The Role of Trust in Collaborative and Adversarial Behavior in Networks of Autonomous Agents

John S. Baras
Institute for Systems Research,
Department of Electrical and Computer Engineering
Department of Computer Science,
Fischell Department of Bioengineering
University of Maryland College Park

March 23, 2009
AFOSR Workshop
Adversarial and Stochastic Elements in Autonomous Systems

Copyright © John S. Baras 2008
Outline

- Networks and Collaboration
 Constrained Coalitional Games
- Trust and Networks
- Security Aware Protocols via NUM
- Trust and Distributed Estimation
- Topology Matters
- Conclusions and Future Directions
A Network is ...

- A collection of nodes, agents, … that **collaborate** to accomplish actions, gains, … that cannot be accomplished without such collaboration

- Most significant concept for **dynamic autonomic networks**
The Fundamental Trade-off

• The nodes gain from collaborating
• But collaboration has costs (e.g. communications)
• Trade-off: gain from collaboration vs cost of collaboration

Vector metrics involved typically

Constrained Coalitional Games

• Example 1: Network Formation -- Effects on Topology
• Example 2: Collaborative robotics, communications
• Example 3: Web-based social networks and services
• Example 4: Groups of cancer tumor or virus cells
Gain

- Each node potentially offers benefits V per time unit to other nodes: e.g. V is the number of bits per time unit.
- Potential benefit V is reduced during transmissions due to transmission failures and delay.
- Jackson-Wolingsky connections model, gain of node i

$$w_i(G)V = \sum_{j \in \mathcal{G}} \delta^{|r_{ij}| - 1}$$

- r_{ij} is the number of hops in the shortest path between i and j.
- $r_{jj} = \infty$ if there is no path between i and j.
- $0 \leq \delta \leq$ is the communication depreciation rate.
• Activating links is **costly**
 – Example – cost is the energy consumption for sending data
 – Like wireless propagation model, cost c_{ij} of link ij as a function of link length d_{ij}:

$$c_{ij} = P d_{ij}^{-\alpha}$$

• P is a parameter depending on the transmission/receiver antenna gain and the system loss not related to propagation
• α is path loss exponent -- depends on specific propagation environment.
Pairwise Game and Convergence

• **Payoff** of node i from the network G is defined as

$$v_i = \text{Gain} - \text{Cost}(i)$$

• **Iterated process**

 – Node pair ij is selected with probability p_{ij}

 – If link ij is already in the network, the decision is whether to sever it, and otherwise the decision is whether to activate the link

 – The nodes act *myopically*, activating the link if it makes each at least as well off and one strictly better off, and deleting the link if it makes either player better off

 – **End**: if after some time, no additional links are formed or severed

 – **With random mutations**, the game converges to a unique Pareto equilibrium (underlying Markov chain states)
Coalition Formation at the Stable State

- The cost depends on the physical locations of nodes
 - Random network where nodes are placed according to a uniform Poisson point process on the \([0,1] \times [0,1]\) square.

- **Theorem**: The coalition formation at the stable state for \(n \to \infty\)

 - Given \(\delta = 0\), \(\forall \theta \left(\frac{\ln n}{n} \right)^{\frac{\alpha}{2}}\) is a sharp threshold for establishing the grand coalition \((\text{number of coalitions} = 1)\).

 - For \(0 < \delta \leq 1\), the threshold is less than \(P\left(\frac{\ln n}{n} \right)^{\frac{\alpha}{2}}\).
Topologies Formed

(a) $P = 0.5$ (low cost); complete graph

(b) $P = 2$ (middle cost); small world topology

(c) $P = 4$ (high cost); partitioned network

Copyright © John S. Baras 2008
Outline

• Networks and Collaboration
• Constrained Coalitional Games
• Trust and Networks
• Security Aware Protocols via NUM
• Trust and Distributed Estimation
• Topology Matters
• Conclusions and Future Directions
Networks and Trust

• Trust and reputation critical for collaboration

• Characteristics of trust relations:
 – Integrative (Parsons 1937) – main source of social order
 – Reduction of complexity – without it bureaucracy and transaction complexity increases (Luhmann 1988)
 – Trust as a lubricant for cooperation (Arrow 1974) – rational choice theory

• Social Webs, Economic Webs
 – MySpace, Facebook, Windows Live Spaces, Flickr, Classmates Online, Orkut, Yahoo! Groups, MSN Groups
 – e-commerce, e-XYZ, services and service composition
 – Reputation and recommender systems
Heterogeneous Dynamic Network Analysis and Trust

