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Abstract

The self-force and effective mass of a moving dislocation in a generally accelerating motion are explicitly obtained on the

basis of a surface-independent dynamic J-integral. Logarithmic singularities due to non-zero acceleration result in

divergent integrals in the dynamic J-integral, which are treated by smearing out the dislocation core (ramp-core) and by

regularizing in the sense of distributions, both coinciding in the leading terms.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Macroscopic dynamic plastic deformation is a consequence of the motion of dislocations at the microscopic
level, and to understand the relation of the physical processes at different scales, macro and micro, the
dislocation dynamics with inertial effects needs to be investigated. The determination of the self-force and the
effective mass of a generally accelerating dislocation is a fundamental problem in dynamic plasticity. When a
defect is moving with respect to the material, the associated ‘‘force’’ on the defect is a configurational force
(when the stress field is solely created by the existence of the defect itself, the configurational force on the
defect is called self-force), which, in the static case, is Eshelby’s configurational force on an elastic singularity
given by a path-independent integral (Eshelby, 1951), later called J-integral (Rice, 1968). The path
independence of the J-integral is due to the conservation laws derived from Noether’s theory (Noether, 1918)
for elastostatics (Günther, 1962). Eshelby (1951, 1970, 1975) showed that the path-independent integral is
equal to minus the change of the total energy of the system under an infinitesimal translation of the
singularity, and defined it as the force on the singularity. More recently, Eshelby’s theory has been developed
e front matter r 2007 Elsevier Ltd. All rights reserved.
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into an active branch of engineering science as the configurational mechanics of materials (see Maugin, 1993;
Kienzler and Herrmann, 2000; Gurtin, 2000; Kienzler and Maugin, 2001).

In the dynamic case, from the dynamic energy momentum tensor and the conservation laws in
elastodynamics, Eshelby (1970) derived a surface-independent expression for the force on a moving crack tip.
Rogula (1977), Maugin and Trimarco (1992), Dascalu and Maugin (1993), and Maugin (1993, 1994) derived
the configurational force on a moving inhomogeneity and moving defect in the linear and nonlinear elasticity
framework. In this paper, starting from the same surface-independent dynamic J-integral as in the above
references for the force on a moving inhomogeneity, we give a brief summary of the force on moving defects,
and focus on those aspects relevant to our calculation. On the basis of a limiting process using Friedrichs’
mollifier (Friedrichs, 1953; Schechter, 1977; Yosida, 1980), the dynamic J-integral can be extended to the cases
where the Lagrangian and the fields are discontinuous and non-singular. As usually in mathematical physics,
we construct a diminishingly infinitesimal neighborhood around the defect and define the force on a moving
defect by the limit of the forces on the diminishingly infinitesimal neighborhood (considered as an
inhomogeneity), as it shrinks upon the defect (a point, a line, or a surface singularity).

In the calculation of the self-force and effective mass for a generally accelerating dislocation, an essential
step is to have obtained the near-field solutions of an accelerating dislocation. To this effect we prove
important theorems of asymptotic analysis (Section 3) and obtain the complete evaluation of all the near fields
of a generally accelerating screw dislocation.

Eshelby (1970) made the first passage (later Freund, 1990; Maugin, 1993, 1994) from the Lagrangian
to the Hamiltonian, and noted that while this is possible for a moving crack, in the case of an accelerating
dislocation there is divergence due to the logarithmic singularity associated with the acceleration, a fact
known to Eshelby (1953), and he concluded that ‘‘an atomic treatment is really necessary’’ (Eshelby, 1970,
p. 109) in order to treat this singular defect. In Section 3, for a generally accelerating (screw) dislocation by
using the explicit near-field solutions we show that the energy release rate (as defined by Atkinson and
Eshelby, 1968; Freund, 1972) is logarithmically divergent, and hence not contour-independent. In contrast, the
energy release rate is proved to be contour-independent as the contour shrinks to zero, for a moving
crack in general motion (Eshelby, 1970; Bui, 1977; Atluri and Nishioka, 1983; Atluri, 1986; Freund, 1990;
Maugin, 1993) and for dislocations moving with a constant velocity jumping from rest (Clifton and
Markenscoff, 1981).

The presence of the logarithmic singularity associated with acceleration of the moving dislocation (Eshelby,
1953; Callias and Markenscoff, 1988; Ni and Markenscoff, 2003) is the counterpart of the logarithmic
singularity due to the curvature of a dislocation loop (Gavazza and Barnett, 1976), the former resulting from a
second order derivative with respect to time and the latter with respect to a space variable. In the case of an
arbitrarily expanding dislocation loop, Markenscoff and Ni (1990) showed that the logarithmic singularity
depends on the current value of the acceleration of the tangent to the loop, the rotation of the tangent, and the
current radius of the osculating circle to the loop. In steady-state motion of dislocations, there is no self-force
(Clifton and Markenscoff, 1981), and the energy release rate is zero, since as much the energy flux as is emitted
from the core of dislocation is received from the previously radiated energy during the motion of the
dislocation from time t!�1. Those two energy fluxes are not balanced in accelerating motion, which
Eshelby described as ‘‘the dislocation is haunted by its past’’ (Eshelby, 1951, p. 111). For a constant
acceleration motion of a screw dislocation, Eshelby (1953) gave an expression for the self-force and the
effective mass of a moving Peierls dislocation containing a logarithmic singularity associated with the
acceleration. Here the objective is to obtain the expression for the self-force and the effective mass for a
generally accelerating motion.

In the surface-independent dynamic J-integral, the volume integral is in general an improper integral. For
moving cracks, the volume integral converges in the sense of a Cauchy principal value (CPV), which has been
used in fracture mechanics and in calculating the energy of elastic defects (Dascalu and Maugin, 1994). For an
accelerating dislocation, the improper volume integral in the dynamic J-integral does not converge in the sense
of CPV, and diverges to order ln �. Two ways are proposed and developed here to treat this divergence:
(1)
Pl

dis
Smearing the singularity (ramp-core) as in Eshelby (1977), by using a delta sequence to approximate the
delta function in the Volterra model. Various smearing techniques for the dislocation core are classical in
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the literature, e.g., Peierls–Nabarro model (see e.g., Hirth and Lothe, 1968), and Eshelby (1951), Al’shitz et
al. (1971), Eshelby (1977), Weertman and Weertman (1980), and, recently, Markenscoff and Ni (2001a,b),
and Lubarda and Markenscoff (2006, 2007).
(2)
 Regularizing the involved divergent integrals based on the theory of distributions (other than CPV), e.g.,
Gel’fand and Shilov (1964), and Kanwal (1998).
The self-force is evaluated by both methods which yield the same result to the leading order. It is obtained as a
function of the current value of the acceleration, velocity, history of the motion, and a constant cut-off radius
of the core. The cut-off core radius that is undetermined here will have to be determined by matching this self-
force to the one from a lattice scale model (e.g., Kresse and Truskinovsky, 2003).

Several versions of the effective mass of a moving dislocation exist in the literature, which are based on
solutions of uniform motion (Sakamoto, 1991; Hirth et al., 1998). Eshelby (1953) derived the logarithmic
singularity of the self-stress associated with the acceleration, and defined the effective mass as the coefficient of
the acceleration in this self-force, which exhibits a negative 3

2
exponent of ð1� v2=c22Þ in the leading term. In

this paper, we define the effective mass me analogously to Newton’s law: the inertial part of the self-force to be
the time derivative of the linear momentum mev. By inertial part of the self-force we mean the part of the self-
force depending on the acceleration. This definition results in a negative 1

2
power of ð1� v2=c22Þ in the leading

term of the effective mass. For a screw dislocation moving in a generally accelerating motion, the self-force
and the effective mass are explicitly evaluated based on a smearing (ramp-core) method in Section 4, and
based on the theory of distributions in Section 5. Because of the length of the presentation, the evaluation of
the self-force and effective mass for a generally accelerating edge dislocation will be presented in part II (in
preparation).
2. The configurational force on a moving defect

2.1. The configurational force on a moving inhomogeneity

Eshelby (1970) derived the path-independent integral expression for the force on a moving crack tip

F1 ¼

Z
V

qP1a

qxa
dV ¼

Z
S

P1j dSj þ
d

dt

Z
V

P10 dV , (2.1)

where repeated indices are summed for j ¼ 1; 2; 3 and a ¼ 0; 1; 2; 3, xj for j ¼ 1; 2; 3, are spatial independent
variables, x0 ¼ t is the time variable, Pab are 4� 4 dynamic energy momentum tensor for a; b ¼ 0; 1; 2; 3, with

Pl0 ¼ r _uiui;l (2.2)

is the pseudo-momentum vector, and

Plj ¼ ðW � TÞdlj � ui;lsij (2.3)

is the spatial components of the energy momentum tensor for l; j ¼ 1; 2; 3, where r is the mass density, ui are
the displacement components, _ui and ui;l are the time and space derivatives, respectively, sij are the stress
components, and W ¼ 1

2
sjk uj;k and T ¼ 1

2
_ui _ui are the elastic potential energy density and kinetic energy

density, respectively.
Rogula (1977) showed that the force on a moving inhomogeneity is given by

Fl ¼ �

Z
V

qL

qxl

� �
exp

dV , (2.4)

where l ¼ 1; 2; 3 is fixed, L ¼ Lðxa; ui; ui;aÞ is the Lagrangian density, the explicit partial differentiation
with respect to xl means the partial derivative with respect to xl provided that _ui, ui;j, and xb, bal,
are fixed.

