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Overview

� This research investigates:

� Decision-making in stochastic dynamical systems with many

competing agents

� Outline of contributions:

� Nash Certainty Equivalence (NCE) Methodology

� NCE for Linear-Quadratic-Gaussian (LQG) systems

� Connection with physics of interacting particle (IP) systems

� McK-V-HJB theory for fully nonlinear stochastic differential games

� Invariance principle for controlled population behaviour

� Models with interaction locality

� Derivation the standard consensus dynamics from the NCE

equations.
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Some Facts and Implications

� Physics–Behavior of huge number of essentially identical infinitesimal

interacting particles is basic to the formulation of statistical mechanics

as founded by Boltzmann, Maxwell and Gibbs

� Game Theoretic Control System – Many competing agents

� An ensemble of essentially identical players seeking

individual interest

� Individual mass interaction

� Fundamental issue: how to relate individual actions

to mass behavior?
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Part I – Individual Dynamics and Costs

Individual dynamics:

dzi = (aizi + bui)dt + αz(n)dt + σidwi, 1 ≤ i ≤ n. (1)

� zi: state of the ith agent

� z(n): the population mean z(n) △
= 1

n

∑n
i=1 zi

� ui: control

� wi: noise (a standard Wiener process)

� n: population size

For simplicity: Take the same control gain b for all agents.
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Part I – Individ. Dynamics and Costs (ctn)

Individual costs:

Ji(ui, νi) = E

∫ ∞

0
e−ρt[(zi − νi)

2 + ru2
i ]dt (2)

We are interested in the case νi = Φ(z(n))
△
= Φ( 1

n

∑n
k=1 zk)

Φ: nonlinear and Lipschitz

Main feature and Objective:

� Weak coupling via costs and dynamics

� Connection with IP Systems (for model reduction in McKean-Vlasov

setting) with be clear later on

� Develop decentralized optimization
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Part I – Motivational Background and Related Works

� Economic models (e.g., production output planning) where each

agent receives average effect of others via Market (Lambson)

� Advertising competition game models (Erikson)

� Wireless network resource allocation (e.g., power control, HCM)

� Stochastic swarming (Morale et. al.); “selfish herd" (such as fish)

reducing indiv. predation risk by joining group (Reluga & Viscido)

� Public health – Voluntary vaccination games (Bauch & Earn)

� Industry dynamics with many firms (Weintraub, Benkard, & Roy)

� Mathematical physics and finance (Lasry and Lions)

� Admission control in communication networks.
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Part I – Motiv. Backgrd: Wireless Power Control

� Lognormal channel attenuation (in dB):

dxi = −a(xi + b)dt + σdwi, 1 ≤ i ≤ n.

� Additive power adjustment: dpi = uidt.

� Individual Control Performance

E
∫ T

0

{
[exipi − α(β

n

∑n
j=1 exjpj + η)]2 + ru2

i

}
dt.

� The factor β
n

is due to linear increase of length of CDMA spreading

seqnc w.r.t. user number. η: background noise.

� Want matched filter output signal-to-interference ratio

SIRoutput = exipi/
[
(β/n)

∑n
j=1 exjpj + η

]

to stay near a certain target level. exi : power attenuation from user

to base.
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Part I – Control Synthesis via NCE

Mass influence

i
z u

m(t)

i i Play against mass

� Under large population conditions, the mass effect concentrates into a

deterministic quantity m(t).

� A given agent only reacts to the mass effect m(t) and any other

individual agent becomes invisible.

� Key issue is the specification of m(t) and associated individual action -

Look for certain consistency relationships
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Part II – Preliminary Optimal LQG Tracking

Take f, z∗ ∈ Cb[0,∞) (bounded continuous) for scalar model:

dẑi = aiẑidt + buidt + αfdt + σidwi

Ji(ui, z
∗) = E

∫ ∞

0
e−ρt[(ẑi − z∗)2 + ru2

i ]dt

Riccati Equation : ρΠi = 2aiΠi −
b2

r
Π2

i + 1, Πi > 0.

Set β1 = −ai + b2

r
Πi, β2 = −ai + b2

r
Πi + ρ, and assume β1 > 0.

