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Overview

This research investigates:
Decision-making in stochastic dynamical systems with many
competing agents

Outline of contributions:
Nash Certainty Equivalence (NCE) Methodology
NCE for Linear-Quadratic-Gaussian (LQG) systems
Connection with physics of interacting particle (IP) systems
McK-V-HJB theory for fully nonlinear stochastic differential games
Invariance principle for controlled population behaviour
Models with interaction locality

Derivation the standard consensus dynamics from the NCE
equations.
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Some Facts and Implications

Physics—Behavior of huge number of essentially identical infinitesimal

IS basic to the formulation of statistical mechanics
as founded by Boltzmann, Maxwell and Gibbs

Game Theoretic Control System — Many

An ensemble of essentially identical players seeking
Individual interest

Individual mass interaction

Fundamental issue: how to relate individual actions
to mass behavior?
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Part | — Individual Dynamics and Costs

Individual dynamics:

dz; = (a;z; + bu;)dt + azMdt + o dw;, 1<i<n. (1

z;. State of the :th agent

2("): the population mean (™ £ LN %
u;. control

w; . noise (a standard Wiener process)

n. population size

For simplicity: Take the same control gain b for all agents.
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Part | — Individ. Dynamics and Costs (ctn)

Individual costs:

Ji(ug, v5) = E/ e P (2 — 13)? + ru?]dt (2
0

We are interested in the case v; = ®(=(") = (L >0 zk)
®: nonlinear and Lipschitz

Main feature and Objective:

Weak coupling via

Connection with IP Systems (for model reduction in McKean-Vlasov
setting) with be clear later on

Develop
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Part | — Motivational Background and Related Works

Economic models (e.g., production output planning) where each
agent receives of others via Market (Lambson)

Advertising competition game models (Erikson)
Wireless network resource allocation (e.g., power control, HCM)

Stochastic swarming (Morale et. al.); “selfish herd" (such as fish)
reducing indiv. predation risk by joining group (Reluga & Viscido)

Public health — Voluntary vaccination games (Bauch & Earn)
Industry dynamics with many firms (Weintraub, Benkard, & Roy)
Mathematical physics and finance (Lasry and Lions)

Admission control in communication networks.
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Part | — Motiv. Backgrd: Wireless Power Control

Lognormal channel attenuation (in dB):
dr; = —a(x; + b)dt + odw, 1 <1< n.

Additive power adjustment: dp; = u;dt.

Individual Control Performance
E T Tiny. g n Tjo . 2 2 dt
fo e"ipi — a(y 2921 e*ip; + )| + ru; :

The factor g IS due to linear increase of length of CDMA spreading
seqnc w.r.t. user number. n: background noise.

Want matched filter output signal-to-interference ratio

SR utyar = epif [ (3fn) Sy e9p; + 1)
to stay near a certain . e¥i: power attenuation from user
to base.
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Part | — Control Synthesis via NCE

Under large population conditions, the mass effect
m(t).

A given agent only reacts to the mass effect m(t) and any other
Individual agent becomes invisible.

Key issue is the specification of m(¢) and associated individual action -
Look for certain
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Part Il — Preliminary Optimal LQG Tracking

Take f,z* € Cp|0, 00) (bounded continuous) for scalar model:

dz;
Ji(u;, 2*) = E/ e (% — 2%)? + rul]dt
0

CLZ'ZAJZ'dt + buz-dt + Oéfdt + O'Z'dwi

b2
pll; = 2a,11; — _Hz2 + 1, II; > 0.
r

Set 81 = —a; + %Hi, By = —a; + %Hi + p, and assume (; > 0.

- b

— U = _;(Hizi + ;)
ds; b?
— PS; = d_tz + a;S; — ?Hisi @il f — 2

Boundedness conditions uniquely determine s;.
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Part || — Notation

Based on LQ Riccati equation, denote:

fala) = §+1/(a— 2 + 2. ?
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Part Il — Population Parameter Distribution

Define associated with first n agents
A
Fp(x) = 2i=1 Lai< ) z € R.
n

(H1) There exists a distribution F' s.t. F,, — F weakly. |

Each agent is given its “a" parameter which it knows.