Note that the explicit partial derivative of the Lagrangian density is in fact corresponding to the translation
of the coordinate in Neother’s theorem (Noether, 1918; Gel’fand and Fomin, 1963; Fletcher, 1976) and related
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to the energy–momentum tensor (Eshelby, 1970), i.e.,

�
qL

qxl

� �
exp

¼
qPlb

qxb
¼

q
qt
½r _uiui;l � þ

q
qxj

½ðW � TÞdlj � ui;lsij �. (2.5)

Then, the force is written as

Fl ¼

Z
V

qPlb

qxb
dV . (2.6)

From the last equation and Gauss divergence theorem, it follows the dynamic J-integral for the
configurational force on a moving inhomogeneity

Fl ¼

Z
V

q
qt
½r _uiui;l �dV þ

Z
S

½ðW � TÞdlj � ui;lsij �dSj , (2.7)

where V is a volume containing the inhomogeneity, S ¼ qV , and dSj ¼ njdS with nj the outer normal of
S. Maugin and Trimarco (1992), Maugin (1993, 1994), and Dascalu and Maugin (1993) gave the forces on
moving inhomogeneities and singularities both in differential form (force density) and integral form in the
nonlinear elasticity framework.

The dynamic J-integral is surface-independent, which means that for any two volumes V1 and V 2 such that
V2 � V 1, both containing the same elastic inhomogeneity,Z

V2

q
qt
½r _uiui;l �dV þ

Z
qV2

½ðW � TÞdlj � ui;lsij�dSj

¼

Z
V1

q
qt
½r _uiui;l �dV þ

Z
qV1

½ðW � TÞdlj � ui;lsij �dSj. ð2:8Þ

That is evident by using the conservation laws (Noether, 1918; Gel’fand and Fomin, 1963; Fletcher, 1976)

qPlb

qxb
¼

q
qt
½r _uiui;l � þ

q
qxj

½ðW � TÞdlj � ui;lsij� ¼ 0, (2.9)

and Gauss divergence theorem on the homogeneous region V 2nV 1.
So far the field variables and the Lagrangian are assumed to be sufficiently smooth, and thus continuous

over the boundary of the inhomogeneity. However, in general, the elastic field may not be continuous over the
boundary of the inhomogeneity. When the field variables are discontinuous over the boundary but not
singular, we may use a convolution with Friedrichs’ mollifier (Friedrichs, 1953; Schechter, 1977; Yosida, 1980)
to smooth the discontinuous field to an infinitely differentiable field. Namely, e.g., the infinitely differentiable
displacement field is constructed as

ðuiÞa ¼ ðuiÞ%ya ¼

Z
O

uiðx� yÞyaðyÞdy3 ¼

Z
O

uiðyÞyaðx� yÞdy3, (2.10)

where a40, % is the symbol of convolution, for simplicity, here x; y denote three-dimensional vectors, and
Friedrichs’ mollifier ya is defined by (Friedrichs, 1953; Schechter, 1977; Yosida, 1980)

yaðxÞ ¼ h�1a expððjxj2=a2 � 1Þ�1Þ for jxj ¼

ffiffiffiffiffiffiffiffi
Sx2

i

q
oa,

yaðxÞ ¼ 0 for jxj ¼

ffiffiffiffiffiffiffiffi
Sx2

i

q
Xa, ð2:11Þ

with ha a normalization constant such thatZ
R3

yaðxÞdx3 ¼ 1. (2.12)

Note that ya is a three-dimensional d-sequence (see e.g., Kanwal, 1998). For such regularized fields, the
configurational force is well-defined and expressed by the dynamic J-integral. In view of the facts that all the
original field variables are non-singular and the volumes involved are bounded (the unbounded volume is
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considered as a limiting case), then the Lebesque convergence theorem1 (see e.g., EDM, 221c, p. 841, 1993)
applies when taking limit as a! 0. Hence, by a limiting process, it follows that, for the discontinuous case, the
dynamic configurational force on the moving inhomogeneity is expressed by the dynamic J-integral (2.7) as well.

2.2. The configurational force on a moving defect

An elastic defect may be a point singularity, a line, or surface singularity. At the point or line singularity, the
stress or displacement may become infinite; on the surface singularity, the stress or displacement becomes infinite,
or, discontinuous (see Eshelby, 1951). As usually in mathematical physics, we construct a diminishingly
infinitesimal, symmetric or asymmetric, neighborhood N� of the singularity, such as a small circle, a narrow
cylinder, or other infinitesimal body. The region of the small neighborhood N� of the singularity is then
considered as a non-singular inhomogeneity. On the boundary of N�, there exists a jump discontinuity, the
dynamic configurational force on such inhomogeneity is well-defined as discussed earlier, and given by

F �
l ¼

Z
VnN�

q
qt
½r _uiui;l �dV þ

Z
S

½ðW � TÞdlj � ui;lsij�dSj, (2.13)

where S ¼ qV .
The configurational force on the singularity is then defined as the limit of the force F �

l when N� shrinks upon
the singularity, namely,

Fl ¼ lim
�!0

Z
VnN�

� �
q
qt
½r _uiui;l �dV þ

Z
S

½ðW � TÞdlj � ui;lsij �dSj

� �
. (2.14)

Mathematically, the limit

lim
�!0

Z
VnN�

q
qt
½r _uiui;l �dV ¼

Z
V

q
qt
½r _uiui;l �dV , (2.15)

is exactly the definition of the improper volume integral.
Therefore, the configurational force on a moving defect is given by the surface-independent dynamic

J-integral

Fl ¼

Z
V

q
qt
½r _uiui;l �dV þ

Z
S

½ðW � TÞdlj � ui;lsij �dSj , (2.16)

where again the volume integral is in general an improper integral.
The improper volume integral (2.15) may exist in following senses:
(1)
1I

jf nðx

Ple

dis
As a usual improper integral: If limit (2.15) exists for arbitrary small neighborhood N� of the singularity x0

as � approaches to zero, where � is the maximum distance between x and x0 for all x in the neighborhood,
then the limit approaches to a convergent improper integral in the usual sense.
(2)
 As an integral of the Cauchy type: If limit (2.15) does not exist for arbitrary neighborhood N�, and,
however, exists when

N� ¼ B� � fxkx� x0jp�g, (2.17)

where the norm j � j in Rn is defined by jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1x
2
i

q
, for nX2, then the limit approaches to an integral of

the Cauchy type,

lim
�!0

Z
VnB�

q
qt
½r _uiui;l �dV ¼

Z
�

V

q
qt
½r _uiui;l �dV . (2.18)
f limn!1 f nðxÞ exists almost everywhere on E, and there exists a fðxÞ such that jf ðxÞjpfðxÞ and
R
e
fo1 (for example, if mðEÞo1 and

ÞjoM) then

lim
n!1

Z
e

f n ¼

Z
e

lim
n!1

f n

	 

.
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Pl

dis
pplying the conservation laws (2.9) in the homogeneous region VnN�, we have
A Z
VnN�

q
qt
½r _uiui;l �dV þ

Z
S

½ðW � TÞdlj � ui;lsij�dSj ¼

Z
S�

½ðW � TÞdlj � ui;lsij �dSj , (2.19)

where S� ¼ qN�. Therefore

Fl ¼

Z
V

q
qt
½r _uiui;l �dV þ

Z
S

½ðW � TÞdlj � ui;lsij �dSj

¼ lim
�!0

Z
S�

½ðW � TÞdlj � ui;lsij �dSj. ð2:20Þ

When N� is an arbitrary �-neighborhood and limit in Eq. (2.20) exists, the volume integral converges
as usual improper integral; when N� is a symmetric �-ball, the volume integral converges as an integral
of Cauchy type. Otherwise, when the limit in Eq. (2.20) does not exist, then the configurational force is
divergent.

2.3. The effective mass of a moving defect

Several versions of the effective mass of a moving dislocation exist in the literature, which are based on
solutions of uniform motion (Sakamoto, 1991; Hirth et al., 1998). Eshelby (1953) derived the logarithmic
singularity of the self-stress associated with the acceleration, and defined the effective mass as the coefficient of
the acceleration in this self-force, which exhibits a negative 3

2
exponent of ð1� v2=c22Þ in the leading term. In

this paper, we define the effective mass me analogously to Newton’s law: the inertial part of the self-force to be
the time derivative of the linear momentum mev. By inertial part of the self-force we mean the part of the self-
force depending on the acceleration. This definition results in a negative 1

2
power of ð1� v2=c22Þ in the leading

term of the effective mass.
Suppose that the self-force may be decomposed into the non-trivial inertial part and non-inertial part, then

the effective mass me is defined according to

F in ¼
d

dt
ðmevÞ, (2.21)

and given by

me �
1

v

Z t

0

F in dt, (2.22)

for t40, and where v ¼ _lðtÞ, and F in is the inertial part of the self-force F .

