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Motivating Problems

 Mission Optimization for teams of unmanned air
vehicles...

- Determining tasks to perform, by which vehicles, in which manner
- Assignment, routing, scheduling...discrete decisions
- Combinatorial growth of states, actions with number of tasks

* in uncertain environments...
- Inaccurate models
- Imperfect information
- Uncertain knowledge of adversary activities

* with teams of distributed agents
- Limited communications
- Distributed information



Uncertain Elements

 Unknown objectives
- Future tasks, constraints, resources...

* Unknown environments
- Inaccurate information on adversarial resources and capabilities
- Uncertain evolution in response to actions
- Uncertain evolution of information

 Multiple agents
- Potentially limited knowledge of team activities
- Limited knowledge of adversary objectives and activities



Control Approaches

Heuristics
- Index-based scheduling, greedy assignment, others ...
- Adaptive indexing, easy to compute in real time

Open-loop plans with dynamic replanning
- Discrete optimization problems (assignment, scheduling, ...)
- Adapts through replanning
- Harder computation in real time

Closed-loop plans
- Dynamic modeling of information, uncertainty
- Hard to compute off-line, store for on-line (dynamic programming)

Real-time closed-loop planning

- Simulation-based learning (e.g. neuro-dynamic programming, Q-learning) == hard
to generalize

- Future value real-time approximations (rollout, bounds, etc) — generalizes but hard
to compute



A Simple Replanning Example

Two tasks, two periods Period 1 Period 2
- Can attempt one task per period

- Attempts may fail independently 1 1
- Prob. Success is period-dependent

Task 1: value 8; Task 2: value 4 ,
- Ps = 0.75 period 1, 0.8 period 2 2

Objective: max expected value accomplished
Open-loop: attempt 2, then 1> 9.4 expected value

- Fails to account for value of new information

Feedback strategy: attempt 1, observe success, then
either attempt 1 again or 2 = 9.85 expected value




Generalization: Dynamic Assignment

Motivation: Dynamic search, unreliable resource
allocation, ...

N tasks, two periods

M resource types

M ; : Number of resources of type j
p;j - Probability that single resource of type j successfully

completes task i

x;; : Number of resources of type j assigned to task i

R; : Cost of using resource of type j

Independence of success outcomes



Two Stage Single Resource Type

 Define a task completion state after each stage

w; (k)€1{0,1} denotes the completion state of task 7 after stage k
@ (k) = {w(k),...,wp (k)} 1s the overall task completion state after k

- Task completion state observed after each stage

 Decisions are now feedback policies

x;(k,o (k —1)) =resources assigned to task 7 in stage £

X(k,w (k —1)) = vector of resource allocations at stage k

» Task completion state dynamics: Controlled Markov chain
- Independence of completion event outcomes decouples dynamics

P(w;(k) =1 w;(k =1) = 1L,x;(k,@ (k -1)) = n) = (1- p;(k))"



Objectives and Constraints

* Objective: minimize expected uncompleted task value plus
expected resource use costs

min E{% Vilw,2) =13 + R 1)+ x,-<2,a—)(1)>]}
FMro0); U

» Constraints
N
Y x; (1) + x;(2,@(1)) = M, for all outcomes @ (1)

i=1
x (), x2,a(1)E,1,..., M, }

* Dynamic programming possible, but large number of states



Approximate Dynamic Programming

 Relax constraints to expand admissible strategies
- Generates lower bound to optimal value function
- New constraint on average number of resources

Y P(@(1)| x(1))
@)
x (), x2,o(1)E,1,..., M, }

$ x5+ x,-(z,a—)a))] < M,
i=1

* Relaxes exponential number of constraints to a single constraint

- Simple result: All feasible strategies in original problem are feasible in current
problem



Characterization of Optimal Strategies ==k

 Important concept: Mixed local strategies
- Local strategies: feedback strategies such that the actions on a given task depend
only on the state of that task

5 (2.0 (1) = 3 (2,0, (1)

- Mixed strategy: random combination of pure strategies
- Mixed strategies may achieve better performance than pure strategies in relaxed problem

* Theorem: In relaxed problem, for every pure strategy, there is a
mixed local strategy which uses same resources and achieves
same expected performance

- Proven by construction
- Restricts search to local mixed strategies



Solution of Relaxed Problem

 Can solve independent subproblems parameterized by expected
resource use

* Primal dual stochastic optimization algorithm

S omin AEOSE@0)AE05Co0)
(1,52, 0;(1))

* Theorem: Optimal solution of relaxed problem with single resource
type can be obtained in complexity O((M.+N)log(N))
* Scales to large numbers of objects

 Generalizations to multiple resource types, more complex
problems

Castanon-Wohletz, TAC ‘09 (to appear)



Control Approach

* Solution of relaxed problem not guaranteed to be
feasible over entire horizon

- Feasible for first stage...