Information on Other Agents is available statistically in terms of the
empirical distribution. Specifically, assume F' is known.
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Part Il - LQG-NCE Equation Scheme

Assume zero initial mean, i.e., £z;(0) = 0, ¢« > 1. Based on population limit,

ds, b?
0Sq = “a +as, — —I s, +all,z — 2%, G
dt r
dz, b? b?
dZt = (a — ?Ha)Ea — ?sa + az, G
Z = / ZadF(a), (7
A
2* = ®(Z). G

Basic idea behind NCE(z*) with parameters F'(-), a, b, a, r:
Solve z*
Use popul. average z to approximate coupling term % > L 2k
Individual action u; Is optimal response to z*.

Collectively produce z* assumed in first place.
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Part IV — Summary of NCE for LOG Model

Recall the system of n agents with dynamics:
dz; = a;z;dt + bu;dt + azMdt + o;dw;, 1 < <n, t > 0.

Let u_; denote the row (uq,--- ,u,) With u; deleted, and reexpress the
Individual cost

n

>0 1
Ji(wi, u—_s) = E/ e Pz — ®(= Z 2)]2 + rul bdt.
L "=
Denote the optimal control for the tracking problem with s; pre-computed
from the deterministic LQG NCE by

revealing the closed-loop fixed point form of the large population tracking
problem!
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Part IV — Main Existence Results

(Existence and Uniqueness ) The NCE(z*) equation system has a
unigue bounded solution (z,, s,) for each a € A subject to (H2)-(H3). |

(H1) There exists a distribution F' s.t. F,, — F weakly. (restated)
(H2) @ Is Lipschitz with parameter .

(H3) Gain condition: [, [ |O‘C|L) + Té]&%f{ )) dF'(a) < 1, and (1(a) > 0 for
all a € A.

(H4) All agents have independent initial conditions with zero mean, and
sup;>1 (o7 + Ez7(0)] < oo.
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Part IV — Asymptotic Equilibrium

The k-th agent’s admissible control set U4, consists of all feedback controls
ur adapted to o(z;(7), 7 <t,1 <i < n).

A set of controls u, € U, 1 < k < n, for n players is called an
w.r.t. the costs Ji.,1 < k < n, If there exists £ > 0 such
that for any fixed 1 < < n, we have

Ji(ug, u_q) < Ji(ul, u_y) + €,

when any alternative u; € U; is applied by the i-th player. O
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Part IV — Stability and Equilibria

The set of controls {u?, 1 < i < n} results in second order stability
& an w.r.t. costs J;(u;,u—;), 1 <i <mn,l.e.,

Ji(u?,ug)—5<1nfj(uz, D < Ji(ug, u?)

where 0 < ¢ — 0 as n — oo, and u; € U; Is any alternative control which
depends on (¢, 21, , z,), and

ud = _%(szz I 37,) []

1

For uniform agents, e = O(1/y/n).

For non-uniform agents, the bound estimates depend on limiting
behavior of F,, — I (weakly).

Performance analysis: approximating (zi,--- , z) in closed-loop by n
iIndependent copies of the McK-V equation driven by (z;(0), w;)
associated with z;.
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Part IV — Implication for Rational Expectations

Rational Expectations in Macroeconomic Theory. Issue of how
economic agents forecast future events (and hence play against
macroeconomic policy)

NCE theory gives a coherent and tractable formulation of Rational
Expectations in game theoretic economic behaviour with a large
number of players. Implications for macroeconomic policy?