2.4. Example: steadily moving screw dislocation

As an illustration, consider a simple example of a screw dislocation parallel to the z-direction moving in a
steady motion along the x-direction relative to an whole-space isotropic elastic material. It is well-known that
the self-force on a dislocation moving in a steady motion is zero (e.g., Clifton and Markenscoff, 1981).
According to Frank (1949), the non-zero component of the displacement field is

u3 ¼ �
b

2p
tan�1

x� vt

gy

� �
, (2.23)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c22

q
with c2 ¼

ffiffiffiffiffiffiffiffi
m=r

p
as the speed of the shear stress wave. And the field solutions are

u3;1 ¼ �
b

2p
gy

ðx� vtÞ2 þ g2 y2
; u3;2 ¼

b

2p
gðx� vtÞ

ðx� vtÞ2 þ g2 y2
, (2.24)

_u3 ¼
b

2p
gyv

ðx� vtÞ2 þ g2 y2
. (2.25)
ease cite this article as: Ni, L., Markenscoff, X., The self-force and effective mass of a generally accelerating dislocation I: Screw
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Choose the integral volume V to be a cylinder of a radius r around the dislocation line, and with a unit
height in the z-direction. At time t, the dislocation line is located at the position x ¼ vt; y ¼ z ¼ 0. It suffices to
calculate the force F1, the discussion for F 2 is analogous. From Eq. (2.20), F1 is given by

F1 ¼

Z
V

q
qt
½r _uiui;1�dV þ

Z
S

½ðW � TÞd1j � ui;1sij�dSj

¼ lim
�!0

Z
S�

½ðW � TÞd1j � ui;1sij �dSj , ð2:26Þ

where S� � qV �, and V � is a cylinder similar to V with an infinitesimal radius �. Then the surface integral on S�
is written asZ

S�

½ðW � TÞd1j � u3;1s3j�dSj ¼

Z
S�

½ðW � TÞ � u3;1s31�dS1 �

Z
S�

u3;1s32 dS2, (2.27)

where dS1 ¼ � cos ydy, dS2 ¼ � sin y dy, y ¼ tan�1ðy=ðx� vtÞÞ and 0pyo2p.
From Eqs. (2.24)–(2.25), we have

W ¼
m
2
½u2

3;1 þ u2
3;2� ¼

mb2

8p2�2
g2

cos2 yþ g2 sin2 y
, (2.28)

T ¼
r
2
_u2
3 ¼

rb2

8p2�2
g2 v2sin2 y

½cos2 yþ g2 sin2 y�2
, (2.29)

u3;1s31 ¼
mb2

4p2�2
g2 sin2 y

½cos2 yþ g2 sin2 y�2
(2.30)

and

u3;1s32 ¼
mb2

4p2�2
g sin y cos y

½cos2 yþ g2 sin2 y�2
. (2.31)

Substituting Eqs. (2.28)–(2.31) into Eq. (2.27), by the symmetry in y, we deriveZ
S�

½ðW � TÞd1j � u3;1s3j�dSj ¼ 0, (2.32)

which, according to Eq. (2.26), implies that the self-force, so that the effective mass as well, of a steadily
moving screw dislocation is zero. As discussed in Section 2.2, Eq. (2.32) also implies that the volume integral in
Eq. (2.26) converges in the sense of CPV. Furthermore, it is clear that the validity of Eq. (2.32) is independent
of the choice of the radius � of S�. Hence in Eq. (2.26), if we choose S to be a circle, then the volume integral
converges and equal to zero in the sense of CPV, which can also be verified by independent evaluation.

3. The self-force on a generally accelerating screw dislocation

Consider that a Volterra screw dislocation is situated on the z-axis at rest for tp0 in an infinite,
homogeneous, isotropic elastic solid. For t40, it moves according to x ¼ lðtÞ in the (positive) x-direction,
where lðtÞ is an arbitrarily given smooth function such that

0o
dlðtÞ

dt
oc2 ¼

ffiffiffiffiffiffiffiffi
m=r

p
, (3.1)

and c2 is the shear wave speed, so that the motion is subsonic and advances in the positive x-direction.

3.1. Definition of the self-force on a moving screw dislocation

Dislocations are defects in the elastic material, and their motion with respect to the material changes the
configuration. From Section 2, the configurational force on an elastic defect is defined as the limit of the force
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on the inhomogeneity over the diminishingly infinitesimal neighborhood around the defect when it is shrinking
upon the defect. Let us choose V as a cylindrical volume around the screw dislocation line at ðx; yÞ ¼ ðlðtÞ; 0Þ at
time t, and with a unit length in the z-direction. The infinitesimal volume V � around the dislocation line is
chosen to be a cylinder with a radius � for 0o�51. The force on the moving dislocation is defined as the limit
of the force on the inhomogeneity V � when V � is shrinking upon the dislocation. Specifically, the force along
the x-direction is written as

F1 ¼ lim
�!0

Z
VnV �

� �
q
qt
½r _uiui;1�dV þ

Z
S

½ðW � TÞd1j � ui;1sij �dSj

� �
¼ lim

�!0
I � � lim

�!0

Z
S�

½ðW � TÞd1j � s3ju3;1�dSj, ð3:2Þ

where S� ¼ qV �.
The surface integral I � is given by

I � ¼

Z
S�

½ðW � TÞd1j � s3ju3;1�dSj

¼

Z 2p

0

1

2
½mu2

3;1 þ mu2
3;2 � r _u2

3� cos y�dy�
Z 2p

0

mu3;1ðu3;1 cos yþ u3;2 sin yÞ �dy

¼

Z 2p

0

1

2
½mu2

3;2 � mu2
3;1 � r _u2

3� cos y �dy�
Z 2p

0

mu3;1u3;2 sin y �dy. ð3:3Þ

It is seen that to evaluate the limit of I � as �! 0, we need to know the near-field behavior of u3;1, u3;2, and _u3.

3.2. The evaluation of the near fields

We will perform the classical coordinate perturbation and make all length involving variables and
parameters dimensionless by using a length scale L0 � b. The dimensionless quantities are defined
according to

x̂ ¼
x

L0
; ŷ ¼

y

L0
; û3 ¼

u3

L0
; l̂ðtÞ ¼

lðtÞ

L0
; b̂ ¼

b

L0
,

ĉ2 ¼
c2

L0
; r̂ ¼ rL3

0; m̂ ¼ m3L0; F̂ ¼
F

L0
; ŝ3j ¼ s3jL0,

but, in the sequel, we will omit the hat symbol for the sake of simplicity wherever the above quantities
appear. Other dimensionless length quantities are also indicated as such in the pertinent sections. We may note
here, as pointed by G.I. Barenblatt, that the physical problem for constant acceleration dislocation
motion has a physical characteristic length scale c22=_v, where _v is the acceleration of the dislocation. This is in
contrast to the steady-state constant velocity motion of dislocation, where no such physical characteristic
length scale exists.

The motion of a non-uniformly moving screw dislocation starting from rest satisfies the Navier equation of
elastodynamics for ya0,

q2u3ðx; y; tÞ

qx2
þ

q2u3ðx; y; tÞ

qy2
¼

1

c22

q2u3ðx; y; tÞ

qt2
, (3.4)

and the discontinuity condition at y ¼ 0,

u3ðx; 0
þ; tÞ � u3ðx; 0

�; tÞ ¼ �
b

2
½Hðx� lðtÞÞ �HðlðtÞ � xÞ�, (3.5)

where Hð�Þ is the Heaviside step function.
Taking into account of the oddness of the displacement u3ðx; y; tÞ in y and the symmetric property of the

Navier equation, the problem can then be reduced to a mixed initial-boundary-value problem in a half-space
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with the Navier equation (3.4) for y40, and initial conditions

u3ðx; y; 0Þ ¼ us
3ðx; yÞ ¼ �

b

2p
tan�1ðx=yÞ (3.6)

and

q
qt
½u3ðx; y; 0Þ� ¼ 0, (3.7)

where us
3ðx; yÞ is the solution of a static screw dislocation at the z-axis in the infinite whole space, and the

boundary condition on y ¼ 0

u3ðx; 0; tÞ ¼ �
b

2
Hðx� lðtÞÞ. (3.8)

The near-field solution is the asymptotic expansion in the dimensionless perturbation parameter � of the
solution at the field point which is in a �-neighborhood of the dislocation, i.e.,

ðx� x0Þ
2
þ ðy� y0Þ

2
¼ �2 (3.9)

or,

x ¼ x0 þ � cos y; y ¼ y0 þ � sin y, (3.10)

for 0pyo2p and �40, where ðx; yÞ is the field point and ðx0; y0Þ is the position of the dislocation.
The leading terms of the near-field solutions are the same as the corresponding solutions of the steady-state

motion with the instantaneous velocity as the uniform velocity (Clifton and Markenscoff, 1981; Markenscoff
and Ni, 1993). The leading terms denoted by u0

3;i; i ¼ 1; 2; t, with u0
3;t � _u0

3, are written as

u0
3;1 ¼ �

b

2p
gy

ðx� lðtÞÞ2 þ g2 y2
¼ �

b

2p
g sin y

cos2 yþ g2 sin2 y

1

�
, (3.11)

u0
3;2 ¼

b

2p
gðx� lðtÞÞ

ðx� lðtÞÞ2 þ g2 y2
¼

b

2p
g cos y

cos2 yþ g2 sin2 y

1

�
, (3.12)

u0
3;t ¼

b

2p
vðtÞgy

ðx� lðtÞÞ2 þ g2 y2
¼

b

2p
vðtÞg sin y

cos2 yþ g2 sin2 y

1

�
, (3.13)

where vðtÞ � _lðtÞ and g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2ðtÞ=c22

q
.