Optimal Tracking Control −→ ûi = − b

r
(Πizi + si)

Tracking Offset Equation −→ ρsi =
dsi

dt
+ aisi −

b2

r
Πisi + αΠif − z∗.

� Boundedness conditions uniquely determine si.
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Part II – Notation

Based on LQ Riccati equation, denote:

Πa = ( b2

r
)−1

[
a − ρ

2 +
√

(a − ρ
2)2 + b2

r

]
,

β1(a) = −ρ
2 +

√
(a − ρ

2)2 + b2

r
, (3)

β2(a) = ρ
2 +

√
(a − ρ

2)2 + b2

r
. (4)

=⇒ Πa = ( b2

r
)−1(a + β1(a)).
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Part III – Population Parameter Distribution

Define empirical distribution associated with first n agents

Fn(x) =

∑n
i=1 1(ai<x)

n
, x ∈ R.

� (H1) There exists a distribution F s.t. Fn → F weakly.

� Each agent is given its “a" parameter which it knows.

� Information on Other Agents is available statistically in terms of the

empirical distribution. Specifically, assume F is known.
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Part III – LQG-NCE Equation Scheme

Assume zero initial mean, i.e., Ezi(0) = 0, i ≥ 1. Based on population limit,

the Fundamental NCE equation system:

ρsa =
dsa

dt
+ asa −

b2

r
Πasa + αΠaz̄ − z∗, (5)

dza

dt
= (a − b2

r
Πa)za −

b2

r
sa + αz̄, (6)

z =

∫

A
zadF (a), (7)

z∗ = Φ(z). (8)

Basic idea behind NCE(z∗) with parameters F (·), a, b, α, r:

� Solve z∗ tracking problem for one agent.

� Use popul. average z to approximate coupling term 1
n

∑n
k zk.

� Individual action ui is optimal response to z∗.

� Collectively produce same z∗ assumed in first place.
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Part IV – Summary of NCE for LQG Model

Recall the system of n agents with dynamics:

dzi = aizidt + buidt + αz(n)dt + σidwi, 1 ≤ i ≤ n, t ≥ 0.

Let u−i denote the row (u1, · · · , un) with ui deleted, and reexpress the

individual cost

Ji(ui, u−i)
△
= E

∫ ∞

0
e−ρt{[zi − Φ(

1

n

n∑

k=1

zk)]
2 + ru2

i }dt.

Denote the optimal control for the tracking problem with si pre-computed

from the deterministic LQG NCE by

u0
i = − b

r
(Πizi + si), 1 ≤ i ≤ n,

revealing the closed-loop fixed point form of the large population tracking

problem!
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Part IV – Main Existence Results

Theorem (Existence and Uniqueness ) The NCE(z∗) equation system has a

unique bounded solution (z̄a, sa) for each a ∈ A subject to (H2)-(H3).

(H1) There exists a distribution F s.t. Fn → F weakly. (restated)

(H2) Φ is Lipschitz with parameter γ.

(H3) Gain condition:
∫
A

[
|α|

β1(a) + b2(γ+|α|Πa)
rβ1(a)β2(a)

]
dF (a) < 1, and β1(a) > 0 for

all a ∈ A.

(H4) All agents have independent initial conditions with zero mean, and

supi≥1[σ
2
i + Ez2

i (0)] < ∞.
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Part IV – Asymptotic Equilibrium

The k-th agent’s admissible control set Uk consists of all feedback controls

uk adapted to σ(zi(τ), τ ≤ t, 1 ≤ i ≤ n).

