NONLINEAR MARKOV GAMES*

Vassili N. Kolokoltsov'

Abstract

I am going to put forward a program of the analysis of a new class of stochastic
games that I call nonlinear Markov games, as they arise as a (competitive) controlled
version of nonlinear Markov processes (an emerging field of intensive research, see e.g. [3],
[4],[5]). This class of games can model a variety of situation for economics and epidemics,
statistical physics, and pursuit - evasion processes. The discussion below is mostly taken
from the author’s monograph in preparation [1]. I shall start by introducing the (yet not
very well known) concept of nonlinear Markov chains.

1 Nonlinear Markov chains

A discrete in time and space nonlinear Markov semigroup ®*, k € N, is specified by an arbitrary
continuous mapping ¢ : X, — >, where the simplex

=1
represents of course the set of probability laws on the finite state space {1, ..., .n}. For a measure
p € ¥, the family ¥ = ®* 1 can be considered as an evolution of measures on {1,...,.n}. But

it does not yet define a random process (finite-dimensional distributions are not specified). In
order to get a process one has to choose a stochastic representation for @, i.e. to write it down
in the form

D) = {250 s = {3 P F, (L1)

where Pj;(pt) is a family of stochastic matrices (Z;l:l P(p) = 1 for all 7), depending on
(nonlinearity!), whose elements specify the nonlinear transition probabilities. For any given
® . ¥, — 3, a representation (1.1) exists, but is not unique. For instance, there~ exists a

unique representation (1.1) with an additional condition that all matrices P;(n) = P;;(p) are
one dimensional:

Py(p) = ®;(p), 4,5 =1,...n. (1.2)
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Once a stochastic representation (1.1) for a mapping ® is chosen one can naturally define, for
any initial probability law p = u°, a stochastic process i;, [ € Z,, called a nonlinear Markov
chain, on {1, ...,n} in the following way. Starting with an initial position i distributed according
to p one then chooses the next point 4; according to the law {P,;(1)}?_;, the distribution of
i1 becoming u' = ®(u):

Jj=b

N; P(iy = j) ZPU D;(p).

Then one chooses iy according to the law {5 ;(u1)}j—;, etc. The law of this process at any

given time k is u* = ®*(u), i.e. is given by the semigroup. However, now the finite-dimensional
distributions are defined as well. Namely, say for a function f of two discrete variables, one has

Ef (i, k1) Z fi, j)u k).

1,5=1

In other words, this process can be defined as a time non-homogeneous Markov chain with the
transition probabilities at time ¢t = k being P;(u").

Clearly the finite-dimensional distributions depend on the choice of the representation (1.1).
For instance, in case of the simplest representation (1.2) one has

i, 11) Zflj,uz 1),
i,7=1

so that the discrete random variables ig and ¢; turn out to be independent.
Once the representation (1.1) is chosen, one can also define the transition probabilities Pk
in time ¢ = k recursively as

Zpkl Iuk 1)

The semigroup identity ®**' = ®*®! implies that

=1
and

Z WP, 1<k

One can get nonlinear analogs of many results from the usual Markov chains. For example,
let us present the following simple fact on the long time behavior.

Proposition 1.1 (i) For any continuous ® : 3, — X, there exists a stationary distribution,
i.e. a measure [ € 3, such that ®(u) = p. (i) If a representation (1.1) for ® is chosen in
such a way that there exists a jo € [1,n], a time kg € N and a positive 6 such that

P () >0 (1.3)

2Jo

for all i, p, then ®™(u) converges to a stationary measure for any initial p.
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Proof. Statement (i) is a consequence of the Browder fixed point principle. Statement (ii)
follows from the representation (given above) of the corresponding nonlinear Markov chain as
a time non-homogeneous Markov process.

We shall turn now to nonlinear chains in continuous time. A nonlinear Markov semigroup
with continuous time and the finite state space {1,...,n} is defined as a semigroup ®*, t > 0,
of continuous transformations of ¥,,. As in the case of discrete time the semigroup itself does
not specify a process. A continuous family of nonlinear transition probabilities on {1,...,n} is
a family P(t,u) = {Pi;(t, 1) };;=; of stochastic matrices depending continuously on ¢ > 0 and
i € X, such that the following nonlinear Chapman-Kolmogorov equation holds:

Z/MPz‘j(tJF&M Zukpkz (t, 1) Pij ( ZPI t, ) pr). (1.4)
=1

This family is said to yield a stochastic representation for the Markov semigroup ®' whenever

= wiPy(t.p), t>0,p€X, (1.5)

If (1.5) holds, the equation (1.4) represents just the semigroup identity ®'*5 = ®'®s,

Once a stochastic representation (1.5) for the semigroup ®* is chosen one can define the
corresponding stochastic process started at p € Y, as a time nonhomogeneous Markov chain
with the transition probabilities from time s to time ¢ being

pij(‘S?tmu) = Pij(t -5, (I)S(/U)'

To get the existence of a stochastic representation (1.5) one can use the same idea as for the
discrete time case and define

Pyt ) = @ (n).
However, this is not a natural choice from the point of view of stochastic analysis. The natural
choice should correspond to a reasonable generator.