In particular, NCE provides a means for maintaining RE in that by
this mechanism each individual can forecast

the overall population behaviour, and
the associated optimal individual responses
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Part |V — Explicit Solutions for LQG-NCE Equation System

For a system of uniform agents with a; = a, ®(z) = (2 + 7).

d b?
= —8+as——H3+OzHZ—z*,
dt r
dz b2 2
NCE = d—i:(a—?ﬂ)i—ka,é—?s,
2" = ¢(z) =9(2+n).

|} (steady-state)

y

Bas(00) — allz(oo) + 2*(c0) = 0

unique solution
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Part IV — Cost Gap

Solve an LQG game model involving cost coupling with individual cost
J;. Denote Nash equilibrium cost v;,,; with population limit.

Take welfare function J = > | J; and compute optimal control with
cost v,,. Optimal centralized control cost per agent v = lim,,_, o, vy, /7.

Cost gap: vjpg — v.

— — — Indiv. cost by decentralized tracking
Limit of centralized cost per agent: Iimn(v/n)

o Cost Gap

0. 0.2 0.3 0.4 0.5 0.7 0.8

Horizontal axis —— Range of linking parameter y in the cost
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Part V — Fully Nonlinear Models and McK-V-HJB Approach

Dynamics:

n

dz; = (1/n) Zf(zi,ui,zj)dt +odw;, 1<i<n, t>0,

j=1
Costs:

JAN

T
JZ(’UJZ) = E/ [(1/R)ZL(Z7;,U7;,Z]')] dt, T < 0.
0
Control set: Each u; € U compact.

Other variants of the cost may be considered.

Objective: look for decentralized strategies
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Part V — Connection with Statistical Mechanics

Boltzmann PDE describing evolution of spatial-velocity (z — v)
distribution u(¢, z,v) of huge number of gas particles

Solution to spatially homogeneous Boltzman PDE (for u(t,v)) has a
probabillistic interpret. via McKean’s Markov system:
Generator depends on “current density" of the process

Thus, there exists a driving effect from the mass
This feature also appears in our diffusion based models, where
current density affects the drift
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Part V — Controlled McKean-Vlasov Equations

Controlled McK-V eqguation via a representative agent:

dxy = flze, ue, pe)dt + odwy,

where flz,u, ] = [ [z, u,y)p(dy).
Individual cost:
N T
J(’U,,M) — E/ L[It,ut,ﬂt]dt,
0

where Lz, u, ] = [ L(x, u, y) e (dy).

Generalization to multi-class agents corresponds to non-uniform agent
case in basic NCE analysis.
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Part V — The McK-V-NCE Principle

Methodology: The key steps are to construct a
of

() the mass effect, and

(1) the individual strategies such that the latter not only
(a) each constitute an optimal response to the mass effect
(b) but also collectively produce that mass effect.

In non-uniform NCE-McKYV setting, the mass effect is an average
w.r.t. the agent type distribution Fj,.

Principle: The application of an appropriate, general,
demonstrates that such a solution

exists, Is unique

and is collectively produced by the actions of the individual agents.

Caines, 2009 — p.23/5!



Part V — NCE and McK-V-HJB Theory

HJB equation:

ov . oV o? 0%V
Do d {f[ﬂf,uaﬂt]% + L[%U,Nt]} )

V(T,x)=0, (t,x) € [0,T) x R.
e
ur = p(t,z|p.), (t,z) €10,T] x R.
Closed-loop McK-V equation:
dry = flxe, o(t, x|p.), pe]dt + odwy, 0<t<T.