Definition A set of controls uk ∈ Uk, 1 ≤ k ≤ n, for n players is called an

ε-Nash equilibrium w.r.t. the costs Jk, 1 ≤ k ≤ n, if there exists ε ≥ 0 such

that for any fixed 1 ≤ i ≤ n, we have

Ji(ui, u−i) ≤ Ji(u
′
i, u−i) + ε,

when any alternative u′
i ∈ Ui is applied by the i-th player.
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Part IV – Stability and Equilibria

Theorem The set of controls {u0
i , 1 ≤ i ≤ n} results in second order stability

& an ε-Nash equilibrm w.r.t. costs Ji(ui, u−i), 1 ≤ i ≤ n, i.e.,

Ji(u
0
i , u

0
−i) − ε ≤ inf

ui

Ji(ui, u
0
−i) ≤ Ji(u

0
i , u

0
−i)

where 0 < ε → 0 as n → ∞, and ui ∈ Ui is any alternative control which

depends on (t, z1, · · · , zn), and

u0
i = − b

r
(Πizi + si). �

� For uniform agents, ε = O(1/
√

n).

� For non-uniform agents, the bound estimates depend on limiting

behavior of Fn → F (weakly).

� Performance analysis: approximating (z1, · · · , zn) in closed-loop by n

independent copies of the McK-V equation driven by (zi(0), wi)

associated with zi.
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Part IV – Implication for Rational Expectations

� Rational Expectations in Macroeconomic Theory. Issue of how

economic agents forecast future events (and hence play against

macroeconomic policy)

� NCE theory gives a coherent and tractable formulation of Rational

Expectations in game theoretic economic behaviour with a large

number of players. Implications for macroeconomic policy?

� In particular, NCE provides a means for maintaining RE in that by

this mechanism each individual can forecast

� the overall population behaviour, and

� the associated optimal individual responses
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Part IV – Explicit Solutions for LQG-NCE Equation System

For a system of uniform agents with ai = a, Φ(z) = γ̂(z + η).

ρs =
ds

dt
+ as − b2

r
Πs + αΠz̄ − z∗,

NCE =⇒ dz̄

dt
= (a − b2

r
Π)z̄ + αz̄ − b2

r
s,

z∗ = φ(z̄) = γ̂(z̄ + η).

⇓ (steady-state)






β2s(∞) − αΠz̄(∞) + z∗(∞) = 0

− b2

r
s(∞) + (α − β1)z̄(∞) = 0

γ̂z̄(∞) − z∗(∞) = −γ̂η.

⇓
unique solution
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Part IV – Cost Gap

� Solve an LQG game model involving cost coupling with individual cost

Ji. Denote Nash equilibrium cost vind with population limit.

� Take welfare function J =
∑n

i=1 Ji and compute optimal control with

cost vn. Optimal centralized control cost per agent v̄ = limn→∞ vn/n.

� Cost gap: vind − v̄.
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Part V – Fully Nonlinear Models and McK-V-HJB Approach

� Dynamics:

dzi = (1/n)
n∑

j=1

f(zi, ui, zj)dt + σdwi, 1 ≤ i ≤ n, t ≥ 0,

� Costs:

Ji(ui)
△
= E

∫ T

0

[
(1/n)

n∑

j=1

L(zi, ui, zj)
]
dt, T < ∞.

� Control set: Each uk ∈ U compact.

� Other variants of the cost may be considered.

� Objective: look for decentralized strategies
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Part V – Connection with Statistical Mechanics

� Boltzmann PDE describing evolution of spatial-velocity (x − v)

distribution u(t, x, v) of huge number of gas particles

� Solution to spatially homogeneous Boltzman PDE (for u(t, v)) has a

probabilistic interpret. via McKean’s Markov system:

� Generator depends on “current density" of the process

� Thus, there exists a driving effect from the mass
• This feature also appears in our diffusion based models, where

current density affects the drift
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Part V – Controlled McKean-Vlasov Equations

� Controlled McK-V equation via a representative agent:

dxt = f [xt, ut, µt]dt + σdwt,

where f [x, u, µt] =
∫

R
f(x, u, y)µt(dy).

� Individual cost:

J(u, µ)
△
= E

∫ T

0
L[xt, ut, µt]dt,

where L[x, u, µt] =
∫

R
L(x, u, y)µt(dy).

� Generalization to multi-class agents corresponds to non-uniform agent

case in basic NCE analysis.
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Part V – The McK-V-NCE Principle

� Methodology: The key steps are to construct a mutually consistent

pair of

� (i) the mass effect, and

� (ii) the individual strategies such that the latter not only
• (a) each constitute an optimal response to the mass effect
• (b) but also collectively produce that mass effect.

