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Motivation: effect of irradiation microstructure on mechanical properties
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- dislocations under stress move through field of irradiation-induced obstacles
- dislocation loops, SFTs, point defect clusters, voids, precipitates, etc.
- yield and flow stress raised, strain to failure reduced




Continuum modelling of strengthening

(a) Line tension approximation

- Dislocation overcomes obstacle
Line Tension when ¢ = ¢ at 7=1,

I I
7.bL = 2I'cos(¢ /2)

obstacle spacing L e I'= Gb2/2
5 T, = ouGbIL
o= cos(¢/2)
(] (l] () ) i i i - characterises ‘obstacle strength’

dislocation

* @, is largely empirical

- strong obstacles ¢, ~ O, but empirically o ~ 0.2-0.5

* LT model ignores dislocation self-interaction

- self-stress is included in 'dislocation dynamics’ (DD) modelling (elasticity approximation)
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(b) Dislocation self-stress simulation for strong obstacles

* Orowan strengthening (impenetrable obstacles)




- critical stress for edge dislocation and impenetrable particles or voids:
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+ dislocation dynamics (DD) requires ‘local rules 10 100 1000

D/r,

- effects of core structure
- mobility of segments, strength of junctions
- dependence on 7, T, &

U link to atomic scale

- computer simulation of atomic-scale processes by which obstacles affect dislocation motion
= quantitative dataon 7z, T, ¢

Sympos. on Multiscale Dislocation Dynamics latzrials

@ LIVERPOOL La Jolla, Jan 2010 MISEng Crong e



(c) Atomic-scale simulations of dislocation-obstacle interaction

- System size
- few M mobile atoms

 Obstacle
- periodic spacing L <100nm
- size D <10nm
- pp ~ 1014-1015m-2

+ Statics (MS) T = OK

- apply A incrementally
- relax to minimum pot’l erm

- equivalent to elasticity Topl = ~F/A
+ Dynamics (MD) T > OK
- either apply strain rate ~ 106-108s-!
- dislocation veloc ~ 5-500ms-!
- or apply stress < Toppl = F/A
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Void strengthening a-Fe at T = OK (edge dislocation)
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Void strengthening at T > OK (edge dislocation)

* motion under constant strain-rate (10°-108s-1) - dislocation dynamics at the atomic scale
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(d) Dislocation interaction with nano-scale dislocation obstacles

BCC

* Only consider BCC here

* Outcomes
R1:
R2:
R3:
R4:
loop drag (= R1+R3)
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dislocation and obstacle unchanged - edge or screw
obstacle changed but dislocation unchanged - edge or screw
partial or full absorption of obstacle by edge dislocation (superjog formation)
temporary absorption of obstacle by screw dislocation (helix formation)

[Bacon, Osetsky & Rodney, in Dislocations in Solds, vol. 15 (2009)]
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No intersection: Small $[111] loop in Fe at 300K
edge dislocation

parallel bs

loop drag

breakaway above critical stress

740000 stoms 37 SIAs C15 nmd [ =308 K Stress = 188 MPa

Time 8.9 ps Core posilion 8.8 nm Core velocity

Fe_37SIA: b=1/2[111]_300K_100MPa

[Rong, Osetsky & Bacon, Phil. Mag. (2005)]

Intersection: Frank's rule for energetically-favourable reactions in Fe (BCC) predicts

- $<111> loops acquire <100> segments
- e.g. 3[111] + $[111] = [100]

+ <100> loops acquire 3<111> segments
- e.g. }[111] + [100] = £[111]
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R1: dislocation and obstacle unchanged

Intersection: Large loop (331i) with b = 3[1-11] in Fe at 100K
- edge dislocation b = 3[111]

- attractive reaction forms [010] segment

-+ [010] segment has different glide plane and is immobile at low T
- screw dipole drawn out

» pinches off by x-slip at 7_, leaving [1-11] loop

= strong obstacle

[Bacon, Osetsky & Rong, Phil. Mag. (2006)]




R1: dislocation and obstacle unchanged (cont'd)

Intersection: Large loop (128i) with b = [001] in Fe at 300K
- screw dislocation b = $[111]

%[111]

[ ‘_‘.}“ z 0 1#,:{ sy
- attractive reaction converts sides BC & CD to e ] C
3[-1-11] by x-slip of screw (a) yv (b)
- screw side arms x-slip to corner C at 7. leaving 7 - = S
original loop o "“--'E.._,,,;; .5'"'" 3 X
- screw glide plane now coincident with C w:'-ﬂ 3“ 4
(periodic boundaries)
(€) (d)

= moderately strong obstacle

[Terentyev, Bacon & Osetsky, Phil Mag, in press]

Sympos. on Multiscale Dislocation Dynamics Izterials

@ LIVERPOOI La Jolla, Jan 2010 Moclzlling Group =



R2: dislocation unchanged, obstacle changed

Intersection: [100] loop (169i) in Fe at 300K
- $[111] edge dislocation

=3[111)

v b =[100] [199]
b=/;['111] .