The NCE methodology amounts to finding a solution (zy, p¢) in McK-V
sense.
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Part V —Outline of Analysis Based on NCE

By the NCE methodology, we carry out the steps:

Construct controlled McKean-Vlasov equation; fixed point theory for
existence analysis

Develop HJB equation (involving a measure flow) and derive Optimal
Response Mapping for individuals

Establish existence results (for McK-V-HJB system)

For equilibrium analysis — Approximate n “controlled interacting
particles" in closed-loop by n independent copies of the McK-V
equation
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Part VI — Asymptotic Nash Equilibrium

Under mild conditions, the set of
McK-V-HJB based controls {v?,1 < i < N} results in an
w.r.t. costs J;(u;,u_;), 1 <i< N, i.e.,
Ji(ud,ul,) —e < inf Ji(ug,u) < Ji(ud, u))

—]

where ) < — 0as N — oc.
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Part VI — Generalization to Multi-class Agents
Dynamics:

dz; = (1/n) Zfai(zi,ui,zj)dt +odw;, 1<i<mn, t>0,

J=1

where q; Is the dynamic parameter, indicating type of agent.

Costs:
A o &
Sl ) = E/ [(l/n) ZL(zi,ui,zj)]dt, T < oo.
0 i
Control set: Each v, € U.
The sequence {a;,7 > 1} takes value from A = {60;,--- ,0x } with

empir. distri. (7, - ,7x), e, (1/n) > 1", 1g,=0,) — Tk
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Part VI — Generalizat’n to Multi-class Agents (ctn)

Controlled McK-V eqguation via a representative agent:

d$t — fa[aﬁt,Ut,M%, - 7”7{(]dt T Odwta

K

where fa[xa u, M%v - 7”7{{] — Zk:l Tk fR fa(xa u, y):u]t{(dy)

1F reproduces the mass interaction generated by the class of agents
with parameter a = 0. (71, -+ ,7x): para empir. distri.

individual cost: J(u, 1) = E [ Llay, us, ik, - -, ul€]dt, where
L[Ivuaﬂiv”'vﬂt] Zk 17kaR xuyut(dy)

Distribution over agents would give generalized McK-V-HJB with
Integral over the agent measures on right hand side.
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Part VIl — Martingale Representation and the Invariance Principle

Along the optimal controlled trajectory, let

g A / L(2(s),u* (s, 2(s)))ds + V (£, 2(¢))
0

where t € [0, T']. In stochastic optimal control, it is well known that &; is a
martingale.

2(t): closed-loop solution when optimal control «* applied.

V(t, z(t)): value function associated with (t, z()).

In the game problem, each agent essentially solves a local optimal
control problem.

Implication for the large population game when the Nash strategies
are collectively applied?

Caines, 2009 — p.29/5



Part VII — The Invariance Principle (ctn)

For the McKean-Vlasov-HJB equation, we make existence assumptions:

(A1) There exists a solution (xz;(t), Vg, (¢, x;), u;(t, x;)) to the
McKean-Vlasov-HJB system for multi-class agents.

(A2) The closed-loop drift coefficient f,, (x;, 4;(t, x;)) isin C(]0,T] x R)
and Lipschitz continuous in z;.

(A3) Under the control u;, L{x;, u;(t, x;), 7] i1sin C([0,T] x R) and has
a polynomial growth rate with respect to x;.

We denote :u? — [:u%a 7“7{(]
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Part VII — The Invariance Principle (ctn)

We use z;,7=1,2,3--- , to denote a sequence of copies of processes
generated by the McKean-Vlasov equation.

By averaging across of the population limit, we get a deterministic
martingale, hence a constant:

t K K
c= [ 37w (s,0). )i da)ds + [ 3wV, (i)
0 JR2, RS

2,J=1

c. determined by the initial condition of the population.
;. Indicates the type of the agent.
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Part VII — The Population of N Agents and Asymptotic Invariance

After applying the McK-V-HJB based control laws to the population of
N agents, we can further show

tends to zero In Ly, as N — oo.
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Part VIl — Computational Example for LQG Systems

Resulting from the invariance principle:

r

c :éwk{ /O : /R (&= () + LM () + 50, (7)2] dF, (@)

t /R[xm (t) + 230, (D)F}, (2) + 40, (1) .