- **Multiple Interacting Graphs**
 - *Nodes*: agents, individuals, groups, organizations
 - Directed graphs
 - *Links*: ties, relationships
 - Weights on links: value (strength, significance) of tie
 - Weights on nodes: importance of node (agent)
- **Value directed graphs with weighted nodes**
- **Real-life problems**: Dynamic, time varying graphs, relations, weights
Next Generation Trust Analytics

- Trust evaluation, trust and mistrust dynamics
 - Spin glasses (from statistical physics), phase transitions

\[s_i(k+1) = f\left(\hat{J}_{ji}, s_j(k) \mid j \in N_i \right) \]

- **Indirect** trust; reputations, profiles; Trust computation via ‘linear’ iterations in ordered semirings

 \[a \otimes b \leq a, b \]

- **Direct trust**: Iterated pairwise games on graphs with players of many types

2007 IEEE Leonard Abraham prize
New Book Draft
Semirings-Examples

• **Shortest Path Problem**
 - Semiring: \((\mathcal{R}_+, \min, +)\)
 - \(\otimes\) is + and computes **total path delay**
 - \(\oplus\) is \(\min\) and **picks shortest path**

• **Bottleneck Problem**
 - Semiring: \((\mathcal{R}_+, \max, \min)\)
 - \(\otimes\) is \(\min\) and computes **path bandwidth**
 - \(\oplus\) is \(\max\) and **picks highest bandwidth**
Trust Semiring Properties: Partial Order

- Combined **along-a-path weight should not increase**:
 \[a \otimes b \leq a, b \]

- Combined **across-paths weight should not decrease**:
 \[a \oplus b \geq a, b \]
Computing Indirect Trust

• Path interpretation

\[t_{i \rightarrow j} = \bigoplus \text{path } p : i \rightarrow j \]

• Linear system interpretation

\[t_{i \rightarrow j} = \bigoplus_{\text{User } k} t_{i \rightarrow k} \bigoplus W_{k \rightarrow j} \]

\[\vec{t}_n = W \otimes \vec{t}_{n-1} \oplus \vec{b} \]

• Treat as a linear system
 – We are looking for its steady state.
Direct Trust

• **Direct trust** is based on past interactions between A, B.
• It is A’s belief about B’s future behavior.

User i
- of type $t_i \in \{\text{Good, Bad}\}$
- action $a_i \in \{C, D\}$, $i=1, \ldots, N$
- receives payoff $R_i = R(a_i, a_{\Gamma(i)}, t_i)$
- maximize his own payoff (local behavior)

Only C-C links become active
Direct Trust: Games

- Payoff is decomposed as sum of pairwise payoffs along each link:

\[R_i(a_i, a_{\Gamma(i)}) = \sum_{j \in \Gamma(i)} R_i(a_i, a_j) \]
Direct Trust

• Problems we are studying:
 – **Repeated** interactions
 – **Take history into account (reputation, profiling)**

Strategy of User \(i \) for step \(n \):

\[
\sigma_i = \Pr \left[a_i = C | t_i, p_{\Gamma(i)}, \mathcal{H}^{1 \ldots n-1} \right]
\]

Probability (reputation) update for User \(i \):

\[
p_{\Gamma(i)}^{(n)} = f \left(p_{\Gamma(i)}^{(n-1)}, a_{\Gamma(i)}^{(n)} \right)
\]
Direct Trust

• Two sequences evolving with time:
 – Vector of actions \((\text{strategies}) \), time 1:n

\[
A^{(1)} = \begin{pmatrix}
a_1^{(1)} \\
\vdots \\
a_N^{(1)}
\end{pmatrix}, \quad A^{(2)}, \ldots, A^{(n)}
\]

 – Set of vectors of neighbor probabilities \((\text{reputations}) \), time 1:n

\[
P^{(1)} = \left\{ p_{\Gamma}^{(1)}(1), \ldots, p_{\Gamma}^{(1)}(N) \right\}, \quad P^{(2)}, \ldots, P^{(n)}
\]
Constrained Coalitional Games: Trust and Collaboration

Two linked dynamics

- Trust / Reputation propagation and Game evolution

\[
\begin{align*}
 t+1 &= f_i^i(x_i(t), \gamma_i(t), \gamma_j(t), t_{ij}(t)) \\
 t_{ik}(t) &= g^i(t_{ij}(t), v_{jk}(t)) \quad \forall k \in N \\
 x_i(t) &= h^i(\gamma_i(t), \gamma_j(t)) \\
 v_{ij}(t) &= p^i(\gamma_j(t), t_{ji}(t))
\end{align*}
\]

