HE

A MECHANISM FOR DUCTILE
FRACTURE IN SHEAR

Viggo Tvergaard
Department of Mechanical Engineering,
Solid Mechanics
Technical University of Denmark, Bldg. 404,

DK-2800 Kgs. Lyngby, Denmark

DTU Mechanical Engineering, Solid Mechanics, Technical University of Denmark

N.A. Fleck, J.W. Hutchinson & V. Tvergaard, JMPS (1989) 3,
22
— 3 i e
T oT TC T T T T T X2
| | } ! ] } ! / Xs
| [ | v/ h i | x
N lu oo
1 2 | f ] {
_L.2).- A4.-. 1 | ; i
S : 4 ?;, 718 @ i_;, I '] @ [' @ ! @ ‘I
i {
! ! ! I 1 ! h / "4
I, 2b ! ! | 1 !
ey m
! 1 1 } 1 1 - !

{a) (b) (c)

Fi. 8. Model for nucleation and a growth of 2-D voids in simple shear. (a) Starting geometry.
(b) Subsequent to nucleation. (c) Test specimen modeled.
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F1G. 9. Effect of early void nucleation, at y = 0, fora'h = 0.25and Z,, = 0.
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Fi6. [1. (@) Initial mesh used for a:h = 0.25 and ¢/b = 3. (b) Deformed mesh at = €052, for Z,, =0
and no particle. (¢) Deformed mesh at y = 0.047, for I, = 0 with a particle inside the void.
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F1. 13. Effect of a superposed normal stress X, for a/b = 0.25, with nucleation at 3 = 0.
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V. Tvergaard, Int. J. Mech. Sci. (2008)
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Fig. 1. Periodic array of cylindrical voids used to model ductile failure in shear.
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conditions of simple shear J, flow theory

= JGlgol  m=U2AGi—g) #-1iy,

olE, <oy
= UN
(oy1E)(cloy) ", o20y
Mises stress 0, =(3s;s7 12)

_1 K
Ny =5 Wi+ g

[{ac'on, +onusu, ) av = [ AT'Sudd-[ [ /on,dv - | T'6udd)

DTU Mechanical Engineering, Solid Mechanics, Technical University of Denmark

HE

Wt=U,,i*=U, for x*=B8,

it=-U,,i*=-U, for x*=-B,

U, isprescribed, and U, is calculated such that the stress ratio on the top surface has the prescribed value
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The void surface, (x*)* +(x*)*=R?, is initially stress free so that 7" =72=0.

At a later stage of the deformation a hydrostatic pressure p is applied inside the voids to simulate the effect of crack surface
contact in a relatively simple manner. The nominal tractions and their increments on the void surface are

T'=-pa'n, , T’ :—([Ja” + pa” )n,.

1

ir_ L ik o

a :25 & (g,,+u,‘,)(gm+"m)

l: length of the void when it deforms into an ellipsoidal cross-section
V. void volume per unit length in the x* direction

w=V,10: the average width of the void

Then, the average aspect ratio of the void is required to satisfy the inequality
wli>p

When there is no particle inside, the void will collapse completely and then the internal pressure could approximately
describe frictionless sliding of the opposite void surfaces against each other.
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REMESHING:

The values of field quantities in the integration points of the new mesh are determined by
interpolation in the old mesh. First, a bilinear surface in terms of the local element coordi-
nates € and 1 is used to extrapolate values (such as stress components) in the old mesh
from integration points to nodal points, where the region of the element is specified by
—1=<E=<1and —1=<n < 1.Then, values of the field quantities in the nodal points
of the new mesh are determined by interpolation in the old mesh, using the shape functions.
Finally, the values in the integration points of the new mesh are determined by interpolation
from the new nodal points, using the shape functions.

The old coordinates of a new nodal point are determined by the procedure that first
the nearest old nodal point representing an element corner is found, and then a Newton—
Raphson iteration is used to determine the old values of & and 7.

Remeshing is carried out when Aee = (A€e),. i any integration point, where
€. = | (2in/3)*dt is an effective strain, and Ae, denotes the amount of this strain accu-
mulated since last remeshing. Here, the limiting value (Aee),,,, is mostly takentobe 0.4.
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Fig. 2. Initial mesh and deformed meshes for R,/ 4, =0.25,
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k=06 and p=0.1.
w=0.117. () At ¥ =0.216. (d) At y =0291.
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(a) Initial mesh. (b) At
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Fig. 3. Details of initial mesh and deformed meshes near void for R /4, =0.25,

(c)

Initial mesh. (b) At y =0.117. (c) At w =0.216. (d) At w =0291.
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k=06 and p=0.1. (a)
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Fig. 4. Average shear stress vs. average shear angle for different values of the limiting void aspect ratio p,

when R /4 =025 and x=06.
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Fig. 5. Average shear stress vs. average shear angle for different values of the limiting void aspect ratio p,

when R /4 =025 and x=0 .
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Wt=-U,,u*=-U, for x*=-B,

U, isprescribed, and U, is calculated such that the stress ratio on the top surface has the prescribed value
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The void surface, (x')° +(x*)* =R, isinitially stress free so that 7" =72=0.