- Use exact solution of approximate model to generate first period
resource assignments

» Optimal strategies are mixed strategies
- Randomize selection

 Control: implement parts of approximate strategy,
observe outcomes, then replan subsequent allocations

- Receding horizon approach with two-stage horizon



Results

* Larger experiments

- Only Greedy and MPC
algorithms

- Same value and probability
ranges as before

- 100 random problems per data
point
- performance: percent of task

value completed by Greedy
algorithm

Tasks | Resources | MPC | MPC

Ave. | Worst
16 12 99.8% 99.2%
16 16 99.8% 99.3%
16 20 99.9% 99.7%
20 12 99.8% 99.5%
20 16 99.8% 99.5%
20 20 99.9% 99.4%

Computation requirements on
Pentium 1.4 GHz, Linux:
: 13 minutes for 20 tasks
: 0.04 seconds for 1000
tasks




Extension: Discrete Sequential Search =ik

* Allow for parallel tasks, changing focus of attention
- Multiple agents can look at cells in parallel
- Can leave cell without making decision and return to it ()

- Agents may overlap on tasks, collaborate on collecting
decision/information

 Goals: Find and classify objects by collecting
information over time

Leads to partially-observed assignment



Information State

* Conditional probability that cell i contains object of given
type j given measurements and actions up to but not
including time t

- /(1) = p(x; [y(0), a(0), ..., y(t-1), a(t-1))

* Result: Under simple conditional independence
assumptions, a sufficient statistic is 11 (t) = {m,(t), ..., m\(t)},
—> Joint conditional probability is product of marginals

* Information Dynamics (discrete event system): Bayes’
Rule

- Act locally on cells: only measured sites change information state
- Similar structure to multi-armed bandit problem



Result: Lower Bound POMDP

N
* Minimize J = ) E{minc(z;(T),vi(1))}
i=1 ’

 Subject to constraints
T N M

> > > E{Ripmuim(7)} < Cy

7=01=1m=1

M
Z uikm(T) <1
m=1
W%'S (1) [Im P(yzkm|xz — S, uik:m(T))

7,8( _I_]-) — 7
e > 7 (1) T P Witm|Ti = 5, tgm (7))

Ui, (7) = [m1(7) ...iny(7)] — {0,1,..., M}



Weak Duality

* Use Lagrange multipliers to incorporate relaxed resource
constraints into objective: Lagrangian, for A >= 0:

N T—1 M
JNY) = Ey{ D le(ui, z)+D A D D RikmUikm (7)) =D AeCl
i=1 k. 1=0m=1 k

 Lower bounds given by weak duality

min J(A\ < maxmin J(\ < mindJ
) (,7)_&0 ) (A7) < )| (7)

 Lagrangian problem is almost separable over objects
- Coupled only by feedback strategies!



Enabling Result

 Under mild independence assumptions, optimal solution
of relaxed problem can be obtained using local adaptive
strategies

- Adapt strategies for each location based only on information
collected for that location

- For every global adaptive strategy, there is an equivalent random
local strategy that achieves the same performance

* Leads to scalable mission control algorithms
- Solved by optimizing Lagrangian dual in hierarchical fashion




e

Agent Price

Update

Site 1
Subproblem

Site 2
Subproblem

min L(p,A\) = > min pi () (J; =
7; 1

for each price vector A\

 Agent prices: dual variables for consuming sensor time for

ditfferent sensors

- Subproblems solved optimally using small POMDP single object algorithms
- NS-dimensional POMDP reduced to N single object S-dimensional POMDPs +

dual

Hierarchical Pricing of Agent Time

Site N
Subproblem

> NiR]

Note: minimum is achieved in pure strategies

)+ CiA;
j



Two Agents, each with one mode

250 seconds of observations per agent

* Loss of performance over optimal partitioning of time among
modes
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Conclusions

 Discussed approaches for real-time computation of
controls for stochastic dynamic assignment problems
with combinatorial action and decision spaces

- Embedding into nearly separable problems

- Averaging over constraints
- Model predictive receding horizon implementations

 Generalization to other classes of problems needed
- Routing and scheduling — control of motion as well as task
- Collaborative non-independent performance




