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Motivating Problems

• Mission Optimization for teams of unmanned air
vehicles…
- Determining tasks to perform, by which vehicles, in which manner
- Assignment, routing, scheduling…discrete decisions
- Combinatorial growth of states, actions with number of tasks

• in uncertain environments…
- Inaccurate models
- Imperfect information
- Uncertain knowledge of adversary activities

• with teams of distributed agents
- Limited communications
- Distributed information



Uncertain Elements

• Unknown objectives
- Future tasks, constraints, resources…

• Unknown environments
- Inaccurate information on adversarial resources and capabilities
- Uncertain evolution in response to actions
- Uncertain evolution of information

• Multiple agents
- Potentially limited knowledge of team activities
- Limited knowledge of adversary objectives and activities



Control Approaches

• Heuristics
- Index-based scheduling, greedy assignment, others …
- Adaptive indexing, easy to compute in real time

• Open-loop plans with dynamic replanning
- Discrete optimization problems (assignment, scheduling, …)
- Adapts through replanning
- Harder computation in real time

• Closed-loop plans
- Dynamic modeling of information, uncertainty
- Hard to compute off-line, store for on-line (dynamic programming)

• Real-time closed-loop planning
- Simulation-based learning (e.g. neuro-dynamic programming, Q-learning) == hard

to generalize
- Future value real-time approximations  (rollout, bounds, etc) – generalizes but hard

to compute



A Simple Replanning Example

• Two tasks, two periods
- Can attempt one task per period
- Attempts may fail independently
- Prob. Success is period-dependent

• Task 1: value 8;  Task 2: value 4
- Ps = 0.75 period 1, 0.8 period 2

• Objective: max expected value accomplished

• Open-loop: attempt 2, then 1 9.4 expected value
- Fails to account for value of new information

• Feedback strategy: attempt 1, observe success, then
either attempt 1 again or 2  9.85 expected value
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Generalization: Dynamic Assignment

• Motivation: Dynamic search, unreliable resource
allocation, …

• N tasks, two periods

• M resource types

• Independence of success outcomes
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Two Stage Single Resource Type

• Define a task completion state after each stage

- Task completion state observed after each stage

• Decisions are now feedback policies

• Task completion state dynamics: Controlled Markov chain
- Independence of completion event outcomes decouples dynamics
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Objectives and Constraints

• Objective: minimize expected uncompleted task value plus
expected resource use costs

• Constraints

• Dynamic programming possible, but large number of states
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Approximate Dynamic Programming

• Relax constraints to expand admissible strategies
- Generates lower bound to optimal value function
- New constraint on average number of resources

• Relaxes exponential number of constraints to a single constraint
- Simple result:  All feasible strategies in original problem are feasible in current

problem
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Characterization of  Optimal Strategies

• Important concept:  Mixed local strategies
- Local strategies:  feedback strategies such that the actions on a given task depend

only on the state of that task

- Mixed strategy: random combination of pure strategies
- Mixed strategies may achieve better performance than pure strategies in relaxed problem

• Theorem: In relaxed problem, for every pure strategy, there is a
mixed local strategy which uses same resources and achieves
same expected performance
- Proven by construction
- Restricts search to local mixed strategies
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Solution of Relaxed Problem

• Can solve independent subproblems parameterized by expected
resource use

• Primal dual stochastic optimization algorithm

• Theorem: Optimal solution of relaxed problem with single resource
type can be obtained in complexity O((M1+N)log(N))

• Scales to large numbers of objects

• Generalizations to multiple resource types, more complex
problems
Castañón-Wohletz, TAC ‘09 (to appear)
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Control Approach

• Solution of relaxed problem not guaranteed to be
feasible over entire horizon
- Feasible for first stage…
- Use exact solution of approximate model to generate first period

resource assignments

• Optimal strategies are mixed strategies
- Randomize selection

• Control: implement parts of approximate strategy,
observe outcomes, then replan subsequent allocations
- Receding horizon approach with two-stage horizon



Results

• Larger experiments
- Only Greedy and MPC

algorithms
- Same value and probability

ranges as before
- 100 random problems per data

point
- performance: percent of task

value completed by Greedy
algorithm

Tasks Resources MPC

Ave.

MPC

Worst

16 12 99.8% 99.2%

16 16 99.8% 99.3%

16 20 99.9% 99.7%

20 12 99.8% 99.5%

20 16 99.8% 99.5%

20 20 99.9% 99.4%

Computation requirements on 
Pentium 1.4 GHz, Linux:
Greedy: 13 minutes for 20 tasks
MPC: 0.04 seconds for 1000
          tasks



Extension: Discrete Sequential Search

• Allow for parallel tasks, changing focus of attention
- Multiple agents can look at cells in parallel
- Can leave cell without making decision and return to it ()
- Agents may overlap on tasks, collaborate on collecting

decision/information

•  Goals: Find and classify objects by collecting
information over time

Leads to partially-observed assignment



Information State

• Conditional probability that cell i contains object of given
type j given measurements and actions up to but not
including time t
-  ¼i(t) = p(xi |y(0), a(0), …, y(t-1), a(t-1))

• Result:  Under simple conditional independence
assumptions, a sufficient statistic is   Π (t) = {π1(t), …, πN(t)},
 Joint conditional probability is product of marginals

• Information Dynamics (discrete event system): Bayes’
Rule
- Act locally on cells: only measured sites change information state
- Similar structure to multi-armed bandit problem



Result: Lower Bound POMDP

• Minimize

• Subject to constraints



Weak Duality

• Use Lagrange multipliers to incorporate relaxed resource
constraints into objective: Lagrangian, for λ >= 0:

• Lower bounds given by weak duality

• Lagrangian problem is almost separable over objects
- Coupled only by feedback strategies!



Enabling Result

• Under mild independence assumptions, optimal solution
of relaxed problem can be obtained using local adaptive
strategies
- Adapt strategies for each location based only on information

collected for that location
- For every global adaptive strategy, there is an equivalent random

local strategy that achieves the same performance

• Leads to scalable mission control algorithms
- Solved by optimizing Lagrangian dual in hierarchical fashion



• Agent prices: dual variables for consuming sensor time for
different sensors
- Subproblems solved optimally using small POMDP single object algorithms
- NS-dimensional POMDP reduced to N  single object S-dimensional POMDPs +

dual

Hierarchical Pricing of Agent Time

Agent Price
Update

Site 1
Subproblem

Site 2
Subproblem

Site N
Subproblem
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Conclusions

• Discussed approaches for real-time computation  of
controls for stochastic dynamic assignment problems
with combinatorial action and decision spaces
- Embedding into nearly separable problems
- Averaging over constraints
- Model predictive receding horizon implementations

• Generalization to other classes of problems needed
- Routing and scheduling – control of motion as well as task
- Collaborative non-independent performance


