Dynamic Combinatorial Control under Uncertainty

Adversarial and Stochastic Elements in Autonomous Systems Workshop

David Castañón, Boston University

Sponsored by AFOSR

Motivating Problems

Mission Optimization for teams of unmanned air vehicles...

- Determining tasks to perform, by which vehicles, in which manner
- Assignment, routing, scheduling...discrete decisions
- Combinatorial growth of states, actions with number of tasks

in uncertain environments...

- Inaccurate models
- Imperfect information
- Uncertain knowledge of adversary activities

with teams of distributed agents

- Limited communications
- Distributed information

Uncertain Elements

Unknown objectives

- Future tasks, constraints, resources...

Unknown environments

- Inaccurate information on adversarial resources and capabilities
- Uncertain evolution in response to actions
- Uncertain evolution of information

Multiple agents

- Potentially limited knowledge of team activities
- Limited knowledge of adversary objectives and activities

Control Approaches

Heuristics

- Index-based scheduling, greedy assignment, others ...
- Adaptive indexing, easy to compute in real time

Open-loop plans with dynamic replanning

- Discrete optimization problems (assignment, scheduling, ...)
- Adapts through replanning
- Harder computation in real time

Closed-loop plans

- Dynamic modeling of information, uncertainty
- Hard to compute off-line, store for on-line (dynamic programming)

Real-time closed-loop planning

- Simulation-based learning (e.g. neuro-dynamic programming, Q-learning) == hard to generalize
- Future value real-time approximations (rollout, bounds, etc) generalizes but hard to compute

A Simple Replanning Example

- Two tasks, two periods
 - Can attempt one task per period
 - Attempts may fail independently
 - Prob. Success is period-dependent
- Task 1: value 8; Task 2: value 4
 - Ps = 0.75 period 1, 0.8 period 2

2

- 2
- Objective: max expected value accomplished
- Open-loop: attempt 2, then 1→ 9.4 expected value
 - Fails to account for value of new information
- Feedback strategy: attempt 1, observe success, then either attempt 1 again or 2 → 9.85 expected value

Generalization: Dynamic Assignment

- Motivation: Dynamic search, unreliable resource allocation, ...
- N tasks, two periods
- M resource types

```
M_j: Number of resources of type j
p_{ij}: Probability that single resource of type j successfully completes task i
x_{ij}: Number of resources of type j assigned to task i
R_j: Cost of using resource of type j
```

Independence of success outcomes

Two Stage Single Resource Type

Define a task completion state after each stage

```
\omega_i(k) \in \{0,1\} denotes the completion state of task i after stage k
\overline{\omega}(k) = \{\omega_1(k), ..., \omega_N(k)\} is the overall task completion state after k
```

- Task completion state observed after each stage
- Decisions are now feedback policies

```
x_i(k, \overline{\omega}(k-1)) = resources assigned to task i in stage k
\overline{x}(k, \overline{\omega}(k-1)) = vector of resource allocations at stage k
```

- Task completion state dynamics: Controlled Markov chain
 - Independence of completion event outcomes decouples dynamics

$$P(\omega_i(k) = 1 \mid \omega_i(k-1) = 1, x_i(k, \overline{\omega}(k-1)) = n) = (1 - p_i(k))^n$$

Objectives and Constraints

Objective: minimize expected uncompleted task value plus expected resource use costs

$$\min_{\{\overline{x}(1),\overline{x}(2,\overline{\omega}(1))\}} E\left\{ \sum_{i=1}^{N} V_{i} I\{\omega_{i}(2)=1\} + R_{1} \left[x_{i}(1) + x_{i}(2,\overline{\omega}(1))\right] \right\}$$

Constraints

$$\sum_{i=1}^{N} x_i(1) + x_i(2, \overline{\omega}(1)) \le M_1 \text{ for all outcomes } \overline{\omega}(1)$$
$$x_i(1), x_i(2, \overline{\omega}(1)) \in \{0, 1, ..., M_1\}$$