- Integrating network utility maximization (NUM) with constraint based reasoning and coalitional games

- Beyond linear algebra and weights, semirings of constraints, constraint programming, soft constraints semirings, policies, agents
- Learning on graphs and network dynamic games: behavior, adversaries
- Adversarial models, attacks, constrained shortest paths, …
Game Evolution

- **Strategy** of node i: $s_{ij} \in \{-1, 1\}, \forall j \in N_i$
 - $s_{ij} = 1 (=-1)$ i cooperates (does not cooperate) with neighbor j
- **Payoff** for node i when interacting with j: $x_{ij} = J_{ij} s_i s_j$
 - $x_{ij} > 0 (< 0)$ positive link (negative link)
 - Node selfishness \rightarrow cooperate with neighbors on positive links
- **Strategy updates**: node i chooses $s_{ij}=1$ only if all of the following are satisfied:
 - Neighbor j is trusted
 - $x_{ij} > 0$, or the cumulative payoff of i is less than the case when it unconditionally conducts $s_{ij}=1$.
- **Trust evaluation**:
 - The deterministic voting rule
 - **Reestablishing period** τ: once a node is not trusted, in order to reestablish trust it has to cooperate for τ consecutive time steps
Theorem: \(\forall i \in N_i \) and \(x_i = \sum_{j \in N_i} J_{ij} \), there exists \(\tau_0 \), such that for a reestablishing period \(\tau > \tau_0 \)
- Iterated game converges to Nash equilibrium;
- In the Nash equilibrium, all nodes cooperate with all their neighbors.

- Compare games with (without) trust mechanism, strategy update:

Percentage of cooperating pairs vs negative links

Average payoffs vs negative links
Outline

- Networks and Collaboration
- Constrained Coalitional Games
- Trust and Networks
- Security Aware Protocols via NUM
- Trust and Distributed Estimation
- Topology Matters
- Conclusions and Future Directions
Integrate Security into Network Utility Maximization Framework

- **NUM**: Optimization, utilities and duality for understanding protocol design and linkages
- Goal: extend NUM to MANET – time varying networks, uncertainties, non-convexities
- We use ‘trust weights’ in these optimizations – whether they are joint MAC-routing or joint physical-MAC-routing optimizations
- These trust weights are developed by our neighborhood-based collaborative monitoring and trust computation methods and are disseminated via efficient methods for timely availability
- Effect of these trust weights on resulting protocols is that in the scheduling problems (MAC or routing) trustworthy nodes will be automatically used. Packets will not be routed as frequently to suspicious nodes. Or suspicious nodes will not be scheduled by the MAC protocol.
- Could be used to design XYZ-metric aware communication network protocols
NUM without trust

• **Data flow**
 – F flows that share the network sources
 – Each flow f associated with a source node s_f and a destination node d_f
 – x_f is the rate with which data is sent from s_f to d_f over possibly multiple paths and multiple hops

• **Utility function**
 – Each flow is associated with a utility function $U_f(x_f)$
 • it reflects the “utility” to the flow f when its data rate is x_f
 • U_f is a strictly concave, non-decreasing, continuous differentiable
 – NUM is to maximize the utility function

\[
\max_{x_f} \sum_f U(x_f)
\]
Aggregate Trust Value

• Aggregate trust value of a flow (v_f)
 – Along paths
 • multiplication of node trust values along paths
 – Across paths
 • Weighted summation across all the paths the flow passes
 • Weight: the proportion of the flow passing the path
Trust - Aware NUM

- Trust aware NUM
 \[\max_{\mathbf{x}^f} \sum_f Ux \rightarrow \max_{\mathbf{x}^f} \sum_f Ux \, g_f \quad (\hat{x}_g = x_f) \]

- Dual decomposition (log change all variables)

\[
L(\lambda, \nu, \hat{x}, x, \mu, g) = \sum_f \max_{x'_f} \left\{ v_f x'_f - \lambda^f_{sf} e^{x'_f} \right\} + \sum_f \max_{\hat{x}'_f} \left\{ U'_f(\hat{x}'_f) - v_f \hat{x}'_f \right\} \\
+ \max_{g'_f} \sum_f v_f g'_f \\
+ \max_{\mu \in \Gamma} \sum_{(i,j) \in L} \sum_{f \in \mathcal{F}} \mu_{ij}^f (\lambda^f_i - \lambda^f_j) \\
\]