For the near-field expansion of u3;2, based on a closed form solution of u3;2 by Markenscoff (1980), Callias
and Markenscoff (1988) showed that

u3;2 	 �
b

2p
g cos y

cos2 yþ g2 sin2 y

1

�
þ f 32 ln �þ g32 þ h:o:t:; (3.14)

the logarithmic term in � is given explicitly by

f 32 ¼ �
b

4p
_vðtÞ

c22g
3
. (3.15)

In general, the near-field expansions for u3;i for i ¼ 1; 2; t are written as

u3;1 ¼ u0
3;1 þ f 31ðy; tÞ ln �þ g31ðy; tÞ þ h:o:t:; (3.16)

u3;2 ¼ u0
3;2 þ f 32ðy; tÞ ln �þ g32ðy; tÞ þ h:o:t:; (3.17)

u3;t ¼ u0
3;t þ f 3tðy; tÞ ln �þ g3tðy; tÞ þ h:o:t:; (3.18)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� lðtÞÞ2 þ y2

q
40, y ¼ tan�1ðy=ðx� lðtÞÞÞ. We call f 3j and g3j, j ¼ 1; 2; t, in the above near-field

expansions the near-field coefficients. Then, four of those nine coefficients, i.e., u0
3;i; for i ¼ 1; 2; t, and f 23 are
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known as shown above, the other five coefficients are unknown. In this section we shall give the explicit
solutions of all those five unknowns.

We prove a lemma regarding the global property of u3;1 and u3;t, which will be useful in proving the
forthcoming theorems off asymptotic analysis.

Lemma 1. For all x, u3;1ðx; y; tÞ and u3;tðx; y; tÞ can be expressed as

u3;1ðx; y; tÞ ¼ �
b

2p
gy

ðx� lðtÞÞ2 þ gy2
þ G1ðx; y; tÞ, (3.19)

u3;tðx; y; tÞ ¼
_lðtÞgy

ðx� lðtÞÞ2 þ gy2
þ G2ðx; y; tÞ, (3.20)

where Giðx; y; tÞ; i ¼ 1; 2; are continuous odd functions in y, and satisfy

lim
y!0

Giðx; y; tÞ ¼ 0, (3.21)

for every x.

Proof. It suffices to prove the lemma for u3;1, the proof for u3;t being analogous. From Eq. (3.5), we have the
jump condition for u3;1,

u3;1ðx; 0
þ; tÞ � u3;1ðx; 0

�; tÞ ¼ �bdðx� lðtÞÞ, (3.22)

where dð�Þ is the Dirac delta function. Note that the leading term (3.11) is in fact a delta series, i.e.,

lim
y!0

b

2p
gy

ðx� lðtÞÞ2 þ g2 y2
¼

b

2
dðx� lðtÞÞ. (3.23)

If we define

2G1ðx; y; tÞ � u3;1ðx; y; tÞ � u3;1ðx;�y; tÞ þ
b

p
gy

ðx� lðtÞÞ2 þ g2 y2
, (3.24)

then in view of Eqs. (3.22) and (3.23), it follows that for each x 2 ð�1;1Þ,

lim
y!0

G1ðx; y; tÞ ¼ 0. (3.25)

On the other hand, from Eq. (3.24) and the oddness of u3;1 in y, it follows that G1ðx; y; tÞ is an odd function
in y and continuous in y for ya0 and all x. Hence, Eq. (3.25) implies that G1ðx; y; tÞ is continuous in y at y ¼ 0
as well, which completes the proof. &

We have the following two important theorems for the near-field coefficients, which are central in evaluating
the self-force and effective mass.

Theorem 1. Let the near-field coefficients f 3jðy; tÞ, j ¼ 1; 2; t, be defined in the near-field expansions (3.16)–(3.18).
Then the partial differentiations of f 3j with respect to y, f 03jðy; tÞ, satisfy the homogeneous system of linear

equations

cos y sin y 0

v sin y 0 sin y

�m sin y m cos y �rv sin y

264
375 f 031

f 032

f 03t

0B@
1CA ¼ 0. (3.26)

So that

f 031 ¼ f 032 ¼ f 03t ¼ 0. (3.27)

Furthermore,

f 31ðy; tÞ ¼ f 3tðy; tÞ ¼ 0 (3.28)
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and

f 32ðy; tÞ ¼ f 32ðtÞ (3.29)

is independent of y.

Theorem 2. Let the near-field coefficients g3jðy; tÞ, j ¼ 1; 2; t, be defined in the near-field expansions (3.16)–(3.18).
Then the partial differentiations of g3j with respect to y, g03jðy; tÞ, satisfy the inhomogeneous system of linear

equations

cos y sin y 0

v sin y 0 sin y

�m sin y m cos y �rv sin y

264
375 g031

g032

g03t

0B@
1CA ¼ f 32 cos y

�U31

rU3t � mf 32 sin y

0B@
1CA, (3.30)

where

U3j ¼ �
q
qt
½u0

3;j�

����
exp

, (3.31)

for j ¼ 1; t, and the explicit partial differentiation with respect to t means the partial differentiation with respect

to t when � and y are assumed to be fixed.
Furthermore, when f 32 is given by

f 32 ¼ �
b

4p
_vðtÞ

c22g
3
, (3.32)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c22

q
, then

g032 ¼
b_v cos y sin y

2pc22g
ð2� 3g2Þ cos2 yþ g2 ðg2 � 2Þsin2 y

ðcos2 yþ g2 sin2 yÞ3

� �
�

b_vv2 cos y sin y

4pc42g
3ðcos2 yþ g2 sin2 yÞ

, ð3:33Þ

g03t ¼
bv_v

4pc22g
3

cos2 y� g2 sin2 y

ðcos2 yþ g2sin2 yÞ2
þ

2g2 ð3g2 sin2 y� cos2 yÞ

ðcos2 yþ g2sin2 yÞ3

� �
, (3.34)

g031 ¼ f 32 � g032 tan y. (3.35)

Proof of Theorem 1. It suffices to consider y40. For y40, u3;i for i ¼ 1; 2; t, are continuously differentiable.
From the relation

qu3;1

qy
¼

qu3;2

qx
, (3.36)

and the expansions (3.16) and (3.17), it follows that

qu0
3;1

qy
þ f 031

cos y ln �
�
þ f 31

sin y
�
þ g031

cos y
�

¼
qu0

3;2

qx
� f 032

sin y ln �
�
þ f 32

cos y
�
� g032

sin y
�
þ h:o:t:; ð3:37Þ

where the following relations are used:

q�
qx
¼ cos y;

q�
qy
¼ sin y;

qy
qx
¼
� sin y
�

;
qy
qy
¼

cos y
�

.

Then in Eq. (3.37), using the relation qu0
3;1=qy ¼ qu0

3;2=qx and collecting the like terms of ðln �Þ=� which are
the most singular terms, we have

f 031 cos yþ f 032 sin y ¼ 0. (3.38)
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Similarly, from

qu3;1

qt
¼

q _u3

qx
, (3.39)

and the expansions (3.16) and (3.18), it follows that

qu0
3;1

qt
þ f 031

vðtÞ sin y ln �
�

� f 31

vðtÞ cos y
�

þ g031
vðtÞ sin y

�

¼
qu0

3;t

qx
� f 03t

sin y ln �
�
þ f 3t

cos y
�
� g03t

sin y
�
þ h:o:t:; ð3:40Þ

where the following relations are used:

qy
qt
¼

vðtÞ sin y
�

;
q�
qt
¼
�vðtÞ cos y

�
.

From Eqs. (3.11) and (3.13), we have

qu0
3;1

qt
�

qu0
3;t

qx
¼

qu0
3;1

qt

 !
exp

, (3.41)

here the subscript exp represents the explicit derivative which is defined as the partial derivative with respect to

t assuming that � and y, or, x1 � lðtÞ and y, are fixed. Noting that in the expressions of u0
3;i, g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2ðtÞ=c22

q
depends on t as well, hence the right-hand side of Eq. (3.41) does not necessarily vanish. And it is easy to
check that

qu0
3;1

qt

 !
exp


Oð1=�Þ. (3.42)

Then collecting the like terms of ðln �Þ=� in (3.40), we have

vðtÞf 031 sin yþ f 03t sin y ¼ 0. (3.43)

To establish the third equation for f 031; f
0
32; f

0
3t, we use the equation of motion (3.4)

m
qu3;1

qx
þ m

qu3;2

qy
¼ r

qu3;t

qt
, (3.44)

together with the expansions (3.16)–(3.18). Then, we have

m
qu0

3;1

qx
þ m �f 031

sin y ln �
�
þ f 31

cos y
�
� g031

sin y
�

� �
þ m

qu0
3;2

qy
þ m f 032

cos y ln �
�

þ f 32

sin y
�
þ g032

cos y
�

� �
¼ r

qu0
3;t

qt
þ r f 03t

vðtÞ sin y ln �
�

� f 3t

vðtÞ cos y
�

þ g03t

vðtÞ sin y
�

� �
þ h:o:t. ð3:45Þ

From Eqs. (3.11)–(3.13), we have

r
qu0

3;t

qt
� m

qu0
3;1

qx
þ

qu0
3;2

qy

" #
¼ r

qu0
3;t

qt

 !
exp

. (3.46)