1) 1y 1

Direction of dislocation motion

- dislocation repelled but forms 3[-111] segment on contact [Terentyev, Bacon & Osetsky, Acta Mat. (2008)]
- double loop complex remains

= strong obstacle
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R3: partial or full absorption of obstacle by edge dislocation (superjog formation)

Small loop (37i) with b = [1-11] in Fe at 0-600K
- edge dislocation b = $[111]
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(a) £ = 0.03% (b) & = 0.214%

* loop b changes on contact

= weak obstacle

- efficient absorption of all SIAs Fe_37SIA: b=1/2[1-11] 300K _SR10

[Bacon, Osetsky & Rong, Phil. Mag. (2006)]
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R3: partial or full absorption of obstacle by edge dislocation (superjog fornt') (cont'd)

Large loop (331i) with b = 3[1-11] in Fe at 300-600K
- edge dislocation b = $[111]
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- sessile [010] segment forms on contact

- segment has low mobility

- glides over loop converting it to $[111]
as screw side arms x-slip

= strong obstacle

- efficient absorption of all SIAs Fe_331SIA: b=1/2[1-11]_300K_sr20

[Bacon, Osetsky & Rong, Phil. Mag. (2006)]
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R3: partial or full absorption of obstacle by edge dislocation (superjog form") (cont'd)

[010] loop (169i) in Fe at 300K
- $[111] edge dislocation

b, =[010] [010] b=11111]

=1 '
b=4111 ;

b =(010] - i

-

;[1 11)
Double superjog

Direction of dislocation motion

#[1-11] segment forms on contact
segment glides down = same configuration as interaction with $[1-11] loop above

segment glides over loop converting it to $[111]

= strong obstacle

- efficient absorption of all SIAs
[Terentyev, Bacon & Osetsky, Acta Mat. (2008)]
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R4: temporary absorption of obstacle by screw dislocation (helical turn formation)

- followed by detachment as turn closes

#[111] loop in Fe at 100K
- screw dislocation b = £[111]

* loop absorbed as helical turn

- cannot glide with line

- line released when turn closes and loop
restored

= strong obstacle

- any net absorption/transport of SIAs is along the line
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R4: temporary absorption of obstacle by screw dislocation (helical turn formation)
(cont'd)

- followed by detachment as turn closes

[010] loop in Fe at 300K
- screw dislocation b = $[111]
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- screw initially repelled, but x-slips to corner D
and converts AD to 3[1-11] segment

- segment sweeps over loop as screw side arms
cross-slip, converting other sides to 3[111]
= loop absorbed as helical turn on screw

- 3[111] loop formed when screw breaks away

= strong obstacle

* no net absorption/transport of SIAs

[Terentyev, Bacon & Osetsky, Phil Mag, in press]
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Summary/conclusions for 7. in Fe

7, at 300K for edge with L = 41nm gy P SR=10's", T=300K
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What else?

- all reactions to form new segments, e.g. <100> on 3<111> loop or %<111> on <100> loop,
satisfy Frank's Rule: (b,2+b,2) > b,> <« even for nm loops

- final outcome depends on mobility of <100> dislocation,
and therefore on T:
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[Terentyev, Osetsky & Bacon, Acta Mater. in the press]
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Conclusions
Dislocation Dynamics in Metals at Atomic-scale:

Interactions between Dislocations and Obstacles with Dislocation Character

*  need for predictive computer modelling

- atomic scale simulation can provide unique information on mechanisms

qualitative and quantitative

wide variety of nano-scale obstacles

can validate continuum models

increasing understanding of reactions, outcomes, obstacle strength

- future challenges

more realistic interatomic potentials, e.g. Fe, alloys

multiple dislocation effects, e.g. channelling

grain and interphase boundaries

strain rate effects

local rules and activation parameters for continuum-based dislocation dynamics
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