non-negative cost function.



What s Q learning?

Differential generator: For any smooth function h,
Dyh(z) := (Vh(z)) f(z,u)
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Differential generator: For any smooth function h,
Dyh(z) := (Vh(z)) f(z,u)

HJB equation:  min(c(z, u) + D, J* (x)) = vJ*(z)

u




What s Q learning?

Differential generator: For any smooth function h,
Dyh(z) := (Vh(z)) f(z,u)

HJB equation:  min(c(z, u) + D, J* (x)) = vJ*(z)

u

The Q-function of Q-learning is this function of tvvm




Q learning - Steps towards an algorithm

Sequence of five steps:

Step 1:Recognize fixed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic

Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation

Step 5: Interpret and simulate!




Q learning - Steps towards an algorithm

Step 1:Recognize fixed point equation for the Q—functidn
Q-function: HYx,u) = c(x,u) + DyJ* ()

lts minimum: H*(z):= miB H*(xz,u) =~J"(x)
uec

Fixed point equation:

DuH" (z) = —(c(z,u) = H (2, u))
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Step 3: Optimality criterion - minimize Bellman error
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Q learning - Steps towards an algorithm

Step 1:Recognize fixed point equation for the Q—functién
Q-function: HYx,u) = c(x,u) + DyJ* ()

Its minimum: H* () := miB H*(x,u) =~vJ" ()
uec

Fixed point equation:

DuH" (z) = —(c(z,u) = H (2, u))

Key observation for learning: For any input-output pair,

* d *
D H* () = L H* (x(t))
x=x(t)
u=u(t)
Step 1: Recognize fixed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic
Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation
Step 5: Interpret and simulate!



Q learning - Steps towards an algorithm

After Step 5: Not quite adaptive control:

Compare
and learn

D eeenen Optimal policy |

Desired behavior

—

Comple ys 5

Outputs

Measured behavior

Ergodic input applied

Step 1: Recognize fixed point equation for the Q-function
Step 2: Find a stabilizing policy that is ergodic

Step 3: Optimality criterion - minimize Bellman error
Step 4: Adjoint operation

Step 5: Interpret and simulate!
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Q learning - Steps towards an algorithm

After Step 5: Not quite adaptive control:

Desired behavior
Compare Outputs
and learn )
Complex sstm -
Measured behavior
Ergodic input applied

Based on observations minimize the mean-square Bellman error:

Enen(0) = / £9]° w(dz, du)
L(z,u) = DH?(x)+~(c—H’, 0ecR




Q learning - Local Learning b

Cubic nonlinearity:

%sz—x?’_'_u, C($,U):lﬂf2—|—



Q learning - Local Learning b

Cubic nonlinearity: $2=-2"4+u,  c(z,u) = 52° + Fu

HJB:
min (322 + Ju? + (~2° + u)V.J* (1)) = 7J"(2)

u



Q learning - Local Learning

Cubic nonlinearity: 4z =-24+u,  c(z,u) =12° +

HJB: min (32 + $u® + (—2® + u)VJ*(2)) = vJ*(z)

u

Basis: €

1+ 222

HY(z,u) = c(x,u) + 62* + 6™




Q learning - Local Learning

Cubic nonlinearity: $z=-2"4+u,  c(z,u) = $2° + Fu

HJB: min (32 + $u® + (—2® + u)VJ*(2)) = 7J*(z)
1Ce 9 _ X 2 Xu
Basis: HY(z,u) = c(x,u) + 0z + 6 ozt
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u(t) = A(sin(t) + sin(mt) + sin(et))



M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass

MUltI—agent mOdel behavior and decentralized e-Nash equilibria. [EEE Trans. Auto.

Control, 52(9):1560-1571, 2007.

Huang et.al. Local optimization for global coordination




Multi-agent model

Model: Linear autonomous models - global cost objective
HJB: Individual state + global average

Basis: Consistent with low dimensional LQG model

Results from five agent model:

Estimated state feedback gains

time




Multi-agent model

Model: Linear autonomous models - global cost objective
HJB: Individual state + global average

Basis: Consistent with low dimensional LQG model

—

Results from five agent model:

Estimated state feedback gains

— ]{;; (individual state)

— k; (ensemble state)

time
S

Gains for agent 4: Q-learning sample paths
and gains predicted from oco-agent limit
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Conclusions

Coarse models give tremendous insight

They are also tremendously useful
for design in approximate dynamic programming algorithms



Conclusions

Q-learning is as fundamental as the Riccati equation - this
should be included in our first-year graduate control courses



Conclusions

Current research: Algorithm analysis and improvements
Applications in biology and economics

Analysis of game-theoretic issues

in coupled systems