Namely, assuming the semigroup ®' is differentiable in ¢ one can define the (nonlinear)
infinitesimal generator of the semigroup ®' as the nonlinear operator on measures given by

Al = S0,

The semigroup identity for ®' implies that ®*(u) solves the Cauchy problem

d

S0 () = A (), () = (1.6)

As follows from the invariance of ¥,, under this dynamics, the mapping A is conditionally
positive in the sense that pu; = 0 for a p € ¥,, implies A;() > 0 and is also conservative in the
sense that A maps the measures from X,, to the space of the signed measures

:{VGR”:zn:ui:m».
i=1



We shall say that such an A has a stochastic representation if it is written in the form
Aj() = miQij(1) = (nQ(1));, (1.7)
i=1

where Q(u) = {Qi;(p)} is a family of infinitesimally stochastic matrices (also referred to as
@-matrices or Kolmogorov’s matrices) depending on p € ¥,,. Thus in stochastic representation
the generator has the form of a usual Markov chain generator, though additionally depending
on the present distribution. The existence of a stochastic representation for the generator is not
as obvious as for the semigroup, but is not difficult to get, as shows the following statement,
whose is based on the observation that as we are interested only in the action of Q) on p we can
choose its action on the transversal to p space XV in an arbitrary way.

Proposition 1.2 For any differentiable in t nonlinear Markov semigroup ®' on X, its in-
finitesimal generator has a stochastic representation.

In practice, the converse problem is of more importance: not to construct the generator
from a given semigroup, but to construct a semigroup (i.e. a solution to (1.6)) from a given
operator A, which in applications is usually given directly in its stochastic representation. The
problem of such a construction will be one of the central in this book, but in a much more
general setting.

2 Examples: Lotka-Volterra, replicator dynamics, epi-
demics

The nonlinear Markov semigroups are present in abundance among the popular models of
natural and social sciences, so that it would be difficult to distinguish the most important
examples. We shall discuss here shortly three biological examples (anticipating our future
analysis of the evolutionary games) and a statistical mechanics examples (anticipating the
subsequent analysis of the kinetic equations).

The replicator dynamics of the evolutionary game arising from the classical paper-rock-
scissors game has the form

( dx

it =(y—2)z
dy

< - = (z —x)y (2.1)
dz

Cat (z—y)z

Its generator has a clear stochastic representation (1.7) with the infinitesimal stochastic
matrix

—Z z
Qu=1[ = -z 0 (2.2)
0 vy -y



where p = (z,y, 2).
The famous LotkaVolterra equations describing a biological systems with two species, a
predator and its prey, have the form

dx

z(o — By)
Ccll; (2.3)
a —y(y — )

where «, 3,7v,0 are some positive parameters. The generator of this model is conditionally
positive, but not conservative, as the total mass x + y is not preserved. However, due to the
existence of the integral of motion alogy — By + vlogx — dx, the dynamics (2.3) is path-wise
equivalent to the dynamics (2.1), i.e. there is a continuous mapping taking the phase portrait
of system (2.3) to the one of system (2.1).

One of the simplest deterministic models of epidemics can be written in the form of the
system of 4 differential equations:

X(t) = -AX ()Y (t)

L(t) = AX ($)Y () — aL(t)
Y(t) = ( ) — Y (t)
Z(t) = uY (t)

where X (t), L(t), Y (t) and Z(t) denote respectively the numbers of susceptible, latent, infectious
and removed individual at time ¢ and the positive coefficients A, o, (which may actually
depend on X, L,Y, Z) reflect the rates at which susceptible individuals become infected, latent
individuals become infectious and infectious individuals become removed. Written in terms of
the proportions © = X/o, y = Y/o, |l = L/o, z = Z/o, i.e. normalized on the total mass
c=X+L+Y + Z, this system becomes

() = —aAx(t)y(t)

I(t) = odx(t)y(t) — od(t)

Z/(t) al(t) — py(t)
py(t)

with x(t) + y(t) + I(t) + 2(t) = 1. Subject to the often made assumption that oA, a and p are
constants, the r.h.s. is an infinitesimal generator of a nonlinear Markov chain in 3. This gen-
erator depends again quadratically on its variable and has an obvious stochastic representation
(1.7) with the infinitesimal stochastic matrix

(2.4)

=

(2.5)

-y Ay 0 0
0 —«a Q@

0O 0 —p p
0 0 0 0

Qu) = (2.6)

where u = (z,l,y, ), yielding a natural probabilistic interpretation to the dynamics 2.5, as
explained in the previous section.



3 Discrete nonlinear Markov games and controlled pro-
cesses

The theory of controlled stochastic Markov processes has a sound place in the literature, due
to its wide applicability in practice. Here we shall touch upon the corresponding nonlinear
extension just to indicate the possible directions of analysis.

The main point is that a nonlinear Markov semigroup is after all just a deterministic dynamic
system (though on a weird state space of measures). Thus, as the stochastic control theory is
a natural extension of the deterministic control, we are going to further extend it by turning
back to deterministic control, but of measures, thus exemplifying the usual spiral development
of science. The next turn of the screw’ would lead to stochastic measure-valued games forming
a stochastic control counterpart for the class of processes discussed in the previous section.