Fy (x): state distri. at 7 for an agent with dynamic parameter 6y.
Assume existence of density pgk () with suitable regularity; then by taking
differentiation, we get

& * 2 b2 21,1
0 :;wk{/ﬂ% (@ — 2 (1) + - (Tg, (D)2 + 56, (7)) | b, (2)d

r

O[z*11y, (t) + 2xsg, (t)]ph, (x) dgp, (t)
4 /R = dxr + oy }

Caines, 2009 — p.33/5!



Part VIII — Generalization with Interaction Locality

Related Background:

Social segregation (Schelling, 1971); 1-D line topology
Retailing services (Blume, 1993); 2-D lattice topology

The individual dynamics:
dzi(t) = lazi(t) + bu;(t)|dt + odW;(t), 1<i< N, t>0,

The cost with interaction locality:
J; = E/ e P {[zz — P, + ru?} dt,
0

where &; = ’Y(Z;-V:lw](gi\]/;z»?«’j +mn)and p>0,v>0,r>0.

Weight allocation — The set of weight coefficients w](?%g satisfies

N . o :
Z(%pg>0 V1, 7, Z pzpj =1, Vi.
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Part VIII — Example of Weight Allocation

For illustration, consider the 1-D interaction:
Partition [0, 1] with stepsize 0.01 to get NV = 101 locations
Label the NV locations consecutively by p1,--- ., pn.

Let w](;i\g. = c|p; — p;|~* where \ € [0,1] and ¢ is normalizing factor so that all
weights add up to one.

- weight allocation of agent at 0.6
. weight allocation of agent at O

. weight allocation of agent at 0.6
. weight allocation of agent at O

0
o :
T T
g =
2 i
E (]
< 1S
= ©
[+ _
(=% [+
> o
[} >
(&7 ]
< ]
S S
2 =
(5] (&}
& 2
” w

(a) uniform/flat allocation (b) distance-dependent allocation
A=0 A=10.5
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Part VIII — Example of Weight Allocation (ctn)

Consider the 2-D interaction

Partition [—1, 1] x [—1, 1] into a 2-D lattice

Weight decays with distance by the rule wéﬁ\g = c|p; — p;|~* where cis the

normalizing factor and X € [0, 2]

25 -

7/
7 “‘}ki‘\%w

_ 7Y 9
NN
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Part VIII — Notation and Assumptions

Again, let II, > 0 be the solution to the algebraic Riccati equation:

b2
pIl = 2aI1 — —II° + 1. (€
r

Denote 81 = —a + %Ha and 0y = —a + %Ha + p.

Take |o, @] as the locality index set (i.e., line topology)

(C1) F(a): [a,@] x R — [0, 1] satisfies: i) F,(-) is a probab. distrib. function
Y a, fa,e[g,a] dF,(a’) = 1;ii) [ g dFa(a’) is a measurable function of o for
each Borel subset B of R; iii) F,,»(-) converges to F,(-) weakly when

o — a, where o and o are in [a, @]. |

(c2) The constants 8; > 0, 82 > 0, and the ratio (yb%)/(rB3132) < 1. |
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Part VIII — NCE Equation with Interaction Locality

ds,, b2
PSq = % + asq — —1lgs0 — Ry, (1C
r
dZ, b2 b2
BT = _Ha 2oy — — Qs 11
dt (a r )Z r . (
)= [ Zw®dFa() 7
o’ €la,a]
Ro = v(Ta +n). (15

Remark: The mean field effect now depends on the location of the agent in question

Under (C1)-(C2), there exists a unique bounded solution
(sa(*), Za(:),ra(+)) to the NCE equation system (10)-(13). |
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Part VIII — Assumptions on Welight Allocation

(C3) The weight allocation satisfies the condition

n

ey = sup Z\wpzp]2—>0 as N — oo. []
1<i<N ’

Roughly, this condition implies the weight cannot highly concentrate on a small number of
neighbors; if the decay rate A € [0, 1], (c3) holds

When the decay rate A > 1, (c3) and then deterministic mean field approximation fail