It is easy to show that the term on the right-hand side is in the order of Oð1=�Þ. Hence collecting the like terms
of ðln �Þ=� in Eq. (3.45), we have the third equation

�mf 031 sin yþ mf 032 cos y� rvf 03t sin y ¼ 0. (3.47)
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Eqs. (3.38), (3.43), and (3.47) form a homogeneous system for the unknowns f 03j, j ¼ 1; 2; t,

cos y sin y 0

v sin y 0 sin y

�m sin y m cos y �rv sin y

264
375 f 031

f 032

f 03t

0B@
1CA ¼ 0. (3.48)

The determinant of the matrix of the coefficients in Eq. (3.48) is calculated to be

cos y sin y 0

v sin y 0 sin y

�m sin y m cos y �rv sin y

�������
������� ¼ ðrv2sin2 y� mÞ sin ya0, (3.49)

for yap; 0, since the motion is subsonic voc2 ¼
ffiffiffiffiffiffiffiffi
m=r

p
. Therefore, we conclude that

f 031 ¼ f 032 ¼ f 03t ¼ 0, (3.50)

for yap; 0. f 31, f 32 and f 3t are then independent of y for y40 and yo0, respectively.
By using Lemma 1 in the near field, we know that u3;1 and _u3, thus f 3;1 and f 3;t as well, are continuous across

y ¼ 0, and odd in y. Hence we have

f 31 ¼ f 3t ¼ 0. (3.51)

Since u3;2 and f 32 are even in y, Eq. (3.50) implies that

f 32ðy; tÞ ¼ f 32ðtÞ (3.52)

is independent of y, Theorem 1 is then proved. &

Proof of Theorem 2. In Eqs. (3.37), (3.40), and (3.45), noting that f 03j ¼ 0 and f 31 ¼ f 3t ¼ 0, then collecting the
like terms of 1=�, we obtain the inhomogeneous system of linear equations

cos y sin y 0

v sin y 0 sin y

�m sin y m cos y �rv sin y

264
375 g031

g032

g03t

0B@
1CA ¼ f 32 cos y

�U31

rU3t � mf 32 sin y

0B@
1CA, (3.53)

where

U3j ¼ �
q
qt
½u0

3;j�jexp, (3.54)

for j ¼ 1; t.
The matrix of coefficients of the system of linear equations in Eq. (3.53) is exactly the same as that of the

system (3.48), so that its determinant is given in Eq. (3.49) and equal to

ðrv2sin2 y� mÞ sin y ¼ �ðcos2 yþ g2 sin2 yÞ sin y. (3.55)

g032 and g03t are solved to be

g032 ¼
cos y

c22

vU31 �U3t þ v2f 32sin
2 y

cos2 yþ g2 sin2 y

� �
, (3.56)

g03t ¼
rvU3t sin

2 y� mU31 � mvf 32 sin y

m sin yðcos2 yþ g2 sin2 yÞ
. (3.57)

U31 and U3t are explicitly rewritten as

U31 ¼
bv_v

2pc22g
cos2 y� g2 sin2 y

ðcos2 yþ g2 sin2 yÞ2

� �
, (3.58)
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U3t ¼
b_v sin y
2pg

ð2g2 � 1Þcos2 yþ g2 sin2 y

ðcos2 yþ g2 sin2 yÞ2

� �
. (3.59)

Substitute those expressions into Eqs. (3.33) and (3.57), when f 32 is given by Eq. (3.32), we obtain that

g032 ¼
b_v cos y sin y

2pc22g
ð2� 3g2Þ cos2 yþ g2 ðg2 � 2Þsin2 y

ðcos2 yþ g2 sin2 yÞ3

� �
�

b_vv2 cos y sin y

4pc42g
3ðcos2 yþ g2 sin2 yÞ

, ð3:60Þ

g03t ¼
bv_v

4pc22g
3

cos2 y� g2 sin2 y

ðcos2 yþ g2 sin2 yÞ2
þ

2g2 ð3g2 sin2 y� cos2 yÞ

ðcos2 yþ g2 sin2 yÞ3

� �
. (3.61)

From the first equation in the system (3.53), it follows that

g031 ¼ f 32 � g032 tan y, (3.62)

which completes the proof of the theorem. &

The near-field coefficients g3jðy; tÞ can be obtained by integrating g03j with respect to y,

g3jðy; tÞ ¼
Z y

0

g03jðy; tÞdyþ g3jð0; tÞ. (3.63)

Again by employing Lemma 1 in the near field, g31ðy; tÞ and g3tðy; tÞ are odd and continuous in y. Hence,
g31ð0; tÞ ¼ g3tð0; tÞ ¼ 0. We obtain that

g31ðy; tÞ ¼ �
b_v

4pc22g
3

y�
1

g
tan�1ðg tanðyÞÞ

� �
�

b_v sin y cos y
8pc22g

3

2 cos2 yþ g2 ð3� 2g2Þ sin2 y

ðcos2 yþ g2 sin2 yÞ2

� �
. ð3:64Þ

g32ðy; tÞ ¼
b_v

2pc22g
½ð2� 3g2Þ cos2 y� g4sin2 y�

þ
b_v

8pc22g3
lnðcos2 yþ g2 sin2 yÞ þ g32ð0; tÞ, ð3:65Þ

g3tðy; tÞ ¼ �
bv_v

4pc22g
3

ðð1� 2g2Þ cos2 yþ 3g2 sin2 yÞ sin y cos y

ðcos2 yþ g2 sin2 yÞ2
�

2

g
tan�1ðg tanðyÞÞ

� �
, (3.66)

where the evaluation of g32ð0; tÞ will be given below.
g32ð0; tÞ is calculated by applying a theorem of asymptotic analysis (Callias and Markenscoff, 1988) to the

closed form solution u3;2 of an accelerating screw dislocation (Markenscoff, 1980). The theorem by Callias and
Markenscoff (1988) contains some errors. A corrected theorem is given below, the corrections are important
to the evaluation of g32ð0; tÞ.

Theorem 3. Let f ðs; yÞ be such that
(i)
Pl

dis
f 2 C1ð½0; p� � ½0;1ÞÞ; R

(ii)
 jqk

s f ðs; yÞjpykhkðyÞ, for all s; y, and k ¼ 0; 1; 2; . . ., where
w
0

hkð1=sÞdso1, for each w40.
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Then we have as �! 0þ,Z p

0

f ðs; �=sÞds


Z p

0

f ðs; 0Þds

þ
X1
m¼1

�m Lmðf Þ þQmðf ; pÞ þ
1

m!ðm� 1Þ!
qm�1

s qm
y f ð0; 0Þ

Xm�1
j¼1

1

j

( )

�
X1
m¼1

�m ln �

m!ðm� 1Þ!
qm�1

s qm
y f ð0; 0Þ

�
X1
m¼1

�m
Xm�2
j¼1

ðj � 1Þ!

m!ðm� 1Þ!

1

pj
qm�1�j

s qm
y f ðp; 0Þ

( )
þ

ln p

m!ðm� 1Þ!
qm�1

s qm
y f ðp; 0Þ, ð3:67Þ

where

Lmðf Þ ¼ �
1

ðm� 1Þ!

Z 1
0

ln z qz½z
mqm�1

x Rmþ1ð0; 1=zÞ�dz, (3.68)

Rmþ1ðx; yÞ is the remainder of f ðx; yÞ in the Taylor expansion about y ¼ 0 after m terms, i.e.,

Rmþ1ðx; yÞ ¼ f ðx; yÞ �
Xm

k¼0

1

k!
qk

yf ðx; 0Þyk (3.69)

and

Qmðf ; pÞ ¼ �
1

m!ðm� 1Þ!

Z p

0

ln sqm
s q

m
y f ðs; 0Þds. (3.70)

We apply the theorem to the following solution of the stress s32 for a non-uniformly moving screw
dislocation starting from rest given by Markenscoff (1980):

s32 ¼
bm
2p

Z 1
0

ðt� ZðxÞÞðx� xÞ2Hðt� ZðxÞ � r=cÞ

r4½ðt� ZðxÞÞ2 � r2=c2�1=2
dx

�
bm
2p

y2 q
qt

Z 1
0

ðt� ZðxÞÞ2Hðt� ZðxÞ � r=cÞ

r4½ðt� ZðxÞÞ2 � r2=c2�1=2
dxþ

bm
2p

x

x2 þ y2
, ð3:71Þ

where c � c2 ¼
ffiffiffiffiffiffiffiffi
m=r

p
, r2 ¼ ðx� xÞ2 þ y2, and ZðxÞ ¼ t is the inverse function of x ¼ lðtÞ.