- Dual objective function

\[h(\lambda, \nu) = \sup_{\mathbf{x} \in \Lambda} \left. L(\lambda, \nu, \hat{x}, x, \mu, g) \right|_{\hat{x}_f = g_f \cdot x_f} \]
Outline

• Networks and Collaboration
 Constrained Coalitional Games
• Trust and Networks
• Security Aware Protocols via NUM
• Trust and Distributed Estimation
• Topology Matters
• Conclusions and Future Directions
Distributed Kalman Filtering and Tracking

- **Realistic sensor networks**: Normal nodes, faulty or corrupted nodes, malicious nodes
- **Hierarchical scheme** – provide global trust on a particular context without requiring direct trust on the same context between all agents
- Combine techniques from fusion centric, collaborative filtering, estimation propagation
- **Trusted Core**
 - Trust Particles, higher security, additional sensing capabilities, broader observation of the system, confidentiality and integrity, multipath comms
 - Every sensor can communicate with one or more trust particles at a cost
Trust and Hierarchy

- **Distributed Kalman Filter Particles**: Sensor nodes exchange estimates in their local neighborhood and trusted measurements from the trusted core.

- **Hierarchical scheme**: Provide global trust on a particular context without requiring direct trust on the same context between all agents.

Communication Graph from disc model $G_c(V, E_c)$
Trust and Induced Graphs

Trust relation

Weighted Directed Dynamic Trust Graph $G_t (V, A_t)$

Induced Graph $G(V, A)$

$V_{tc} \subseteq$
Goals of Trusted System

1. All the sensors which abide by the protocols of sensing and message passing, should be able to track the trajectories.
2. This implies that those nodes which have poor sensing capabilities, *nodes with corrupted sensors*, should be aided by their neighbors in tracking.
3. Those nodes which are *malicious and pass false estimates*, should be quickly detected by the trust mechanism and their estimates should be discarded.
Trusted DKF and Particles

- Can use **any valid trust system** as trust update component
- Can replace DKF with **any Distributed Sequential MMSE or other filter**
- Trust update mechanism: Linear credit and exponential penalty

Algorithm 1 Trusted Kalman Filter

```
Init M[0], \( \hat{\mathbf{x}}_i = \hat{z}(0), n = 0 \)
repeat
  \( n \leftarrow n + 1; \)
  Prediction MSE
  \( P[n] = AM[n-1]A^T + BQB^T \)
  Kalman Gain
  \( K[n] = P[n]H_i^T(R_i + H_iP[n]H_i^T)^{-1} \)
  Local correction
  \( \zeta_i[n] = A\hat{\mathbf{x}}_i[n-1] + K[n](\hat{z}_i[n] - H_iA\hat{\mathbf{x}}_i[n-1]) \)
  The nodes exchanges the local estimates \( \hat{\mathbf{x}}_j, \forall j \in N^+(i) \)
  Trust sensitive filtering
  \( \hat{\mathbf{x}}[n] = \sum_{j \in N^+(i)} w_{ij} \times \zeta_j[n] \)
  Estimation MSE
  \( M[n] = (I - K[n]H_i[n])P[n] \)
until Forever
```

Algorithm 2 Trust Update for the inclusive neighborhood

```
Init \( t(i,j)[0] = \frac{1}{|N^+(i)|}, \forall j \in N^+(i), \) and \( k = 0 \)
repeat
  Wait for Exponential time \( \tau \)
  \( k \leftarrow k + \tau \)
  Request Estimate update from the TC
  The TC replies with its trustworthy estimate \( \hat{\mathbf{x}}_T \)
  for all \( j \in N^+(i) \) do
    dev\((j) = ||\zeta_j - \hat{\mathbf{x}}_T||_2 \)
    \( t(i,j)[k] = \begin{cases} 
      \min(max_T, t(i,j)[k-1]) + \delta & \text{dev}(j) \leq Dev_T \\
      t(i,j)[k-1]/2 & \text{dev}(j) > Dev_T 
    \end{cases} \)
  end for
until Forever
```
Trusted DKF Performance

\[
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
\]

\[Q = 25I_2, \quad x(0) = (15, -10)^T\]

\[H_{tc} = I_2, \quad R_{tc} = 30I_2\]

Open Loop Performance
Closed Loop Performance
Trust System Performance
Outline

• Networks and Collaboration
 Constrained Coalitional Games
• Trust and Networks
• Security Aware Protocols via NUM
• Trust and Distributed Estimation
• Topology Matters
• Conclusions and Future Directions
Distributed algorithms are essential
- Group of agents with certain abilities
- Agents communicate with neighbors, share/process information
- Agents perform local actions
- Emergence of global behaviors