(C4) For each p;, the empirical distribution

N) x) = Zw](,‘i\g,, xr € R,

P <x

Is associated with a distribution function F), () (specified in (c1)) such that
for any 6 > 0, there exists a compact subset Dg of I = |a, @] with Lebesgue
measure meas(D)’) < 4, and

i N o0 SUP: << SUPger\ Dy | Fpr (@) — Fp, ()] = 0. |
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Part VIII — Equilibrium Analysis

Under (C1)-(Cc4), given any € > 0, there exists /N, such that for all
N > N., the set of control strategies {4;,1 <7 < N} is an e-Nash
equilibrium w.r.t. costs J;(u;,u—;), 1 <7 < N, l.e.,

Ji(u, u?,) — e <inf J;(us, u’;) < Ji(u),u’,), (14
U;
where
n b
U; = —;(Hazi + 5p,)

and s, Is given by the new NCE equation system (10)-(13) via the
substitution o = p; IN s,,. |

Note: There is a further ramification of the main theorem:

the population includes several classes of agents,

and the interaction strength is specified according to
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Part IX — Consensus Problem : Background

means both the agreement between agents of the group
and the process of reaching to such an agreement.

In standard consensus algorithms, there is a network of agents with
dynamics:

Zz(t) = ui(t), 1 <1 <n (15

Interested in reaching an agreement via local communications with
their neighbours on a graph G = (V, £).

It is shown that the linear system

si(t) = ) aij(z() — z()), (16

FEN;

IS a distributed consensus algorithm which guarantees agreement
under suitable connectivity assumption.
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Part IX — Consensus Problem : Background (cnt)

The dynamics of (16) can be stated in the vector form

2(t) = —Lz(t), (17
where z = (z1,--- , 2z,)! is the state vector and L is the
L=D-A,
A is the matrix
ay (i) ee
g ]72 € c,
Alij = « _
\ 0  otherwise,

and D = diag(dy,--- ,dy) is the matrix of GG, d; = Z#i Qjj-
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Part IX — Consensus Problem : Background (cnt)

Consider a network of N agents on a graph G(A), with dynamics

L(t) = ) ag(z(t) — 2(t)). (1€

FEN;

Suppose G(A) is a and )\ is a left eigenvector
associated with a simple zero eigenvalue of L(G), i.e. A' L = 0. Then

a consensus Is reached for all initial states;
the is o = Y. pizi(0) where p; = ZA/\

if the digraph is balanced, i.e } _,,;ai; = > _,,; a;; forall j, an
, o= (D> 2i(0))/N, is asymptotically reached.
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Part IX — Stochastic Consensus Problem by NCE

We propose a new approach to consensus problem by using
the NCE methodology.

The for an individual agent is:
dzz(t) :ui<t)dt—|—CdWi(t), t>0 1<1<N, (1€

z; € R": the state of agent i,
u; € R™: control input,
{W;,1 < i< N}: independent d-D Wiener processes,

C e R™*“: the noise intensity matrix.
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Part IX — Stochastic Consensus Problem by NCE (cnt)

The for agent I:

1 T
J; £ lim sup ? / {(Zz — (I)Z')TQ(ZZ' — (I)i) + U?Ruz}dt, (2C
0

T—o0
Q=Q">0,R=R">0,
P, =~ Zé\le w](,’i\g. Zj, w](,’i\g. . the set of weight coefficients.

Weight coefficient matrix 2 = (wgpj) IS a normalized stochastic matrix.
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Part IX — Stochastic Consensus Problem by NCE (cnt)

The NCE methodology for agents with LRA cost (20) and uniform

weights, w]g%g. — % has been studied in (Li, Zhang TACOS8).

A set of controls u,, 1 < k < N, Is called an
with respect to the costs Ji, if for any € > 0,
0 > 0 and fixed 7, 1 <i < N, there exist N, s such that for any N > N5

P( sup (Jz(uz,uz) —inf Jz(”z;“z)) Z 5) S €.