Dynamic programming possible, but large number of states

Approximate Dynamic Programming

- Relax constraints to expand admissible strategies
 - Generates lower bound to optimal value function
 - New constraint on average number of resources

$$\begin{split} &\sum_{\{\overline{\omega}(1)\}} P(\overline{\omega}(1) \,|\, \overline{x}(1)) \left[\sum_{i=1}^N x_i(1) + x_i(2, \overline{\omega}(1)) \right] \leq M_1 \\ &x_i(1), x_i(2, \overline{\omega}(1)) \in \left\{0, 1, ..., M_1\right\} \end{split}$$

- Relaxes exponential number of constraints to a single constraint
 - Simple result: All feasible strategies in original problem are feasible in current problem

Characterization of Optimal Strategies

- Important concept: Mixed local strategies
 - Local strategies: feedback strategies such that the actions on a given task depend only on the state of that task

$$x_i(2,\overline{\omega}(1)) \equiv x_i(2,\omega_i(1))$$

- Mixed strategy: random combination of pure strategies
 - Mixed strategies may achieve better performance than pure strategies in relaxed problem
- Theorem: In relaxed problem, for every pure strategy, there is a mixed local strategy which uses same resources and achieves same expected performance
 - Proven by construction
 - Restricts search to local mixed strategies

Solution of Relaxed Problem

- Can solve independent subproblems parameterized by expected resource use
- Primal dual stochastic optimization algorithm

$$\sum_{i=1}^{N} \min F_i(x_i(1), x_i(2, \omega_i(1))) + \lambda T_i(x_i(1), x_i(2, \omega_i(1)))$$

$$\sum_{i=1}^{N} x_i(1), x_i(2, \omega_i(1))$$

- Theorem: Optimal solution of relaxed problem with single resource type can be obtained in complexity $O((M_1+N)\log(N))$
- Scales to large numbers of objects
- Generalizations to multiple resource types, more complex problems

Castañón-Wohletz, TAC '09 (to appear)

Control Approach

- Solution of relaxed problem not guaranteed to be feasible over entire horizon
 - Feasible for first stage...
 - Use exact solution of approximate model to generate first period resource assignments
- Optimal strategies are mixed strategies
 - Randomize selection
- Control: implement parts of approximate strategy, observe outcomes, then replan subsequent allocations
 - Receding horizon approach with two-stage horizon

Larger experiments

- Only Greedy and MPC algorithms
- Same value and probability ranges as before
- 100 random problems per data point
- performance: percent of task value completed by Greedy algorithm

Tasks	Resources	MPC	MPC
		Ave.	Worst
16	12	99.8%	99.2%
16	16	99.8%	99.3%
16	20	99.9%	99.7%
20	12	99.8%	99.5%
20	16	99.8%	99.5%
20	20	99.9%	99.4%

Computation requirements on Pentium 1.4 GHz, Linux:

Greedy: 13 minutes for 20 tasks

MPC: 0.04 seconds for 1000

tasks

Extension: Discrete Sequential Search

- Allow for parallel tasks, changing focus of attention
 - Multiple agents can look at cells in parallel
 - Can leave cell without making decision and return to it ()
 - Agents may overlap on tasks, collaborate on collecting decision/information
- Goals: Find and classify objects by collecting information over time
 - Leads to partially-observed assignment

Information State

- Conditional probability that cell i contains object of given type j given measurements and actions up to but not including time t
 - $\frac{1}{4}(t) = p(x_i | y(0), a(0), ..., y(t-1), a(t-1))$
- Result: Under simple conditional independence assumptions, a sufficient statistic is Π (t) = { π_1 (t), ..., π_N (t)},
 - → Joint conditional probability is product of marginals
- Information Dynamics (discrete event system): Bayes' Rule
 - Act locally on cells: only measured sites change information state
 - Similar structure to multi-armed bandit problem