� In non-uniform NCE-McKV setting, the mass effect is an average

w.r.t. the agent type distribution Fa.

� Principle: The application of an appropriate, general, Fixed Point

Theorem demonstrates that such a solution

� exists, is unique

� and is collectively produced by the actions of the individual agents.
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Part V – NCE and McK-V-HJB Theory

� HJB equation:

− ∂V

∂t
= inf

u∈U

{
f [x, u, µt]

∂V

∂x
+ L[x, u, µt]

}
+

σ2

2

∂2V

∂x2

V (T, x) = 0, (t, x) ∈ [0, T ) × R.

⇓

Optimal Control : ut = ϕ(t, x|µ·), (t, x) ∈ [0, T ] × R.

� Closed-loop McK-V equation:

dxt = f [xt, ϕ(t, x|µ·), µt]dt + σdwt, 0 ≤ t ≤ T.

The NCE methodology amounts to finding a solution (xt, µt) in McK-V

sense.

Caines, 2009 – p.24/55



Part V –Outline of Analysis Based on NCE

By the NCE methodology, we carry out the steps:

� Construct controlled McKean-Vlasov equation; fixed point theory for

existence analysis

� Develop HJB equation (involving a measure flow) and derive Optimal

Response Mapping for individuals

� Establish existence results (for McK-V-HJB system)

� For equilibrium analysis – Approximate n “controlled interacting

particles" in closed-loop by n independent copies of the McK-V

equation
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Part VI – Asymptotic Nash Equilibrium

Theorem (Individual Level – Nash) Under mild conditions, the set of

McK-V-HJB based controls {u0
i , 1 ≤ i ≤ N} results in an ε-Nash

equilibrium w.r.t. costs Ji(ui, u−i), 1 ≤ i ≤ N , i.e.,

Ji(u
0
i , u

0
−i) − ε ≤ inf

ui

Ji(ui, u
0
−i) ≤ Ji(u

0
i , u

0
−i)

where 0 < ε → 0 as N → ∞.
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Part VI – Generalization to Multi-class Agents

� Dynamics:

dzi = (1/n)
n∑

j=1

fai
(zi, ui, zj)dt + σdwi, 1 ≤ i ≤ n, t ≥ 0,

where ai is the dynamic parameter, indicating type of agent.

� Costs:

Ji(ui)
△
= E

∫ T

0

[
(1/n)

n∑

j=1

L(zi, ui, zj)
]
dt, T < ∞.

� Control set: Each uk ∈ U .

� The sequence {ai, i ≥ 1} takes value from A = {θ1, · · · , θK} with

empir. distri. (π1, · · · , πK), i.e., (1/n)
∑n

i=1 1(ai=θk) → πk.
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Part VI – Generalizat’n to Multi-class Agents (ctn)

� Controlled McK-V equation via a representative agent:

dxt = fa[xt, ut, µ
1
t , · · · , µK

t ]dt + σdwt,

where fa[x, u, µ1
t , · · · , µK

t ] =
∑K

k=1 πk

∫
R

fa(x, u, y)µk
t (dy).

� µk
t reproduces the mass interaction generated by the class of agents

with parameter a = θk. (π1, · · · , πK): para empir. distri.

� Individual cost: J(u, µ)
△
= E

∫ T

0 L[xt, ut, µ
1
t , · · · , µK

t ]dt, where

L[x, u, µ1
t , · · · , µK

t ] =
∑K

k=1 πk

∫
R

L(x, u, y)µt(dy).

� Distribution over agents would give generalized McK-V-HJB with

integral over the agent measures on right hand side.
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Part VII – Martingale Representation and the Invariance Principle

Along the optimal controlled trajectory, let

ξt ,

∫ t

0
L(z(s), u∗(s, z(s)))ds + V (t, z(t))

where t ∈ [0, T ]. In stochastic optimal control, it is well known that ξt is a

martingale.

z(t): closed-loop solution when optimal control u∗ applied.

V (t, z(t)): value function associated with (t, z(t)).

� In the game problem, each agent essentially solves a local optimal

control problem.