The term g32ð0; tÞ will be calculated from the near-field expansion of the stress s32 at the positions ðx; yÞ ¼
ðlðtÞ þ �; 0Þ as �! 0. From the right-hand side of Eq. (3.71), letting y! 0, we obtain the expression for s32 at
ðx; 0Þ

bm
2p

Z x0

0

t� ZðxÞ

ðx� xÞ2½ðt� ZðxÞÞ2 � ðx� xÞ2=c2�1=2
dxþ

bm
2p

1

x
, (3.72)

where x ¼ x0 þ �, and x0 ¼ lðt0Þ is the root of equation

cðt� ZðxÞÞ ¼ jx� x0j. (3.73)

The physical meaning of x0 is the last position from which the wavelet of the moving screw dislocation can
reach the field point ðx; yÞ ¼ ðlðtÞ þ �; 0Þ at time t.

Apart from the static solution term, the expression in Eq. (3.72) is rewritten as

bm
2p

Z x0

0

scðsÞ þ �A0ðt; �Þ

ðsþ c�A0ðt; �ÞÞ
2
½s2ðc2

� 1=c2Þ þ 2�sA0ðt; �Þðc� 1=cÞ�
1
2

ds

�
bm
2p

Z x0

0

hðs; �; x; tÞds � I �, ð3:74Þ
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where s ¼ x0 � x ¼ lðt0Þ � lðtÞ,

cðs; x0Þ ¼
ZðxÞ � ZðxÞ

s
¼

ZðxÞ � Zðx0 � sÞ

s
(3.75)

and

A0ðt; �Þ ¼
ðt� t0Þ

�
¼

1

c� vðtÞ
þOð�Þ, (3.76)

with vðtÞ ¼ _lðtÞ.
It is noted that seeking the Oð1Þ term g32ð0; tÞ of the asymptotic expansion of the integral I � defined in

Eq. (3.74) as �! 0, either by taking the limit under the integral, or by the usual Taylor expansion
of the integrand, will lead to divergence. Therefore, the special asymptotic analysis described in
Theorem 3 is needed. However, it turns out that for the integral I �, the smoothness condition
required for the integrand in Theorem 3 is not satisfied over the whole interval of the integration ½0; x0�,
which is ½0;x0� ¼ ½0; lðtÞ� as �! 0. That must be decomposed into two subintervals ½0;o� and ½o; x0� for
0ooox0. So that over the subinterval ½o;x0�, the limit �! 0 can be taken under the integral, while over the
subinterval ½0;o�, the smoothness condition required in Theorem 3 is satisfied and the special asymptotic
analysis can apply. Based on Theorem 3, it is easy to verify that the evaluation of g32ð0; tÞ is invariant under
different choices of o.

After a lengthy calculation, g32ð0; tÞ is evaluated as

g32ð0; tÞ ¼
b

2p
c_vðtÞ

2ðc2 � v2ðtÞÞ3=2
1þ ln

cv

2ðc2 � v2Þ

� �� �(

þ
_v

2cðc� vÞ4
4c2ðc� 2vÞ þ v2ð2c� vÞ
� 


ln
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2
p

v

 !
þ

_vðc2 þ v2Þ

2vðc� vÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � v2
p þ

1

lðtÞ

þ

Z ZðoÞ

0

cðt� tÞlðtÞdt

ðlðtÞ � lðtÞÞ2½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�1=2
þ

Z t

ZðoÞ

lnðlðtÞ � lðtÞÞKðt; t; vðtÞÞdt

½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�5=2

þ
cðt� ZðoÞÞ

ðlðtÞ � oÞ½c2ðt� ZðoÞÞ2 � ðlðtÞ � oÞ2�
1
2

þ
c lnðlðtÞ � oÞ½ðt� ZðoÞÞvðZðoÞÞ � ðlðtÞ � oÞ�ðlðtÞ � oÞ

vðZðoÞÞ½c2ðt� ZðoÞÞ2 � ðlðtÞ � oÞ2�3=2

)
, ð3:77Þ

where c ¼ c2, vðtÞ ¼ _lðtÞ, and Kðt; t; vðtÞÞ is defined by

Kðt; t; vðtÞÞ ¼
c

v2ðtÞ½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�5=2

�fv3ðtÞðt� tÞ½c2ðt� tÞ2 þ 2ðlðtÞ � lðtÞÞ2�

� 2v2ðtÞðlðtÞ � lðtÞÞ½2c2ðt� tÞ2 þ ðlðtÞ � lðtÞÞ2�

� 3c2vðtÞðt� tÞðlðtÞ � lðtÞÞ2

� _vðtÞðlðtÞ � lðtÞÞ2½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�g. ð3:78Þ

In Eq. (3.77), the first three terms have an explicit factor of the acceleration, _v, and they are related to the
inertial part of the self-force and contribute to the effective mass of the moving dislocation, while the
integrations in the expression depend on the history of the motion.
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3.3. The self-force

By substituting the near-field expansions (3.16)–(3.18) into (3.3), we obtain the expression for the surface
integral I �,

I � ¼ mbf 32 ln �þ
mbg
2p

Z 2p

0

c22g32ðy; tÞ � vðtÞ sin y cos yg3tðy; tÞ

c22½cos
2 yþ g2 sin2 y�

dyþOð�Þ, (3.79)

where again

f 32 ¼ �
b

4p
_vðtÞ

c22g3
,

and g32ðy; tÞ and g3tðy; tÞ are the near-field coefficients. In the integration of Eq. (3.79), by substituting g32ðy; tÞ
and g3tðy; tÞ with the values obtained in Eqs. (3.65) and (3.66), we have the evaluation of I � to order OðtÞ terms,

I � ¼ �
mb2 _v

4pc22g
3
ln �þ

mb2 _v

4pc22g
3

lnðgð1þ gÞ=2Þ �
4þ b4 � b2ð7þ 2gÞ

ð1þ gÞ2

� �
þ mbg32ð0; tÞ, (3.80)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2ðtÞ=c22

q
, b ¼ vðtÞ=c2, and g32ð0; tÞ is given in Eq. (3.77).

The last equation implies that as �! 0, I � is divergent. Therefore, according to Eq. (3.2), in the surface-
independent dynamic J-integral for the self-force on an accelerating (screw) dislocation, the volume integral
does not exist even in the sense of CPV, and as a result, the self-force of an accelerating screw dislocation is
divergent and not well-defined. We will deal with the divergence by two different approaches:
(1)
Ple

dis
On the basis of a smearing method, smooth the singularity at the core of dislocation;

(2)
 On the basis of the theory of distributions, regularize the divergent volume integral.
Then, the self-force becomes well-defined and can be evaluated by the surface-independent dynamic J-integral.

3.4. Remark on the energy flux for an accelerating dislocation

Clifton and Markenscoff (1981) obtained the force on a moving dislocation which jumps from rest to a
constant velocity. Their calculation is based on defining the self-force (which they called ‘‘drag force’’) by

F ¼ _E=vd, (3.81)

where _E is the energy flux given by

_E ¼

Z
S
_uisijnj þ

1

2
ðsijui;j þ r _ui _uiÞVn

� �
ds, (3.82)

where s and ui are the stress and displacement field, r is the density of the solid material, n is the outer normal
of the surface S, and Vn ¼ ðV; nÞ with V as the velocity of the moving dislocation.

Clifton and Markenscoff pointed out that, for a moving dislocation, which jumps from rest and moves
along the x-axis with a constant velocity vd, the integral of the energy flux is independent of the choice of the
surface which surrounds the core of the moving dislocation as it shrinks to it. For instance, choose the surface
as a circle Sd at the core of the dislocation with an infinitesimal radius d, then one can define uniquely the
energy flux

_E0 ¼ lim
Sd!0

_ESd
¼ lim

Sd!0

Z
Sd

½ðW þ TÞd1j � s3ju3;1�dSj. (3.83)

The energy flux through the core used by Clifton and Markenscoff (1981) for this particular motion cannot
be applied to the case of arbitrarily accelerating motion. As pointed by Freund (1972), ‘‘in any case, path
independence of’’ the integral of the energy flux ‘‘should be checked before it is used for any particular
problem’’ Here we show that for the case of an accelerating screw dislocation, the path independence does not
hold, as the integral surface is shrinking to the core of the dislocation.
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It suffices to prove that the energy flux through the core, i.e., the energy release rate, in the case of an
accelerating screw dislocation, is not path-independent, as Sd shrinks to the core of the dislocation. By using
the near-field solutions obtained in previous subsections, _Ed is calculated and found to be

_Ed
�
mb

4p
_vðtÞ

c22g
3
ln d þ

mbg
2p

Z 2p

0

c22g32ðy; tÞ þ vðtÞ sin y cos yg3tðy; tÞ

c22½cos
2 yþ g2 sin2 y�

dy, (3.84)

which is divergent as d ! 0. Therefore, the surface integral (3.83) is not path-independent, when S ¼ Sd is a
d-circle as d ! 0. Because the difference between two such surface integrals goes to zero if and only if
the surface integral has a finite limit as d ! 0. Consequently, the energy flux cannot be used for defining the
self-force on an accelerating dislocation, and the Volterra dislocation is too strong of a singularity in this case.