Result: Lower Bound POMDP

• Minimize
$$J = \sum_{i=1}^{N} E\{\min_{v_i} c(x_i(T), v_i(T))\}$$

Subject to constraints

$$\sum_{\tau=0}^{T} \sum_{i=1}^{N} \sum_{m=1}^{M} E\{R_{ikm} u_{ikm}(\tau)\} \le C_k$$

$$\sum_{m=1}^{M} u_{ikm}(\tau) \le 1$$

$$\pi_i^s(\tau+1) = \frac{\pi_i^s(\tau) \prod_m P(y_{ikm} | x_i = s, u_{ikm}(\tau))}{\sum_{s'} \pi_i^{s'}(\tau) \prod_m P(y_{ikm} | x_i = s', u_{ikm}(\tau))}$$

$$u_{ikm}(\tau) : [\pi_1(\tau) \dots \pi_N(\tau)] \to \{0, 1, \dots, M\}$$

Weak Duality

• Use Lagrange multipliers to incorporate relaxed resource constraints into objective: Lagrangian, for $\lambda \ge 0$:

$$J(\lambda, \gamma) = E_{\gamma} \{ \sum_{i=1}^{N} [c(v_i, x_i) + \sum_{k} \lambda_k \sum_{\tau=0}^{T-1} \sum_{m=1}^{M} R_{ikm} u_{ikm}(\tau)) \} - \sum_{k} \lambda_k C_k$$

Lower bounds given by weak duality

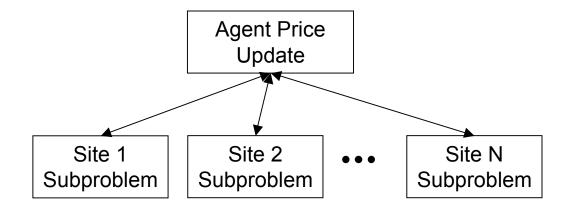
$$\min_{\gamma} J(\lambda, \gamma) \leq \max_{\lambda \geq 0} \min_{\gamma} J(\lambda, \gamma) \leq \min_{\gamma} J(\gamma)$$

- Lagrangian problem is almost separable over objects
 - Coupled only by feedback strategies!

Enabling Result

- Under mild independence assumptions, optimal solution of relaxed problem can be obtained using local adaptive strategies
 - Adapt strategies for each location based only on information collected for that location
 - For every global adaptive strategy, there is an equivalent random local strategy that achieves the same performance
- Leads to scalable mission control algorithms
 - Solved by optimizing Lagrangian dual in hierarchical fashion

Hierarchical Pricing of Agent Time



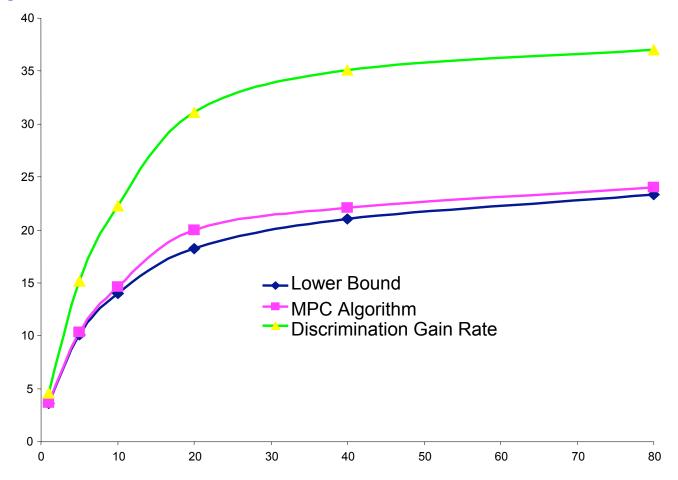
$$\min_{p} L(p, \lambda) = \sum_{i} \min_{p_i} p_i(\gamma_i) (J_i^{\gamma_i} - \sum_{j} \lambda_j R_{ij}^{\gamma_i}) + \sum_{j} C_j \lambda_j$$

Note: minimum is achieved in pure strategies for each price vector λ

- Agent prices: dual variables for consuming sensor time for different sensors
 - Subproblems solved optimally using small POMDP single object algorithms
 - NS-dimensional POMDP reduced to N single object S-dimensional POMDPs + dual

Two Agents, each with one mode

- 250 seconds of observations per agent
- Loss of performance over optimal partitioning of time among modes



Conclusions

- Discussed approaches for real-time computation of controls for stochastic dynamic assignment problems with combinatorial action and decision spaces
 - Embedding into nearly separable problems
 - Averaging over constraints
 - Model predictive receding horizon implementations
- Generalization to other classes of problems needed
 - Routing and scheduling control of motion as well as task
 - Collaborative non-independent performance