1<i<N

Li, Zhang has shown that the decentralized control laws have the
property in the
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Part IX — Stochastic Consensus Problem by NCE (cnt)

for an population:
(
dc‘is—f =IIR 's, + Ra,
“o — Rz, — R lss, a€la,q] -
Fa(t) = [ clam 2o (BdFa(@),
\ ROé — /777047
where II > 0 Is the solution of ARE:
~IIR I+ Q = 0. (22

(C5) Assume v < 1.
Under (C1)-(C5), there exists a unique bounded solution
(sa(*), Za(+),To(+)) to the NCE equation system 21.
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Part IX — Stochastic Consensus Problem by NCE (cnt)

from (21)

N\

Ci;ti = IR 's; + ¥y,

CZ’L = —R_lnfz' — R_lsi,
(V)

_ N =
\ Q; =7 23:1 Wpipj %3 -

When s; Is In the steady state:

dZi o qrr- 1 (N)
; = —R "1lz; + ~II Zw

n

biPj
j=1

Set ) = I then from (22) R~'II = 11!, and

dz; 1 _ N) =
— = R™I(—z; + wzwzgipzzj).

n

j=1

Zj.

(1<i<N),

(23

(24

(25
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Part IX — Stochastic Consensus Problem by NCE (cnt)

NCE consensus equation dynamics | ];

dz
—~ = _R1IGz 2€

where z ¢ RV" and

1 if § = j
(V)

—YWwp;p; Otherwise.

\

Fory=1,GIs a

with pre-computed
feedback (26):

N
dz; = R_lﬂ(—zi + Zw](fi\gzj)dt + CdW;.
j=1
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Part IX — Stochastic Consensus Problem by NCE (cnt)

Assume Q = R = I and v = 1, then there exists a unique, bounded
solution to (1 < < N)

(27

or equivalently

In general
lim (Zi(t) — Zj(t)) =0, Vvl <1,7 < N.

t—00

and for a doubly stochastic 2

N

: 1 :

tlgglozz —Nzlj V1§2§N.
]:
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Part IX — Stochastic Consensus Problem by NCE (cnt)

Prior information (F,(-), Z.(0), « € |a, @]) available to all agents.
Deterministic pre-computable "global feedback".

Nash interpretation.

Prior information (2, 22 (0), o € [, @]) available to all agents.
Deterministic pre-computable "local feedback".
Nash interpretation.

No prior information.
Local communications (Laplacian feedback).
No Nash interpretation.
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Part IX — Simulations

State trajectories of agents

State trajectories of agents

(a) Cligue graph. (b) Circular graph.

Convergence in (a) is faster than (b).
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Part IX — Simulations (cnt)

For disconnected graphs we have the convergence of each group.

State trajectories of agents

(c) Disconnected graph with two connected groups.
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Part IX — NCE Consensus and Standard Consensus

Stochastic with a cost function verses deterministic without the cost.

We derive a consensus seeking Laplacian feedback from the NCE
equations.

Obtain convergence of the z(¢) for all ©2 = (w]()%z.) which satisfy the
localization conditions.

Obtain convergence of each subgroup for disconnected graphs.

There exists a duality between the a priori information needed by the
NCE approach for constructing the pre-computed decentralized control
laws and the local information exchanges between agents in the
standard consensus algorithm.

In the NCE-Consensus formulation, each agent’s behaviour is optimal
with respect to other agents in a game theoretic Nash sense.
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Concluding Remarks

A theory for decentralized decision-making with many competing agents

Control synthesis via NCE methodology. Consequences for Rational
Expectations and Macroeconomic Policy?

Existence of asymptotic equilibria (first in population then in time)
Application to network call admission control (e.g. Ma, Malhamé, PEC)
Ideas closely related to the

Suggest a convergence of control theory, multi-agent systems theory
and statistical physics into a

for mass competitive-cooperative decision problems.
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