We shall work directly in the competitive control setting (game theory), which of course
include the usual optimization as a particular case, but for simplicity only in discrete time and
finite original state space {1,...,n}. The full state space is then chosen as a set of probability
measures 2, on {1,....,n}.

Suppose we are given two metric spaces U, V' of the control parameters of two players,
a continuous transition cost function g(u,v,p), uw € U, v € V, p € ¥, and a transition law
v(u, v, 1) prescribing the new state v € %, obtained from p once the players had chosen their
strategies u € U,v € V. The problem of the corresponding one-step game (with sequential
moves) consists in calculating the Bellman operator

(BS)(s) = minmax(g(u,v, p) + S(v(u,v. ) (3.1)
for a given final cost function S on 3,. According to the dynamic programming principle,

the dynamic multi-step game solution is given by the iterations B*S. Often of interest is the
behavior of this optimal cost B¥S(u) as the number of steps k go to infinity.

Remark 1 In game theory one often assumes (but not always) that min, max in (3.1) are
exchangeable (the existence of the value of the game, leading to the possibility of making simul-
taneous moves), but we shall not make or use this assumption.

The function v(u, v, 1) can be interpreted as the controlled version of the mapping ® speci-

fying a nonlinear discrete time Markov semigroup discussed in Section 1. Assume a stochastic
representation for this mapping is chosen, i.e.

i (u, v, 1) Zuz (1w, v, 12)

with a given family of (controlled) stochastic matrices P,;. Then it is natural to assume g to
describe the average over the random transitions, i.e. be given by

uv,u Z,uzz]uvlugz]
4,j=1



with certain real coefficients ¢;;. Under this assumption the Bellman operator (3.1) takes the
form

i=1

(BS) (1) = minmax 3 Py v.1)gi + 5 (Z pP a0 m)]. (52)
ij=1

We can now identify the (not so obvious) place of the usual stochastic control theory in
this nonlinear setting. Namely, assume F;; above do not depend on p. But even then the
set of the linear functions S(u) = Y i, s;u* on measures (identified with the set of vectors
S = (s1,...,5,)) is not invariant under B. Hence we are not automatically reduced to the usual
stochastic control setting, but to a game with incomplete information, where the states are
probability laws on {1,...,n}, i.e. when choosing a move the players do not know the position
precisely, but only its distribution. Only if we allow only Dirac measures u as a state space
(i.e. no uncertainty on the state), the Bellman operator would be reduced to the usual one of
the stochastic game theory:

(BS); = min max > Pi(u,v) (g + 5)- (3.3)

J=1

As an example of a nonlinear result we shall get here an analog of the result on the existence
of the average income for long lasting games.

Proposition 3.1 If the mapping v is a contraction uniformly in u,v, i.e. if

(v, 1) = v(w, v, 1) < 0|t — 17| (3.4)
with a § € (0,1), where ||v|| =>"1, |vi|, and if g is Lipschitz continuous, i.e.

lg(u, v, 1) = glu, v, 1?)|| < Cllpt = 1] (3.5)

with a constant C' > 0, then there exists a unique X € R and a Lipschitz continuous function
S on X, such that

B(S)=A+S5, (3.6)
and for all g € C(¥,,) we have
1B™g —mAl < [IS] + IS =g, (3.7)
Bm
lim =9 = ). (3.8)

m—oo M

Proof. Clearly for any constant h and a function S one has B(h + S) = h + B(S). Hence one
can project B to the operator B on the factor space C'(3,) of C'(X,) with respect to constant
functions. Clearly in the image Cr;,(X,) of the set of Lipschitz continuous functions Cp;,(2,)

the Lipschitz constant
L(f) = sup [f (') = f(p?)]
pl£p? Hﬁbl - /~L2||
is well defined (does not depend on the choice of the representative of an equivalence class).
Moreover, from (3.4) and (3.5) it follows that

L(BS) < 2C + §L(S),
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implying that the set 5
Qpr={f € CLip(X,) : L(f) < R}

is invariant under B whenever R > C/(1 — §). As by the Arzela-Ascoli theorem, {2y is convex
and compact, one can conclude by the Shauder fixed point principle, that B has a fixed point
in (2z. Consequently there exists a A € R and a Lipschitz continuous function S such that

(3.6) holds.

Notice now that B is non-expansive in the usual sup-norm, i.e.

1B(S1) = B(S:)|| = sup [(BS) () — (BS2) ()] < sup [S1() — Sa(p)] = |11 — Sl

HEX, HEX,

Consequently, for any g € C(%,)
|B™g — B™S|| = [[B™(g) —mA =S| <lg = 5],

implying the first formula in (3.7). The second one is its straightforward corollary. This second
formula also implies the uniqueness of A (as well as its interpretation as the average income).
The proof is complete.

One can extend the other results for stochastic multi-step games to this nonlinear setting,
say, the turnpike theorems from [2], and then go on studying the nonlinear Markov analogs of
differential games, in particular, games of pursuit.
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