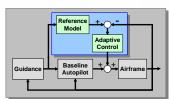


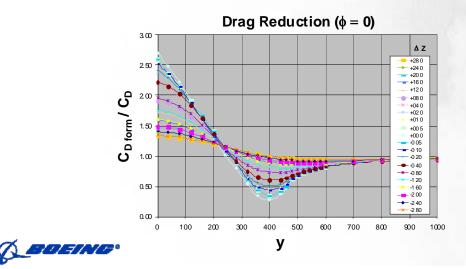
Cooperative Control Challenges for Aerial Vehicles



Eugene Lavretsky, Ph.D. Senior Technical Fellow Boeing Research & Technology The Boeing Company

AFOSR Workshop on Adversarial and Stochastic Elements in Autonomous Systems Washington, DC, March 23 – 24, 2009

Presentation Overview


- Introduction
 - Single vehicle → Multiple Vehicles → Waves of multiple vehicles
- Control Challenge Problems
 - > Single Vehicle in Close-Coupled Flight with a Leader
 - Simplified Flight Dynamics
 - Applications
 - Autonomous Aerial Refueling, (AAR)
 - Autonomous Formation Flight, (AFF)
 - Multiple Unmanned Aerial Vehicles, (UAVs)
 - Simplified UAV dynamics
 - Dubins' car
 - Dubins' aircraft
 - Collaborative Control in Hostile / Adversarial Environment
 - Task allocation
 - Path planning
 - Cooperative attack
 - Intelligence Surveillance and Reconnaissance, (ISR)
 - "Ultimate" Challenge
 - Waves of multiple UAVs prosecuting multiple targets in uncertain environment
- Conclusions

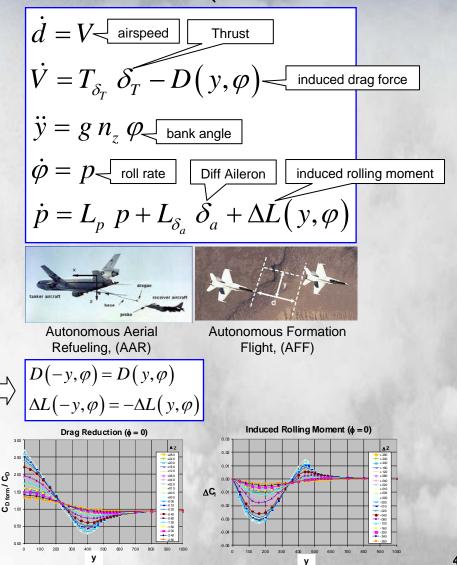
Close-Coupled Flight Dynamics and Control

Aerodynamic Phenomenon

- Unknown unsteady flow field behind lead aircraft
- Lead aircraft wingtip vortices influence trailing aircraft aerodynamic forces and moments
 - Longitudinal separation
 - changes are uniform within 5 aircraft body length
 - Vertical and Lateral Separation
 - induced aerodynamic drag
 - rolling moment
 - Relative bank angle

3

Close-Coupled Flight: System Dynamics


- Trailing aircraft in close-coupled formation (relative dynamics) $\dot{d} = V airspeed$ Thrust
 - > 2 Control Inputs
 - Thrust for Airspeed
 - Differential Aileron for Roll

> Unknown Constant Parameters

- Throttle effectiveness
- Roll damping
- Aileron effectiveness

> Unknown functions

- Vortex induced aerodynamics
 - Drag force $D(y, \varphi)$
 - Rolling moment $\Delta L(y, \varphi)$
- Applications
 - Autonomous Formation Flight
 - Autonomous Aerial Refueling

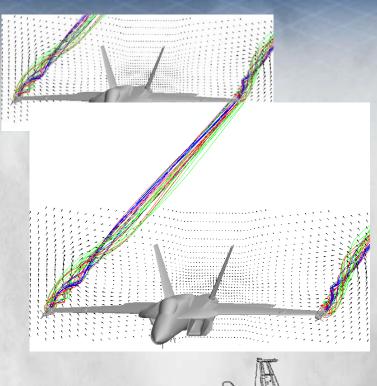
Close-Coupled Flight: AFF Control Challenge

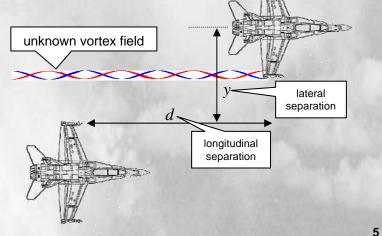
• Benefit

- > Flying in the vortex field
 - reduces induced drag by 20 25%
 - range extension
 - less fuel

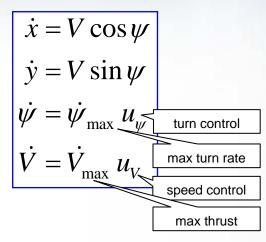
Control Challenges

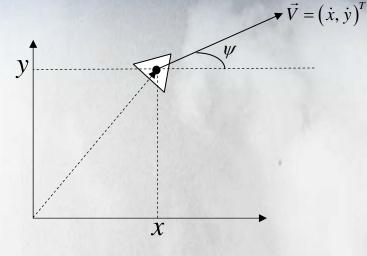
- wingtip vortex induced uncertainties
- unknown / unsteady vortex location