If a hydrostatic pressure p was applied inside the voids to simulate the effect of crack surface contact in a
relatively simple manner, the nominal tractions on the void surface would be

’ i v L ik m
T'=-pa'n, , a"=Z&"¢ (&/*“m)(gmn*"km)
’: length of the void when it deforms into an ellipsoidal cross-section
V. void volume per unit length in the x* direction

w=V,11(: the average width of the void

Then, the average aspect ratio of the void is required to satisfy the inequality
wltzp

In the expression due to hydrostatic pressure the traction component perpendicular to the line of length ¢ between the two
end points of the void is given by (~7"sin ¢+ T"* cos @) and the component along the length of the void is not included here.
Then the nominal tractions P' applied to the void surface are

P'=—(-T"'sinp+T?cosg)sin g
P? = (-T"sin @+ T? cosp) cos o

with P° =0. This load satisfies force equilibrium exactly. Small additional loading is applied to exactly satisfy moment
equilibrium. Here there is no hydrostatic pressure, since the load components along the elongated void have been neglected
to avoid that these components will tend to increase the length of the void.

DTU Mechanical Engineering, Solid Mechanics, Technical University of Denmark




Iy hydrostatic transverse load
pressure

0 1 1 1 1
0 0.2 0.4 0.6 Y 0.8

Fig. 2. Average shear stress vs. average shear angle for different values of the limiting void aspect ratig l,
when ,  R/4,=025 and «=0.0 . Results for the transverse load (10)-(11) are compared with
results for hydrostatic pressure loading inside the voids.
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Fig. 3. Initial mesh and deformed meshes for R,/ 4, =025 ,x=0.0 andp=0.1 . (a) Initial mesh.
(b) At v =0.277 . (C) At y =0525 . (d) At v =0.666.
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Fig. 4. Average shear stress vs. average shear angle for different values of the limiting void aspect
ratio # , when R,/ 4,=0.25 and x =06 .
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Fig. 5. Average shear stress vs. average shear angle for different values of the limiting void aspect
ratio # , when R,/ 4,=020 and x=0.0 .
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Fig. 7. Average shear stress vs. average shear angle for different values of the stress ratio « ,
when R,/ 4,=025 andp=0.20.
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Fig. 9. Deformed meshes for x=0.0 and p=0.15. (a) For R,/ 4, =025 aty =0529 . (b) ForR, / 4, =0.20
aty =0.611 . (c) For R,/ 4,=0.15 at y =0.708 .
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Fig. 11. Average shear stress vs. average shear angle for different values of the initial yield strain o, /£ ,
whenRr /4,=025, p=015 and x=0.0 .
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Damage model.

The damage model used 1s the shear-extended Gurson model by Nahshon and Hutclhinson
(2008).

. staf
F == F)G a7 4k, for,
P A 1, N
ﬁ)c,_m[a?—l—{ o ) Jy —E(.r SySys
Nielsen and Tvergaard (2009) suggested:
[1 P
o =ole)QT) L with  QN={(T-T,)1,-T,) T,sT =T,
|0 I=T,

where, T, <T,. The stress triaxiality is T = &, /(35,). Weuse 7, =00 and T, =0.5.

O G'I- +2q,.f" unsh. 92 % :—[] +gf” ]h] 0
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The constants ¢, =1.5, g, =1 and [ =02, 7, = 0.4 are used.
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Comparison with cell model study
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Void volume fraction £, in a band of width equal to the void spacing 24,is f, = nRo/ 2A0

In the analysis for the damage model, the initial variation of the void volume fraction is taken to be
2 1 X’ )
f(x )=f°§ 1+cos 24, for —24, <x° <24, otherwise f(x*)=0

v is the average shear angle for the cell analyzed, defined by

tany =U, /B
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Fig. 3. Initial mesh and deformed meshes corresponding to R, /4, =0.20, x =09, N=0.1 and p=0.15. (2)
Initial mesh for micromechanical model. (b) Aty =0.203. (c) Damage model mesh at  =0.298, for

k=087 with 7 =0 and T, =0.5 inEq. (9).
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Fig. 2. Average shear stress vs. average shear angle for different values of x, when R /4 =020 and
N =0.1 . The thin curves are predictions of the micro-mechanical model for p=0.15 . The thick curves are

predictions of the damage model for & =087, with T, =0 and T, =0.5 in Eq. (9).
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Fig. 4. Average shear stress vs. average shear angle for different values of x, when R /4 =020 and
N =0.1 . The thin curves are predictions of the micro-mechanical model for p =0.15. The thick curves are

predictions of the damage model for k&, = 0.87, without the modification (9).
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Fig. 5. Average shear stress vs. average shear angle for different values of R /4,, when x=0.0 and
N =0.1, The thin curves are predictions of the micro-mechanical model for o =0.15 . The thick curves are

predictions of the damage model for &k =0.87.
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Fig. 6. Average shear stress vs. average shear angle for different values of the strain hardening exponent N,

when & =0.0 and R /A =025, The thin curves are predictions of the micro-mechanical model for p = 0,15

. The thick curves are predictions of the damage model for & =087,
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Fig. 7. Average shear stress vs, average shear angle for different values of k., when & =0.0 and N =0.1 in

the damage model. The initial void volume fiaction corresponds to R,/ 4, = 0,20,
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