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Fig. 1. Substrate strain and tissue stiffness. (A} Strain distribution computed in a soft matrix
beneath a cell. The circular cell has a uniform and sustained contractile prestress from the edge to
near the nucleus {87). (B) Stress versus strain illustrated for several soft tissues extended by a force
(per cross-sectional area). The range of slopes for these soft tissues subjected to a small strain gives the
range of Young's elastic modulus, £, for each tissue (24, 28, 30). Measurements are typically made on
time scales of seconds to minutes and are in SI units of Pascal (Pa). The dashed lines (---) are those for
(i) PLA, a common tissue-engineering polymer (89); (ii) artery-derived acellularized matrix (90); and (jii)
matrigel (42].

Dennis E. Discher et al [2005] Science
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Figure 3. Protein and Transcript Profiles Are Elasticity Dependent under ldentical Media Conditions



1. How do model mechanotransduction ?

(1) What is the suitable constitutive model for cells?

(2) How to model the cell contact and adhesion ?
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A. How to model cell membrane ?

Fluid Mosaic Model
(Singer and Nicolson[1972])

(nematic, Blue phase)
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Inspired by the fluid mosaic model, Helfrich [1973] developed
a Liquid Crystal Membrane model that has successfully
predicted the bi-concave shape of red blood cells.



B. How to model interior of the cell
e.g. the acto-myosin interaction ?

(a) Regulatory
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TRENDS in Cell Biology

The actomyosin cytoskeleton. (a) Schematic diagram of a myosin Il monomer, depicting
the light and heavy chains. The different parts of the heavy chain, including the motor,
neck, coiled-coil and nonhelical domains, are indicated. (b) Myosin Il self-assembles into
bipolar filaments through interactions of the C-terminus; the N-terminus binds to actin
filaments. Activation of the myosin Il motor domain leads to the pulling of actin filaments
(in the direction of the arrows) to induce cortical tension (Clark et al [2007]).



Liquid Crystal Elastomers
cross-linked polymer liquid crystal PLC
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“Solid” Liquid-Crystal

exhibits most conventional liquid-crystal phases (I, N, Sm-A, Sm-C, ...)




How to model a cell ?

We model cytoskeleton of cells as a liquid crystal elastomer, and
we hypothesize that the stem cell cytoskeleton is a special type of
liquid crystal elastomer.
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B Non-periodic crosslinking (b and €)
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Figure 5 The nature of network crosslinking plays a key role in response to
shear. a, Shear siress and Saqy (blue) of thres different loose netwaorks subjected to
extension perpendicular to the direction of initial alignment { Ley / Daan == 9).
Metworks with random crosslinking (b,c) show no net rotation of their director and
also show the same stress—strain response as a network lacking filaments (filled
SOUAres Versus open squares). In confrast, networks with periodic crosslinking (d,e)
show a soft plateau in stress (filled friangles). £, Affine predictions (green)
underestimate the simulation's filament rotatiors (purple) after stretching from r=1
(blug) — 6.

From Dalhaimer et al. [2007]
Nature Physics, 3, 345-360
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Constitutive Modeling for Cells

. We adopt a modified Ericksen-Leslie Theory (Lin and Liu

[2000]) as the constitutive model for Nematic Liquid
Crystal,;

. We are developing a hydrodynamics theory for Liquid

Crystal Elastomer;

. We use Mooney-Rivlin material as the hyperelastic model;
. We use Newtonian Fluid model as the constitutive model of

cell plasma;



Nematic Liquid Crystal

The strong forms of the simplified Ericksen-Leslie theory are

D
pfF: = V.o+b, VxeV(t)
Dh

where the Cauchy stress is given as
o=-pl+2ud —AV- (VhoV&®h) -G

and h(X, ) is the director field, and G is the contribution from
the contact boundary condition,

G — Ah-Vp,)h ® Vg planar anchoring
| A[(h-h)Vys—(h-Vp,)h]® Vs  homeotropic anchoring

Yue et al [2000]



Here ¢, is a phase field of level set function such that

Ps = 17 Vxe VtS(t)
0 < ps<1 Vx between the contact interface
Ps = O) Vxe Vc(t)

The Lagangian level-set phase field, o4, is chosen as the determinant of
the moment matrix of meshfree interpolant of the substrate,

ps(x,1) = ZNI(X), V x €V,
I

Note that we may construct another Lagrangian level-set phase field
by using the moment matrix of meshfree interpolant of the cell,
and we use it to replace the director elastic constant v as

v = Y., and gpczz:NI(X), Vx e V.
I

Note that we can also use ¢, to calculate curvature for other type of
surface tension calculation,

F~ 1. Vxo. )

mzvx-n:F_TVX-(
[F=1- Vx|



Remarks:

Dh
1. Dz is-the objective rate, and it can be
o Dh
1. The convected rate: h= Dr +17'h;
A Dh
2. The corotational rate: h= DF wh;

and 1 is the velocity gradient, and w is the spin tensor,

1 = FF!
1
= —(1-1*
(D
2.A Ginzburg-Landamtxpe potential is nsed-mcalculate director
field evolution,
Fh) = — (/2 —1)?
42
h
f(h) = F'(h)=5(h}-1)



Liquid Crystal Elastomer

A typical entropic free-energy expression for a liquid crystal elastomer is
(Warner and Terentjev [2007]),

Det(ﬁ))

1 1
Vyulk = §kBTTT (fo FL.e 1. F) + §]~€BT1I1( 3

where kp is the Boltzmann constant, 1" is temperature, £y and £ are
polymer’s step length tensors at referential configuration and current
configuration respectively. They are related to the director field h as

e=0,1%+ (¢ -t )h®h,

and the first Piola-Kirchhoff stress is

oV

P—a—F.

Define the step length anisotropy as

S . — E”/EJ_



Liquid Crystal Elastomer (cont’d)

To regularize the potential, we add the Oseen-Frank potential

k(s —1)?

F~'V ®h/?
28

\Ijgra,d —

and let
G=V®h
the total liquid-crystal elastomer potential is (Fried & Korchagin [2002])
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Define the order parameter tensor,

(6” — fJ_)Q n (€|| + 2€J_)I(2)

1
= Q.(h®@h— -I?) and £ =
Q=Qc(h@h—ZI%) an o, z



Liquid Crystal Elastomer (cont’d)

We pastulate the following Hydrodynamics of Liquid-Crystal Elast-
mMors:

8211 8\Ift
- _— _fp 7T Div—2%
P o Vp + Div oF +Db
and (Allen & Cahn) i
Dh
Dh oV
Dt oh

For L = £I®) @ 1),

Dh k(s —1)2
Dt S




Use liquid crystal to model lipid bilayer and more
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Classical Contact vs. Cohesive Contact
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Hypothesis I1:
Focal adhesion and its self-assembly may be modeled as the
soft elastic mode of the liquid crystal elastomer.




I11. Computational Algorithms
and Formulations

Explicit Lagrangian Meshfree Formulation;

Frank energy as penalty to stabilize the
computation;



V. Simulation Results

(A) Verification of Model;
(B) Simulation of cell spreading;

(C) Simulation based on different cell models;






Model Verification
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soft

stiff

Cell response to stiffness of different substrates

stiffer




Cell spreading over substrates with different stiffness:
(a)Substrate-1, (b) Substrate-11, and (c) Substrate-111
(Zeng and Li, IMBBM, 2010)
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Cell Spreading Simulation
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(a) A rigid substrate

(b) A stiff substrate

(c) A soft substrate
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V. Some Interesting Findings

Mechanotransduction at distance;

Order parameter dependence on mechanical property of substrates;
Cell motility dependence on mechanical property of substrates;

Why is Liquid Crystal Elastomer Cell Model so interesting and exciting ?



Hypothesis |. Substrates with different stiffness will
result different cell shapes and internal conformations

ifferent matrix rigidities

Corresponding to d
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Cell spreading in three different substrates:
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Cell spreading in three different substrates:
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Cell Response to Stiffness of
Different Substrates (zeng and Li, IMBBM, 2010)

L B« N
_'_.L.L‘
_'__A_.A.‘




Mechanotransduction at distance



B. Order parameter dependence on substrate stiffness

[ Bl Substrate-|

BT

Prmnmmeee & Substrate-I|
091 ¢« @ Substrate-lll

A — —4A Suybstrate-IV

c o5 10 15
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This implies the dependence of molecular conformation on elasticity of the substrate !



C. Cell motility dependence on mechanical property of substrates;

___—4

Direction of the Substrate Stiffness Increase






D. Why is Liquid Crystal Elastomer Cell Model so interesting
and exciting ?

It Is because that it exhibits a so-called soft elastic mode ----

(solid-liquid phase “transformation’)
that is: LCE cannot sustain shear stress under certain deformation

(Golubovic & Lubensky [1989], Kundler and Finkelmann [1995],
And Warner and Terentjev [2006])

Hypothesis:
The elastic soft mode transition may provide an model

to explain the mystery of focal adhesion !




Hypothesis Il:
Focal adhesion and its self-assembly may be modeled as the soft
elastic mode of the liquid crystal elastomer.
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Hyperelastic cell vs. Liquid crystal elastomer cell












- W\ CGMD model for
protein receptor

Soft matter continuum model

for actomyosin aggregates

CGMD model for
Lipid bilayer

Work in Progress



V1. Conclusions

Our Simulations have shown that the stem cell has
sensitive mechano-transduction abilities:

(1) When a stem cell is in contact with a substrate, its
contractile traction force will change depending on stiffness
of the substrate;

(2) with substrates of different stiffness, the cell shape
configuration and micro-structure conformation differ;

(3) the size of spreading area of the cell also depends on
stiffness of the substrate;

(4) Order parameter evolution history depends on the
stiffness of the substrate.