� Implication for the large population game when the Nash strategies

are collectively applied?
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Part VII – The Invariance Principle (ctn)

For the McKean-Vlasov-HJB equation, we make existence assumptions:

� (A1) There exists a solution (xi(t), Vai
(t, xi), ûi(t, xi)) to the

McKean-Vlasov-HJB system for multi-class agents.

� (A2) The closed-loop drift coefficient fai
(xi, ûi(t, xi)) is in C([0, T ] × R)

and Lipschitz continuous in xi.

� (A3) Under the control ûi, L[xi, ûi(t, xi), µ
o
t ] is in C([0, T ] × R) and has

a polynomial growth rate with respect to xi.

We denote µo
t = [µ1

t , · · · , µK
t ].
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Part VII – The Invariance Principle (ctn)

We use xi, i = 1, 2, 3 · · · , to denote a sequence of copies of processes

generated by the McKean-Vlasov equation.

Theorem Suppose (A1)-(A3) hold. Then the process

∫ t

0
L[xi(s), ûi(s, xi(s)), µ

o
s]ds + Vai

(t, xi(t))

is a martingale.

By averaging across of the population limit, we get a deterministic

martingale, hence a constant:

c =

∫ t

0

∫

R2

K∑

i,j=1

πiπjL(x, ûθi
(s, x), y)µj

s(dy)µi
s(dx)ds +

∫

R

K∑

i=1

πiVθi
(t, x)µi

t(dx)

c: determined by the initial condition of the population.

θi: indicates the type of the agent.
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Part VII – The Population of N Agents and Asymptotic Invariance

After applying the McK-V-HJB based control laws to the population of

N agents, we can further show

Theorem (Large Population Invariance Princple)

εN ,

∣∣∣
1

N

N∑

i=1

∫ t

0
L[zi(s), ûi(s, zi(s)), µ

o
s]ds +

1

N

N∑

i=1

Vai
(t, zi(t)) − c

∣∣∣

tends to zero in L2, as N → ∞.
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Part VII – Computational Example for LQG Systems

Resulting from the invariance principle:

c =

K∑

k=1

πk

{∫ t

0

∫

R

[
(x − z∗(τ))2 +

b2

r
(Πθk

(τ)x + sθk
(τ))2

]
dF τ

θk
(x)dτ

+

∫

R

[x2Πθk
(t) + 2xsθk

(t)]dF t
θk

(x) + qθk
(t)
}

.

F τ
θk

(x): state distri. at τ for an agent with dynamic parameter θk.

Assume existence of density pt
θk

(x) with suitable regularity; then by taking

differentiation, we get

0 =
K∑

k=1

πk

{∫

R

[
(x − z∗(t))2 +

b2

r
(Πθk

(t)x + sθk
(τ))2

]
pt

θk
(x)dx

+

∫

R

∂[x2Πθk
(t) + 2xsθk

(t)]pt
θk

(x)

∂t
dx +

dqθk
(t)

dt

}
.
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Part VIII — Generalization with Interaction Locality

� Related Background:

� Social segregation (Schelling, 1971); 1-D line topology

� Retailing services (Blume, 1993); 2-D lattice topology

� The individual dynamics:

dzi(t) = [azi(t) + bui(t)]dt + σdWi(t), 1 ≤ i ≤ N, t ≥ 0,

� The cost with interaction locality:

Ji = E

∫ ∞

0
e−ρt

{
[zi − Φ̃i]

2 + ru2
i

}
dt,

where Φ̃i = γ(
∑N

j=1 ω
(N)
pipjzj + η) and ρ > 0, γ > 0, r > 0.

� Weight allocation — The set of weight coefficients ω
(N)
pipj satisfies

ω(N)
pipj

≥ 0, ∀i, j,

N∑

j=1

ω(N)
pipj

= 1, ∀i.
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Part VIII — Example of Weight Allocation

For illustration, consider the 1-D interaction:

� Partition [0, 1] with stepsize 0.01 to get N = 101 locations

� Label the N locations consecutively by p1, · · · , pN .

