Dislocation Dynamics in Metals at Atomic-scale:

Interactions between Dislocations and Obstacles with Dislocation Character

David Bacon

The University of Liverpool, UK

Yuri Osetsky

Oak Ridge National Laboratory, USA

In collaboration with: Dmitry Terentyev (CEN/SCK, Belgium)

Motivation: effect of irradiation microstructure on mechanical properties

Deformed Fe, n-irrad. 0.4dpa (Zinkle & Singh JNM 2006)

- \cdot dislocations under stress move through field of irradiation-induced obstacles
 - dislocation loops, SFTs, point defect clusters, voids, precipitates, etc.
- $\boldsymbol{\cdot}$ yield and flow stress raised, strain to failure reduced

UNIVERSITY OF LIVERPOOL

Continuum modelling of strengthening

(a) Line tension approximation

- + ϕ_{c} is largely empirical
- strong obstacles ϕ_{c} ~ 0, but empirically α ~ 0.2–0.5
- \cdot LT model ignores dislocation self-interaction
- self-stress is included in 'dislocation dynamics' (DD) modelling (elasticity approximation)

- (b) Dislocation self-stress simulation for strong obstacles
 - Orowan strengthening (impenetrable obstacles)

• critical stress for edge dislocation and impenetrable particles or voids:

$$\boldsymbol{\tau_{c}} \simeq \frac{\boldsymbol{\boldsymbol{G}}\boldsymbol{\boldsymbol{b}}}{\boldsymbol{2}\boldsymbol{\pi}\boldsymbol{\boldsymbol{L}}} \Bigg[\ln \Bigg(\frac{1}{\boldsymbol{D}^{-1} + \boldsymbol{L}^{-1}} \Bigg) + \boldsymbol{\boldsymbol{B}} \Bigg]$$

where B depends on $\gamma_{\rm s}$ for voids

- cf line tension: $\tau_{c} = \alpha Gb/L$
- energy (tension) of dipole $\propto \ln[D]$
 - \Rightarrow size-dependence for strong obstacles
- dislocation dynamics (DD) requires 'local rules'
 - effects of core structure
 - mobility of segments, strength of junctions
 - dependence on $\tau,\ T,\ \dot{\varepsilon}$

\Downarrow link to atomic scale

• computer simulation of atomic-scale processes by which obstacles affect dislocation motion \Rightarrow quantitative data on τ , T, $\dot{\varepsilon}$

(c) Atomic-scale simulations of dislocation-obstacle interaction

IVFRPOOI

• System size Area A - few M mobile atoms • Obstacle - periodic spacing $L \leq 100$ nm Periodic - size D ≤10nm - $\rho_{\rm D} \sim 10^{14} \text{--} 10^{15} \text{m}^{-2}$ • Statics (MS) T = OK- apply $\Delta \varepsilon$ incrementally - relax to minimum pot'l energy Fixed $\tau_{appl} = -F/A$ - equivalent to elasticity • Dynamics (MD) T > OK- either apply strain rate ~ $10^6 - 10^8 s^{-1}$ - dislocation veloc ~ 5-500ms⁻¹ - or apply stress $\tau_{appl} = F/A$

Void strengthening α -Fe at T = OK (edge dislocation)

$$\boldsymbol{\tau_{c}} \simeq \frac{\boldsymbol{G}\boldsymbol{b}}{\boldsymbol{2}\boldsymbol{\pi}\boldsymbol{L}} \left[\ln \left(\frac{1}{\boldsymbol{D}^{-1} + \boldsymbol{L}^{-1}} \right) + \boldsymbol{B} \right]$$

• similar dependence on L and D from atomic-level and continuum treatments

Void strengthening at T > OK (edge dislocation)

• motion under constant strain-rate $(10^6 - 10^8 s^{-1})$ - dislocation dynamics at the atomic scale

(d) Dislocation interaction with nano-scale dislocation obstacles

- · Only consider BCC here
- Outcomes
 - R1: dislocation and obstacle unchanged edge or screw
 - R2: obstacle changed but dislocation unchanged edge or screw
 - R3: partial or full absorption of obstacle by <u>edge</u> dislocation (superjog formation)
 - R4: temporary absorption of obstacle by <u>screw</u> dislocation (helix formation)
 - loop drag (= R1+R3)

[Bacon, Osetsky & Rodney, in Dislocations in Solds, vol. 15 (2009)]

No intersection: Small $\frac{1}{2}$ [111] loop in Fe at 300K

- <u>edge</u> dislocation
- parallel <u>b</u>s
- loop drag
- breakaway above critical stress

[Rong, Osetsky & Bacon, Phil. Mag. (2005)]

Intersection: Frank's rule for energetically-favourable reactions in Fe (BCC) predicts

- ½<111> loops acquire <100> segments
 e.g. ½[111] + ½[111] = [100]
- <100> loops acquire ¹/₂<111> segments
 e.g. ¹/₂[111] + [100] = ¹/₂[111]

R1: dislocation and obstacle unchanged

Intersection: Large loop (331i) with $\underline{b} = \frac{1}{2}[1-11]$ in Fe at 100K

- <u>edge</u> dislocation $\underline{b} = \frac{1}{2}[111]$

- attractive reaction forms [010] segment
- \cdot [010] segment has different glide plane and is immobile at low ${\cal T}$
- screw dipole drawn out
- pinches off by x-slip at τ_c , leaving $\frac{1}{2}$ [1-11] loop
 - \Rightarrow strong obstacle

[Bacon, Osetsky & Rong, Phil. Mag. (2006)]