Control Goals


- Bounded tracking
- > Vortex seeking \rightarrow drag reduction

F/A-18 Formation Flight Tests @ NASA Dryden, 2000



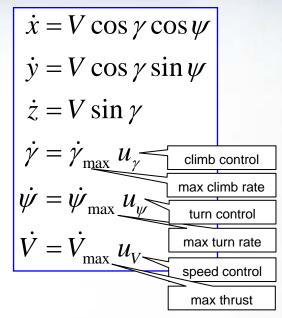


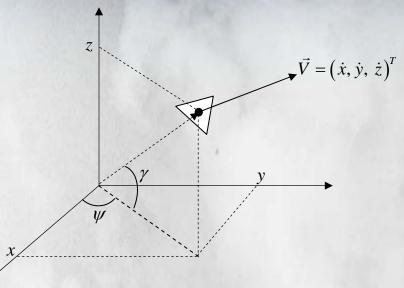
UAV Dynamics for Control Design

Dubins' Car

> 2 control inputs

- Speed control, (thrust)
 - limited between 0 and 1
- Heading control, (rate of turning)
 - □ limited between 0 and 1


> 2 controlled outputs


 \checkmark (x, y) – positions

UAV Dynamics for Control Design (continued)

Dubins' Aircraft

7

- > 3 control inputs
 - Speed control, (thrust)
 - limited between 0 and max thrust available
 - Heading and flight path controls, (turn and climb rates)
 - □ limited between 0 and 1

> 3 controlled outputs

 \checkmark (x, y, z) – positions

Control Challenge: Single UAV Path Planning

Single vehicle operating in uncertain environment

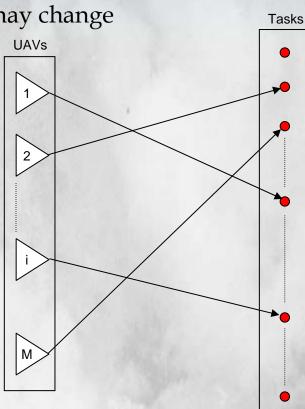
- > Finding "shortest" path in finite graph
 - System dynamics
 - Simple model: $x_{k+1} = u_k$ $\dot{x} = V \cos \psi$
 - Dubins' car / aircraft model –
 - Other

$$\dot{y} = V \sin \psi$$
$$\dot{\psi} = \dot{\psi}_{\max} u_{\psi}$$
$$\dot{V} = \dot{V}_{\max} u_{V}$$

 $\dot{x} = V \cos \gamma \cos \psi$ $\dot{y} = V \cos \gamma \sin \psi$ $\dot{z} = V \sin \gamma$ $\dot{\gamma} = \dot{\gamma}_{\max} u_{\gamma}$ $\dot{\psi} = \dot{\psi}_{\max} u_{\psi}$ $\dot{V} = \dot{V}_{\max} u_{V}$

8

- Optimality criterion
 - ✓ not a distance-like measure
 - doesn't satisfy the triangular inequality
 - instant connection cost matrix is not-symmetric
- "Optimal" path / route
 - node precedence constraints
 - obstacles and pop-up threats avoidance
 - collision avoidance with other vehicles


Constrained Shortest Path Problem

Control Challenge: Task Allocation

Dynamic Optimization Problem

- > M vehicles \rightarrow N Tasks, (M < N)
 - number of assets (M) and tasks (N) may change
- Goal
 - maximize total assignment benefit
 - account for vehicle capabilities
- Online solution computation

Constrained Optimal Assignment Problem

Control Challenge: Cooperative Attack

Multiple UAVs Prosecuting Multiple Targets

- > Task allocation
 - Constraints
 - individual vehicle capability
 - time-critical targets
 - task precedence
 - relative timing
- > Path / Route planning
 - Obstacle & Collision Avoidance
- Sensing, Estimation and Information Sharing
 - Uncertain & hostile environment
 - Limited communication data links

Constrained Multi-Vehicle Shortest Path and Travelling Salesman Problems

"Ultimate" Challenge

Single UAV → Multiple UAVs → Waves of Multiple UAVs

Performing tasks to accomplish higher level objectives

Collaborative Control Tasks in Uncertain Environment

- Cooperative Strike, Intelligence Surveillance Reconnaissance (ISR)
- > Task allocation, Route planning, and Obstacle Avoidance
- > Task precedence and timing constraints
 - Prosecution of time critical targets
- > Execution in the presence of uncertainty caused by adversarial actions

11

- threat location, anti-tactics
- degraded communications

Information Management Between Platforms

- Support data fusion / estimation and collaboration
 - limited available data links
 - interruptions of service
 - degraded performance

Conclusions

- Control Challenge Problems for Aerial Vehicles
 - single UAV
 - > multiple UAVs
 - waves of multiple UAVs
- Need Close-to-Real-Time Control Solutions
 - Frequently generate "optimal" task assignment and multi-vehicle routes in the presence of:
 - uncertain and hostile environment
 - ✓ battle damage
 - limited communications
 - Assign and prosecute time-critical targets