� Let ω
(N)
pipj = c|pi − pj |−λ where λ ∈ [0, 1] and c is normalizing factor so that all

weights add up to one.
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Part VIII — Example of Weight Allocation (ctn)

Consider the 2-D interaction

� Partition [−1, 1] × [−1, 1] into a 2-D lattice

� Weight decays with distance by the rule ω
(N)
pipj = c|pi − pj |−λ where c is the

normalizing factor and λ ∈ [0, 2]
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Part VIII — Notation and Assumptions

Again, let Πa > 0 be the solution to the algebraic Riccati equation:

ρΠ = 2aΠ − b2

r
Π2 + 1. (9)

Denote β1 = −a + b2

r
Πa and β2 = −a + b2

r
Πa + ρ.

Take [α,α] as the locality index set (i.e., line topology)

(C1) Fα(α′): [α,α] × R → [0, 1] satisfies: i) Fα(·) is a probab. distrib. function

∀ α,
∫
α′∈[α,α] dFα(α′) = 1; ii)

∫
α′∈B

dFα(α′) is a measurable function of α for

each Borel subset B of R; iii) Fα′′(·) converges to Fα(·) weakly when

α′′ → α, where α and α′′ are in [α,α].

(C2) The constants β1 > 0, β2 > 0, and the ratio (γb2)/(rβ1β2) < 1.
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Part VIII — NCE Equation with Interaction Locality

The Localized NCE (Mean Field) equation system:

ρsα =
dsα

dt
+ asα − b2

r
Πasα − Rα, (10)

dz̄α

dt
= (a − b2

r
Πa)z̄α − b2

r
sα, (11)

r̄α(t) =

∫

α′∈[α,α]
zα′(t)dFα(α′), (12)

Rα = γ(r̄α + η). (13)

� Remark: The mean field effect now depends on the location of the agent in question

Theorem Under (C1)-(C2), there exists a unique bounded solution

(sα(·), z̄α(·), rα(·)) to the NCE equation system (10)-(13).
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Part VIII — Assumptions on Weight Allocation

(C3) The weight allocation satisfies the condition

ǫω
N , sup

1≤i≤N

N∑

j=1

|ω(N)
pipj

|2 → 0, as N → ∞. �

� Roughly, this condition implies the weight cannot highly concentrate on a small number of
neighbors; if the decay rate λ ∈ [0, 1], (c3) holds

� When the decay rate λ > 1, (c3) and then deterministic mean field approximation fail

(C4) For each pi, the empirical distribution

F (N)
pi

(x) =
∑

pj<x

ω(N)
pipj

, x ∈ R,

is associated with a distribution function Fpi
(x) (specified in (c1)) such that

for any δ > 0, there exists a compact subset DN
pi

of I = [α,α] with Lebesgue

measure meas(DN
pi

) < δ, and

limN→∞ sup1≤i≤N supx∈I\DN
pi
|F (N)

pi (x) − Fpi
(x)| = 0.
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Part VIII — Equilibrium Analysis

Theorem Under (C1)-(C4), given any ε > 0, there exists Nε such that for all

N ≥ Nε, the set of control strategies {ûi, 1 ≤ i ≤ N} is an ε-Nash

equilibrium w.r.t. costs Ji(ui, u−i), 1 ≤ i ≤ N , i.e.,

Ji(u
0
i , u

0
−i) − ε ≤ inf

ui

Ji(ui, u
0
−i) ≤ Ji(u

0
i , u

0
−i), (14)

where

ûi = − b

r
(Πazi + spi

)

and spi
is given by the new NCE equation system (10)-(13) via the

substitution α = pi in sα.

Note: There is a further ramification of the main theorem:

� the population includes several classes of agents,

� and the interaction strength is specified according to inter/intra subpopulation
interaction
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Part IX – Consensus Problem : Background

� Consensus means both the agreement between agents of the group

and the process of reaching to such an agreement.

� In standard consensus algorithms, there is a network of agents with

dynamics:

żi(t) = ui(t), 1 ≤ i ≤ n (15)

interested in reaching an agreement via local communications with

their neighbours on a graph G = (V , E).