Effectiveness of distributed algorithms
- The speed of convergence
- Robustness to agent/connection failures
- Energy/communication efficiency

Group topology affects group performance

Design problem:
Find graph topologies with favorable tradeoff between performance improvement (benefit) vs cost of collaboration

Example: Small Word graphs in consensus problems
Consensus Problems: Design of Information Flow

\[x(k + 1) = F(k)x(k) \]

\[F(k) = (I + D(k))^{-1}(A(k) + I) \]

\[F(k) = I - hL(k) \]

Symmetric communication

- **Fixed graphs**: Geometric convergence with rate equal to Second Largest Eigenvalue Modulus (SLEM)
- How does **graph topology affect** location of eigenvalues?
- How can we **design graph topologies** which result in good convergence speed?
Small World Graphs

Simple Lattice \(C(n,k) \)

Small world: Slight variation adding \(nk \Phi \)

Adding a small portion of well-chosen links \(\rightarrow \) significant increase in convergence rate
Mean Field Explanation and Perturbation Approach

Initial graph

Adjacency/ F matrix

Final graph

Perturbed
Watts-Strogatz Small World networks

- Random graph approach (e.g. Durrett 2007, Tahbaz and Jadbabaie 2007)
- Perturbation approach (Higham 2003)
 - Start from lattice structure $G_0 = C(n,k) \rightarrow F_0$
 - Perturb zero elements in the positive direction by $\varepsilon = \frac{K}{n^\alpha}$ for fixed $K > 0$ and $\alpha > 1$.
 - Perturb the formerly nonzero elements equally, such that the stochastic structure of the F matrix is preserved F_ε
 - Analyze the SLEM as a function of the perturbation as α varies
Distributed exploration of the graph structure

- Self-organization for better performance and resiliency
- Hierarchical scheme to design a network structure capable of running **distributed algorithms with high convergence speed**
- A two stage algorithm:
 1. Find the most effective choice of **local leaders**
 2. Provide nodes with information about their location with respect to other nodes and leaders and the choice of groups to form
- Divide N agents into K groups with M members each

 $NK \leq MKN$, select ‘leaders’
Distributed self-organization

Goal: design a scheme that gives each node a vector of compact global information
Two stage semi-decentralized algorithm

- **Stage 1: Determining K leaders**
 - Each node determines its social degree via local query
 - Dominant nodes in each neighborhood send their degrees to the central authority
 - Central authority computes their social scores

$$SC(k) = \alpha SD^{(2)}(k) + (1 - \alpha) SD^{(3)}(k)$$

Choice of α determines whether leaders in star-like neighborhoods are preferred

- The central authority selects the K nodes with highest scores as social leaders and gives them an arbitrary order
Expander Graphs

- Fast synchronization of a network of oscillators
- Network where any node is “nearby” any other
- Fast ‘diffusion’ of information in a network
- Fast convergence of consensus
- Decide connectivity with smallest memory
- Random walks converge rapidly …
- Graph G, **Cheeger constant $h(G)$**
 - All partitions of G to S and S^c,
 $$h(G) = \min \left(\frac{\text{#edges connecting } S \text{ and } S^c}{\text{#nodes in smallest of } S \text{ and } S^c} \right)$$
- (k, N, ε) **expander**: $h(G) > \varepsilon$; sparse but well connected
Expander Graphs – Ramanujan Graphs
Outline

• Networks and Collaboration
 Constrained Coalitional Games
• Trust and Networks
• Security Aware Protocols via NUM
• Component-based Networking
• Topology Matters
• Conclusions and Future Directions
How Biology Does IT?
Control vs Communication

• Many graphs as abstractions
• Collaboration graph – or a model of what the system does (behavior)
• Communication graph – or a model of what the system consist of (structure)
• Nodes with attributes – several graphs
• Key question 1: Given behavior, what structure (subject to constraints) gives best performance?
• Key question 2: Given structure (and constraints) how well behavior can be executed?
• Constrained coalitional games – unifying concept
• Generalized networks, flows - potentials, duality and network optimization (monotropic optimization)
• Time varying graphs – mixing – statistical physics
• Understand autonomy – better to have self-organized topology capable of supporting (scalable, fast) a rich set of distributed algorithms (small world graphs, expander graphs) than optimized topology
• Given a set of distributed computations is there a small set of simple rules that when given to the nodes they can self-generate such topologies?
Thank you!

baras@isr.umd.edu
301-405-6606
http://www.isr.umd.edu/~baras

Questions?