4. The self-force and effective mass based on a smearing (ramp-core) method

Eshelby (1951) pointed out that ‘‘Singularities with infinite self-energy can be regarded as limiting case of
singularities with finite self-energy, and when we make the passage to the limit the expression for the force is
still valid’’. In Al’shitz et al. (1971), for deriving the force in a periodic lattice field a smearing method was used
(‘‘The divergence of the elastic field on the dislocation axis is eliminated by smearing the nucleus of the
dislocation over a region of radius r0 	 a’’). Eshelby (1977) discussed the smearing (ramp-core) technique in
the calculation of the configurational force on a moving crack, where the Dirac delta function was replaced by
a delta sequence. The smearing is necessary in dislocations, as stated by Weertman and Weertman (1980):
‘‘A discrete dislocation cannot exist in a real crystal because a real crystal cannot contain an infinite amount of
energy nor can it support infinite stresses’’; ‘‘If a discrete dislocation is ’smeared-out’ over a localized region on
its glide or climb plane, the infinite stresses and self-energy can be eliminated’’. This elimination is effectuated
here by a mathematical limiting process with respect to a length scale (denoted below by a); if the singularity of
the Volterra dislocation is smeared in a way such that the force on the smeared singularity is well-defined, then
this approach (smearing or ramp-core method) is validated. Weertman and Weertman in their paper
(Weertman and Weertman, 1980) gave a full reference list in addition to the references in Hirth and Lothe
(1968) for the Peierls–Nabarro and related models.

4.1. A smearing (ramp-core) method

Recall that the Navier equation of elastodynamics for a moving screw dislocation, for ya0,

q2u3ðx; y; tÞ

qx2
þ

q2u3ðx; y; tÞ

qy2
¼

1

c22

q2u3ðx; y; tÞ

qt2
, (4.1)

and the discontinuity condition is

u3ðx; 0
þ; tÞ � u3ðx; 0

�; tÞ ¼ �
b

2
½Hðx� lðtÞÞ �HðlðtÞ � xÞ�. (4.2)

Note that the discontinuity condition (4.2) is equivalently rewritten as

u3ðx; 0
þ; tÞ � u3ðx; 0

�; tÞ ¼ �
b

2
½Hðx� lðtÞÞ �HðlðtÞ � xÞ�%dðxÞ, (4.3)

where % is the symbol of the convolution defined by

½f %h�ðxÞ �

Z 1
�1

f ðx� xÞhðxÞdx ¼
Z 1
�1

f ðxÞhðx� xÞdx.

Follow Eshelby’s smearing (ramp-core) technique (Eshelby, 1977), we replace the delta function in the
discontinuity condition (4.3) by a delta sequence

gaðxÞ �
1

p
a

x2 þ a2
, (4.4)
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where a40 is the dimensionless smearing parameter, and define the smeared field variable by

û3ðx; y; tÞ ¼ u3%ga. (4.5)

Then the discontinuity condition for the smeared displacement û3ðx; y; tÞ is

û3ðx; 0
þ; tÞ � û3ðx; 0

�; tÞ ¼ �
b

2
½Hðx� lðtÞÞ �HðlðtÞ � xÞ�%gaðxÞ

¼ �
b

p
tan�1

x� lðtÞ

a

� �
. ð4:6Þ

This is exactly the ramp-core model analyzed by Markenscoff and Ni (2001a,b) in obtaining the radiated fields
for a dislocation in a general motion as well as one jumping from rest to a constant velocity.

It is shown that û3ðx; y; tÞ is infinitely differentiable with respect to x; y, t, for ya0 and all x; t, and bounded
in the closed half-space yX0, e.g.,

û3;1 ¼

Z 1
�1

u3ðx; y; tÞ
1

p
q
qx

a

ðx� xÞ2 þ a2

� �
dx. (4.7)

After integration by parts, we obtain

û3;1 ¼
dðu3;1Þ ¼ u3;1%ga, (4.8)

û3;2 ¼ u3;2%ga; û3;t ¼ u3;t%ga, (4.9)

û3;jj ¼ u3;jj%ga, (4.10)

for j ¼ 1; 2; t, and û3ðx; y; tÞ satisfies the Navier equation of elastodynamics for ya0

q2û3ðx; y; tÞ

qx2
þ

q2û3ðx; y; tÞ

qy2
¼

1

c22

q2û3ðx; y; tÞ

qt2
. (4.11)

4.2. The self-force based on smearing

As discussed above, the smeared field û3 is infinitely differentiable for y40 and yo0, and continuous and
bounded when y! 0þ or y! 0�. However, due to the discontinuity condition (4.6), û3 has a finite jump
discontinuity across the slip plane y ¼ 0. The stress û3;1 and the field velocity û3;t also have finite jumps across
the slip plane y ¼ 0,

û3;1ðx; 0
þ; tÞ ¼ � û3;1ðx; 0

�; tÞ ¼ �
b

2
gaðx� lðtÞÞ

¼ �
b

2p
a

ðx� lðtÞÞ2 þ a2
ð4:12Þ

and

û3;tðx; 0
þ; tÞ ¼ � û3;tðx; 0

�; tÞ ¼
bvðtÞ

2
gaðx� lðtÞÞ

¼
b

2p
avðtÞ

ðx� lðtÞÞ2 þ a2
. ð4:13Þ

As an even function in y, û3;2 is continuous across y ¼ 0.
Therefore, there is a surface singularity on the slip plane y ¼ 0, on which, the displacement field û3,

the stress mû3;1, and the field velocity û3;t have finite jumps, respectively. In order to keep the smeared
dislocation moving non-uniformly on the slip plane, a force opposite and equal to the self-force
on the slip plane must be applied on the dislocation. To define the force on the slip plane, using a similar
approach treating the point singularity, we exclude an infinitesimal neighborhood of the surface
singularity, such as the infinite strip V A with height of A both in the positive and negative y-directions for
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A51, and the surfaces qV A ¼ SA [ S�A with SA and S�A parallel and symmetric with distances of A and �A

to the slip plane, respectively. Here and below, all the volumes and surfaces are assumed to be of unit
length in the z-direction. Then we consider the infinite strip V A as an inhomogeneity. In an analogous way
treating the point defect, the self-force F 1 in the x-direction on the surface singularity is given by the dynamic
J-integral

F1 ¼ lim
A!0

Z
VnVA

q
qt
½r _̂u3û3;1�dV þ

Z
Sþ[S�

½ðŴ � T̂Þdj1 � ŝ3j û3;1�dSj

¼

Z
V

q
qt
½r _̂u3û3;1�dV þ

Z
Sþ[S�

½ðŴ � T̂Þdj1 � ŝ3j û3;1�dSj, ð4:14Þ

where V is a volume containing the slip plane, and qV ¼ Sþ [ S� with S� as surfaces in the half-space y40
and yo0, respectively. Without loss of generality, we may assume V is also infinite strip with the finite heights
both in the positive and negative y-direction and S� parallel to the slip plane.

In view of the fact that the smeared fields are sufficiently smooth for y40 and yo0, respectively, and the
field variables û3;j for j ¼ 1; 2; t are well-behaved near infinity, it is easy to show that in the infinite strips for
y40 and yo0, respectively, the Gauss divergence theorem and the conservation laws (2.9) are valid. Hence,
the dynamic J-integral in (4.14) is independent of the choice of the volume V . And by using the conservation
laws (2.9) in (4.14), we have

F1 ¼ lim
A!0

Z
VnVA

q
qt
½r _̂u3û3;1�dV þ

Z
Sþ[S�

½ðŴ � T̂Þdj1 � ŝ3j û3;1�dSj

� �
¼ lim

A!0

Z
SAþ[S�A

½ðŴ � T̂Þdj1 � ŝ3j û3;1�dSj. ð4:15Þ

The last equation is further reduced to

F1 ¼ lim
A!0

Z 1
�1

ŝ32ðx;�A; tÞû3;1ðx;�A; tÞ � ŝ32ðx;A; tÞû3;1ðx;A; tÞ
� 


dx. (4.16)

It is clear that the force F1 is in general not zero since there is a jump discontinuity on the slip plane y ¼ 0
(for continuous fields it would naturally be zero).

Further considering that ŝ32 ¼ mû3;2 and û3;1 are even and odd functions of y, respectively, from (4.16),
we have

F1 ¼ lim
A!0þ

ISA � lim
A!0þ

�2m
Z 1
�1

û3;2ðx;A; tÞû3;1ðx;A; tÞdx

� �
. (4.17)

We will prove that
(1)
Pl

dis
û3;1 is essentially a delta sequence as y! 0 and expressed as

û3;1ðx; y; tÞ ¼ �
b

2p
ðgyþ aÞ

ðx� lðtÞÞ2 þ ðgyþ aÞ2
þ Gðx; y; tÞ, (4.18)

where again g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c22

q
, a is the smearing parameter, and Gðx; y; tÞ ! 0 as y! 0 uniformly for

jxjoM, for any positive M.