� It is shown that the linear system

żi(t) =
∑

j∈Ni

aij(zj(t) − zi(t)), (16)

is a distributed consensus algorithm which guarantees agreement

under suitable connectivity assumption.
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Part IX – Consensus Problem : Background (cnt)

The dynamics of (16) can be stated in the vector form

ż(t) = −Lz(t), (17)

where z = (z1, · · · , zn)T is the state vector and L is the graph Laplacian:

L = D − A,

A is the adjacency matrix

[A]ij =





aij (j, i) ∈ E ,

0 otherwise,

and D = diag(d1, · · · , dn) is the degree matrix of G, di =
∑

j 6=i aij .
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Part IX – Consensus Problem : Background (cnt)

Theorem

Consider a network of N agents on a graph G(A), with dynamics

żi(t) =
∑

j∈Ni

aij(zj(t) − zi(t)). (18)

Suppose G(A) is a strongly connected digraph and λ is a left eigenvector

associated with a simple zero eigenvalue of L(G), i.e. λT L = 0. Then

� a consensus is asymptotically reached for all initial states;

� the group consensus is α =
∑

i µizi(0) where µi = λi∑
i λi

.

� if the digraph is balanced, i.e
∑

i 6=j aij =
∑

i 6=j aji for all j, an average

consensus, α = (
∑

i zi(0))/N , is asymptotically reached.
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Part IX – Stochastic Consensus Problem by NCE

� We propose a new approach to consensus problem by using

the NCE methodology.

� The stochastic dynamics for an individual agent is:

dzi(t) = ui(t)dt + CdWi(t), t ≥ 0, 1 ≤ i ≤ N, (19)

� zi ∈ R
n: the state of agent i,

� ui ∈ R
n: control input,

� {Wi, 1 ≤ i ≤ N}: independent d-D Wiener processes,

� C ∈ R
n×d: the noise intensity matrix.
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Part IX – Stochastic Consensus Problem by NCE (cnt)

� The general Long Range Average (LRA) LQG cost for agent i:

Ji , lim sup
T→∞

1

T

∫ T

0
{(zi − Φi)

T Q(zi − Φi) + uT
i Rui}dt, (20)

� Q = QT ≥ 0, R = RT > 0,

� Φi = γ
∑N

j=1 ω
(N)
pipjzj , ω

(N)
pipj : the set of weight coefficients.

� Weight coefficient matrix Ω = (ωN
pipj

) is a normalized stochastic matrix.

Stochastic consensus dynamics (19)

+ LRA (localized) LQG costs (20)

⇒ Localized MF formulation of the Consensus Problem.
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Part IX – Stochastic Consensus Problem by NCE (cnt)

� The NCE methodology for agents with LRA cost (20) and uniform

weights, ω
(N)
pipj = 1

N
, has been studied in (Li, Zhang TAC08).

Definition A set of controls uk, 1 ≤ k ≤ N , is called an asymptotic Nash

equilibrium in probability with respect to the costs Jk, if for any ǫ > 0,

δ > 0 and fixed i, 1 ≤ i ≤ N , there exist Nǫ,δ such that for any N > Nǫ,δ

P

(
sup

1≤i≤N

(
Ji(ui, u−i) − inf

vi

Ji(vi, u−i)

)
≥ δ

)
≤ ǫ.

� Li, Zhang has shown that the decentralized control laws have the

asymptotic Nash-equilibrium property in the probabilistic sense.
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Part IX – Stochastic Consensus Problem by NCE (cnt)

NCE equations of the localized MF formulation of the consensus problem

for an infinite population:






dsα

dt
= ΠR−1sα + Rα,

dz̄α

dt
= −R−1Πz̄α − R−1sα, α ∈ [α,α]

r̄α(t) =
∫
α
′∈[α,α] z̄α

′ (t)dFα(α
′

),

Rα = γr̄α,

(21)

where Π > 0 is the solution of ARE:

−ΠR−1Π + Q = 0. (22)

(C5) Assume γ < 1.

