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Experimental design

Stick-slip (e.g., Brace & Byerlee, Ohnaka): Direct-shear (e.g., Dieterich, Marone):
1. Spontaneous slip 1. Controlled, stepping slip velocity
2. Tiny slip distance (< 100 micron) 2. Small slip distance ( ~ 1 mm)
3. Modest slip velocity (< 0.1 m/s) 3. Low slip velocity (0.01-10 micron/s)
4. High accelerations ( a few km/s?) 4. Rate-and-state friction law
5. Rupture propagation monitored
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DiToro et al. (Nature, 2011) stated:

“Given the low slip rates [and short distances], these experiments
lack a primary aspect of natural seismic slip: a large mechanical
work-rate ... [that] can be so large as to grind and mill the rock....,
trigger mechanically and thermally activated chemical reactions,
and, eventually, melt the rock.”
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Earthquakes are governed by a complex of interrelated, transient
processes along active fault-zones at (almost) inaccessible depth

The experimental approach:

Shearing faults at conditions relevant to earthquakes:
1. Characterization of earthquake processes
2. Testing theoretical models/concepts
3. Measuring dynamic strength of active faults

Thus, experiments of low velocity/short distance
provide insight to nucleation processes,

but cannot simulate the high velocity/high energy
slip of a fault patch during its short rise time

Rupture propagation fronts

nucleation

High-velocity experiments attempt to simulate earthquake conditions
1. Slip velocity of ~1 m/s
Slip of a few meters
Loading by a propagating rupture front
Normal stress of tens to hundreds MPa
Gouge powder
Elevated fluid pressure
7. Elevated ambient temperature
Simultaneous application of these conditions requires

a “dream apparatus” which does not exist yet...
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LHVR-Institute of Geology, China Earthquake
Administration, Beijing (Shimamoto et al., 2014)

Biaxial friction experiments using a Iarge shaking '
table, NIED, Japan (Fukuyama et al., 2014)

Di Toro, Nielsen et al, Rendiconti Lincei, 2010
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ROGA at the University of Oklahoma
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High-velocity shear experiments results

Macroscopic observations:
1. Dynamic weakening (distance, velocity, acceleration)
2. Dynamic strengthening (lithology dependence)

Microscopic observations:

1. Pulverization into sub-micron particles forms a highly reactive gouge powder
(thermally, mechanically and chemically)

2. Slip localization in sub-mm zones intensifies the deformation

Interpretations and model testing:
1. Mechanisms of dynamic weakening

a. Thermal activation
(melting, flash heating, thermal pressurization phase transform, superplasticity}
a. Lubrication (silica gel, powder,
b. Composition dependence (shale, talc, carbonates[granite vs gabbro)
c. Geometry (smoothing, wear, localization)
2. Loading style (steady-state vs impact, velocity control, power control)

Velocity weakening, thermally activated ‘
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Di Toro et al. (Nature, 2011)
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Slip weakening, thermally activated |
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Non-monotonic strength evolution:
Thermally activated strengthening, granite group

RH monzodiorite
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| Pulverization into ultrafine gouge powder during experimental faults shear

10 min
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Reches and Lockner (Nature, 2010)

Niemeijer et al. (JGR, 2011)

Fault-zone ultra-microscopic structure

Pulverization and localization.
Shear of Kasota dolomite sand of 125-250 pm
grains, in confined cell, v=1m/s

(Harry Green talk)
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Pulverization and localization
Kasota dolomite, granular
125-250 mm grains, 1 m/s

Slip localization along highly smooth
surface within a 3 mm thick SAFOD
gouge (SDZ) sheared at
v=1m/s, 6, =29 MPa

Melting in steps:
Localized melt in Sierra White Granite 1. weakening (gouge formation);

op = 1.2 MPa; v = 0.045m/s 2. Strengthening (local melt);
3. Weakening (full scale melt)
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Direct, sub-microscopic observations of
dynamic weakening mechanisms

Weakening by rolling-friction in powder zones |
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Weakening due to smooth surfaces of localized slip

Using AFM to measure friction at sub-micron scale

as function of surface roughness

Chen et al. (Geology, 2013)

Loading modes of a fault patch

Conceptual views of slip velocity during
earthquake rupture (Tinti et al., GRL 2005)
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Velocity
Fricticral strength

Frictional strength depends on the loading modes

Shenr seress (MIPa); Veloeity (mé)
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MQCIOSCO[!IC observations
Microscopic observations
Interpretations and model testing
Future y
1. Testing at real in-situ conditions (a dream apparatus)
Thanks

Explore for direct, physical evidence of conceptual weakening mechanisms

Investigate the effects of loading modes, and move away from velocity control

p comp: ive relations for fault frictional strength that will
span the full range of velocity/acceleration/normal stress

above experimental results to reduce seismic hazard

(e.g., better links to seismology, fault stability, rupture simulation)
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