R1: dislocation and obstacle unchanged (cont'd)

Intersection: Large loop (128i) with $\underline{b} = [001]$ in Fe at 300K - <u>screw</u> dislocation $\underline{b} = \frac{1}{2}[111]$

- attractive reaction converts sides BC & CD to $\frac{1}{2}$ [-1-11] by x-slip of screw
- screw side arms x-slip to corner C at $\tau_{\rm c}$ leaving original loop
- screw glide plane now coincident with C (periodic boundaries)
 - \Rightarrow moderately strong obstacle

[Terentyev, Bacon & Osetsky, Phil Mag, in press]

R2: dislocation unchanged, obstacle changed

Intersection: [100] loop (169i) in Fe at 300K

- $\frac{1}{2}$ [111] <u>edge</u> dislocation

• dislocation repelled but forms $\frac{1}{2}$ [-111] segment on contact

[Terentyev, Bacon & Osetsky, Acta Mat. (2008)]

- double loop complex remains
- \Rightarrow strong obstacle

- similar complex for [100] loop and $\frac{1}{2}$ [111] screw:

Sympos. on Multiscale Dislocation Dynamics La Jolla, Jan 2010 Materials Modelling Group R3: partial or full absorption of obstacle by edge dislocation (superjog formation)

Small loop (37i) with $b = \frac{1}{2}[1-11]$ in Fe at 0-600K

- <u>edge</u> dislocation $\underline{b} = \frac{1}{2}[111]$

R3: partial or full absorption of obstacle by edge dislocation (superjog formⁿ) (cont'd)

Large loop (331i) with $b = \frac{1}{2}[1-11]$ in Fe at 300-600K

- <u>edge</u> dislocation $\underline{b} = \frac{1}{2}[111]$

- sessile [010] segment forms on contact
- segment has low mobility
- glides over loop converting it to ¹/₂[111]
 as screw side arms x-slip
 - \Rightarrow strong obstacle
- efficient absorption of all SIAs

[Bacon, Osetsky & Rong, Phil. Mag. (2006)]

Sympos. on Multiscale Dislocation Dynamics La Jolla, Jan 2010 Materials Modelling Group

R3: partial or full absorption of obstacle by edge dislocation (superjog form') (cont'd)

[010] loop (169i) in Fe at 300K - $\frac{1}{2}$ [111] edge dislocation

- $\frac{1}{2}$ [1-11] segment forms on contact
- segment glides down \Rightarrow same configuration as interaction with $\frac{1}{2}$ [1-11] loop above
- segment glides over loop converting it to $\frac{1}{2}$ [111]
- \Rightarrow strong obstacle
- efficient absorption of all SIAs

[Terentyev, Bacon & Osetsky, Acta Mat. (2008)]

R4: temporary absorption of obstacle by screw dislocation (helical turn formation)

- followed by detachment as turn closes

½[111] loop in Fe at 100K

- <u>screw</u> dislocation $\underline{b} = \frac{1}{2}[111]$
- loop absorbed as helical turn
- cannot glide with line
- line released when turn closes and loop restored
 - \Rightarrow strong obstacle

[Terentyev, unpublished]

 \cdot any net absorption/transport of SIAs is along the line

R4: temporary absorption of obstacle by screw dislocation (helical turn formation)

- followed by detachment as turn closes

(cont'd)

- [010] loop in Fe at 300K
- <u>screw</u> dislocation $\underline{b} = \frac{1}{2}[111]$

- screw initially repelled, but x-slips to corner D and converts AD to ½[1-11] segment
 segment sweeps over loop as screw side arms
- cross-slip, converting other sides to $\frac{1}{2}$ [111] \Rightarrow loop absorbed as helical turn on screw
- $\frac{1}{2}$ [111] loop formed when screw breaks away
 - \Rightarrow strong obstacle
- no net absorption/transport of SIAs

[[]Terentyev, Bacon & Osetsky, Phil Mag, in press]

Summary/conclusions for τ_c in Fe

- τ_c at 300K for <u>edge</u> with L = 41nm
- large variation in $\tau_{\rm c}$
- large variation in defect absorption on line (0-100%)
- no correlation between $\tau_{\rm c}$ and absorption

A04 potential: SR=107s1, T=300K 300 owan stress with D for 169 defects 200 (MPa) C4 0.51 169 C4U 89 59 C2 A 3 0 -----Voids <100> loops 169 SIAs 1/2<111> loops 59-339 vacs 37-361 SIAs 1/2[-111] 1/2[1-11] Void Obstacle type & b

[Terentyev, Bacon & Osetsky, Phil Mag, in press; Liu & Biner, Scripta Mat. 2008]

/FRPOOL

What else?

• all reactions to form new segments, e.g. <100> on $\frac{1}{2}$ <111> loop or $\frac{1}{2}$ <111> on <100> loop, satisfy Frank's Rule: $(b_1^2 + b_2^2) > b_3^2 \iff even for nm loops$

Differential displacement

b =

Conclusions

Dislocation Dynamics in Metals at Atomic-scale:

Interactions between Dislocations and Obstacles with Dislocation Character

- need for predictive computer modelling
- atomic scale simulation can provide unique information on mechanisms
 - qualitative and quantitative
 - wide variety of nano-scale obstacles
 - can validate continuum models
 - increasing understanding of reactions, outcomes, obstacle strength
- future challenges
 - more realistic interatomic potentials, e.g. Fe, alloys
 - multiple dislocation effects, e.g. channelling
 - grain and interphase boundaries
 - strain rate effects
 - local rules and activation parameters for continuum-based dislocation dynamics