Theorem Under (C1)-(C5), there exists a unique bounded solution

(sα(·), z̄α(·), rα(·)) to the NCE equation system 21.
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Part IX – Stochastic Consensus Problem by NCE (cnt)

Finite population pre-computable NCE consensus equations (1 ≤ i ≤ N ),

from (21) 




dsi

dt
= ΠR−1si + Φi,

dz̄i

dt
= −R−1Πz̄i − R−1si,

Φi = γ
∑N

j=1 ω
(N)
pipj z̄j .

(23)

When si is in the steady state:

dz̄i

dt
= −R−1Πz̄i + γΠ−1

N∑

j=1

ω(N)
pipj

z̄j . (24)

Set Q = I then from (22) R−1Π = Π−1, and

dz̄i

dt
= R−1Π(−z̄i + γ

N∑

j=1

ω(N)
pipj

z̄j). (25)

Caines, 2009 – p.48/55



Part IX – Stochastic Consensus Problem by NCE (cnt)

NCE consensus equation dynamics [ pre-computed feedback ];

dz̄

dt
= −R−1ΠGz̄, (26)

where z ∈ R
Nn and

(G)ij =





1 if i = j

−γω
(N)
pipj otherwise.

For γ = 1, G is a normalized Laplacian matrix.

NCE finite population stochastic consensus dynamics with pre-computed

feedback (26):

dzi = R−1Π(−zi + γ
N∑

j=1

ω(N)
pipj

z̄j)dt + CdWi.
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Part IX – Stochastic Consensus Problem by NCE (cnt)

Assume Q = R = I and γ = 1, then there exists a unique, bounded

solution to (1 ≤ i ≤ N )





dz̄i

dt
= −(z̄i − Φi),

Φi =
∑N

j=1 ω
(N)
pipj z̄j ,

(27)

or equivalently
dz̄

dt
= −Lz̄, z̄(0) given.

In general

lim
t→∞

(z̄i(t) − z̄j(t)) = 0, ∀1 ≤ i, j ≤ N.

and for a doubly stochastic Ω

lim
t→∞

z̄i(t) =
1

N

N∑

j=1

z̄j(0), ∀1 ≤ i ≤ N.
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Part IX – Stochastic Consensus Problem by NCE (cnt)

� Infinite Population Stochastic NCE Consensus Problem:

� Prior information (Fα(·), z̄α(0), α ∈ [α,α]) available to all agents.

� Deterministic pre-computable "global feedback".

� Nash interpretation.

� Finite Population Stochastic NCE Consensus Problem:

� Prior information (ΩN , z̄N
α (0), α ∈ [α,α]) available to all agents.

� Deterministic pre-computable "local feedback".

� Nash interpretation.

� Finite Population Deterministic Consensus Algorithms:

� No prior information.

� Local communications (Laplacian feedback).

� No Nash interpretation.
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Part IX – Simulations
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(a) Clique graph. (b) Circular graph.

� Convergence in (a) is faster than (b).
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Part IX – Simulations (cnt)

� For disconnected graphs we have the convergence of each group.
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(c) Disconnected graph with two connected groups.
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Part IX – NCE Consensus and Standard Consensus

� Stochastic with a cost function verses deterministic without the cost.

� We derive a consensus seeking Laplacian feedback from the NCE

equations.

� Obtain convergence of the z̄(t) for all Ω = (ω
(N)
pipj ) which satisfy the

localization conditions.

� Obtain convergence of each subgroup for disconnected graphs.

� There exists a duality between the a priori information needed by the

NCE approach for constructing the pre-computed decentralized control

laws and the local information exchanges between agents in the

standard consensus algorithm.

� In the NCE-Consensus formulation, each agent’s behaviour is optimal

with respect to other agents in a game theoretic Nash sense.
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Concluding Remarks

� A theory for decentralized decision-making with many competing agents

� Control synthesis via NCE methodology. Consequences for Rational

Expectations and Macroeconomic Policy?

� Existence of asymptotic equilibria (first in population then in time)

� Application to network call admission control (e.g. Ma, Malhamé, PEC)

� Ideas closely related to the physics of interacting particle systems.

� Suggest a convergence of control theory, multi-agent systems theory

and statistical physics into a

cybernetic-math physics synthesis

for mass competitive-cooperative decision problems.
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