(2)
 Noting that û3;2 is a convolution of u3;2 with a delta sequence, so that ISA as an integration of û3;2û3;1 is

approximately a convolution of u3;2 with a delta sequence (of a different parameter). Namely,

ISA ¼ �2m
Z 1
�1

û3;2û3;1 dx
� mb½u3;2%gð2aþgAÞ�ðlðtÞÞ, (4.19)

where

gð2aþgAÞ ¼
2aþ gA

pðx2 þ ð2aþ gAÞ2Þ
.
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Ple

dis
Because, as A approaches to 0, the delta sequence concentrates on a neighborhood of the core of the
(3)

dislocation x1 ¼ lðtÞ, so that in the convolution u3;2%gð2aþgAÞ, only the near field of u3;2 plays a role. As
A! 0, the convolution of the near-field expansion of u3;2 with a delta sequence yields

ISA
mbf 32 lnð2aÞ þ
mb

2
½g32ð0; tÞ þ g32ðp; tÞ�, (4.20)

which represents the contribution from the logarithmic term and the Oð1Þ term in the near-field
expansion of u3;2, where again f 32 and g32 are the near-field coefficients. The leading term of the near-field
expansion of u3;2 gives no contribution due to the symmetry, and the contribution from remaining terms of
the near-field expansion is in higher order of a where a is the smearing parameter.
(4)
 Therefore, we have the expression for the self-force

F 1 ¼ �
mb_v

4pc22g
3
lnð2aÞ þ mbg32ð0; tÞ þOða ln aÞ, (4.21)

where g32ð0; tÞ has been evaluated in Eq. (3.77).
Now we proceed to prove (1)–(4).

Proof of (1). From Eqs. (3.19) and (3.21), u3;1 is expressed by

u3;1 ¼ �
b

2p
gy

ðx� lðtÞÞ2 þ g2 y2
þ gðx; y; tÞ, (4.22)

with gðx; y; tÞ an odd continuous function in y and satisfying

lim
y!0

gðx; y; tÞ ¼ 0, (4.23)

for every x.
û3;1 is then written as

û3;1 ¼ u3;1%ga

¼ �
b

2p
gy

ðx� lðtÞÞ2 þ g2 y2
þ gðx; y; tÞ

� �
%

a

pðx2 þ a2Þ
. ð4:24Þ

Calculate the first convolution, for y40,

gy

ðx� lðtÞÞ2 þ g2 y2
%

a

x2 þ a2
¼

Z 1
�1

gy

ðx� lðtÞÞ2 þ g2 y2

a

ðx� xÞ2 þ a2

� �
dx

¼

Z 1
�1

gy

Z2 þ g2 y2

a

ðx� lðtÞ � ZÞ2 þ a2

� �
dZ

¼
pðgyþ aÞ

ðx� lðtÞÞ2 þ ðgyþ aÞ2
¼ p2gðaþgyÞðx� lðtÞÞ, ð4:25Þ

where the following integral is used, for p40,Z 1
�1

p

x2 þ p2

a

ðz� xÞ2 þ a2

� �
dx ¼

pðpþ aÞ

z2 þ ðpþ aÞ2
. (4.26)

Then we obtain

û3;1ðx; y; tÞ ¼ �
b

2p
ðgyþ aÞ

ðx� lðtÞÞ2 þ ðgyþ aÞ2
þ Gðx; y; tÞ, (4.27)

where Gðx; y; tÞ is defined by the integral

Gðx; y; tÞ �
1

p

Z 1
�1

gðx; y; tÞ

ðx� xÞ2 þ a2
dx. (4.28)
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From (4.12),

lim
y!0

û3;1ðx; y; tÞ ¼ �
b

2p
a

ðx� lðtÞÞ2 þ a2
, (4.29)

and for jxjpM the convergence is uniform, where M may be any positive number. Hence, from Eqs. (4.27)
and (4.29), we have

lim
y!0

Gðx; y; tÞ ¼ lim
y!0

û3;1ðx; y; tÞ þ
b

2p
ðgyþ aÞ

ðx� lðtÞÞ2 þ ðgyþ aÞ2

� �
¼ 0. (4.30)

The convergence is again uniform for jxjpM. &
Proof of (2). Substituting (4.27) into the integral expression of ISA, we have

ISA ¼ � 2

Z 1
�1

mû3;2û3;1 dx

¼
mb

p

Z 1
�1

û3;2ðx;A; tÞ
ðgAþ aÞ

ðx� lðtÞÞ2 þ ðgAþ aÞ2
dx

� 2m
Z 1
�1

mû3;2ðx;A; tÞGðx;A; tÞdx

� IS1 þ IS2, ð4:31Þ

where IS1 and IS2 are defined correspondingly.
For the integral IS2, in view of the well behavior of the integrand at infinity, the improper integral is

uniformly convergent with respect to A. Because û3;2 is bounded, and as shown in Eq. (4.30) Gðx;A; tÞ ! 0 as
A! 0 uniformly for jxjpM where M is a positive number, then the limit of A! 0 may be taken under the
integral, and we have

lim
A!0

IS2 ¼ 0. (4.32)

As for the integral IS1,

IS1 ¼
mb

p

Z 1
�1

û3;2ðx;A; tÞ
ðgAþ aÞ

ðx� lðtÞÞ2 þ ðgAþ aÞ2
dx

¼ mb½û3;2%gðaþgAÞ�ðlðtÞÞ. ð4:33Þ

Noting that û3;2 ¼ u3;2%ga and applying the associativity property of the convolution, we have

IS1 ¼ mb½û3;2%gðaþAÞ�ðlðtÞÞ ¼ mb½ðu3;2%gaÞ%gðaþgAÞ�ðlðtÞÞ

¼ mb½u3;2%ðga%gðaþgAÞÞ�ðlðtÞÞ

¼ mb½u3;2%gð2aþgAÞ�ðlðtÞÞ, ð4:34Þ

where from Eq. (4.26),

ga%gðaþgAÞ ¼
1

p2

Z 1
�1

a

Z2 þ a2

aþ gA

ðx� ZÞ2 þ ðaþ gAÞ2

� �
dZ

¼
1

p
ð2aþ gAÞ

ðxÞ2 þ ð2aþ gAÞ2
¼ gð2aþgAÞ. ð4:35Þ
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Hence, as A! 0,

ISA
IS1 ¼ mb½u3;2%ge�ðlðtÞÞ

¼
mb

p
1

p

Z 1
�1

u3;2ðx;A; tÞ
e

ðx� lðtÞÞ2 þ e2
dx

¼
mb

p
1

p

Z 1
�1

u3;2ðZþ lðtÞ;A; tÞ
e

Z2 þ e2
dZ, ð4:36Þ

where e � 2aþ gA. &

Proof of (3). From the meaning of the asymptotic expansion, there is a sufficiently small number z40, such
that when �2 ¼ Z2 þ A2pz2, for AX0, u3;2ðZþ lðtÞ;A; tÞ ¼ u3;2ð�; y; tÞ has the asymptotic expansion

u3;2ð�; y; tÞ ¼
b

2p
gZ

Z2 þ g2 A2
þ f 32 ln �þ g32ðy; tÞ þ p4ð�; y; tÞ, (4.37)

where 0py ¼ tan�1ðA=ZÞpp, f 32 and g32 are the near-field coefficients, and

jp4jpMðyÞ�, (4.38)

and MðyÞ is a bounded function.
We decompose the integral domain in IS1 into two parts: (i) the near-field: Z2 þ A2pz2; (ii) the far field:

Z2 þ A24z2 and write the integral IS1 as

IS1 ¼ IN þ IF

�
mb

p

Z q

�q

b

2p
gZ

Z2 þ g2 A2
þ f 32 ln �þ g32ðy; tÞ þ p4ð�; y; tÞ

� �
e

Z2 þ e2
dZ

þ
mb

p

Z
Z4q

u3;2ðZþ lðtÞ;A; tÞ
e

Z2 þ e2
dZ, ð4:39Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � A2

p
, IN and IF are the integrals over the near field and far field, respectively.

We shall show that for a51,
(i)
Plea

disl
lim
A!0

IF ¼ OðaÞ. (4.40)
(ii)
 lim
A!0

IN ¼ mbf 32 lnð2aÞ þ mbg32ð0; tÞ þOða ln aÞ (4.41)
To show Eq. (4.40), we note that for Z4q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � A2

p
, or equivalently, Z2 þ A24z2, u3;2ðZþ lðtÞ;A; tÞ is

bounded, i.e., for Z4q,

mb

p
ju3;2ðZþ lðtÞ;A; tÞjpM1, (4.42)

for some bound M140. From the definition of IF and Eq. (4.42), it follows that

jIFjpM1

Z
Z4q

e

Z2 þ e2
dZ

¼ 2M1

Z 1
q

e

Z2 þ e2
dZ ¼ 2M1

Z 1
q=e

dz

z2 þ 1

¼ 2M1e=qþ h:o:t: ðeÞ, ð4:43Þ

where again e ¼ 2aþ gA and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � A2

p
. Hence, as A! 0, IF is of the order of OðaÞ for a51.
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For IN, we write

IN ¼
mb

p

Z q

�q

b

2p
gZ

Z2 þ g2 A2
þ f 32 ln �þ g32ðy; tÞ þ p4ð�; y; tÞ

� �
e

Z2 þ e2
dZ. (4.44)

By symmetry, the integral of the first term is zero, i.e.,Z q

�q

b

2p
gZ

Z2 þ g2 A2

e

Z2 þ e2

� �
dZ ¼ 0. (4.45)

The integral of the second term is

mb

p

Z q

�q

f 32 lnðZ
2 þ A2Þ

e

Z2 þ e2
dZ ¼

mb

p

Z 1
�1

f 32 lnðZ
2 þ A2Þ

e

Z2 þ e2
dZ

�
mb

p

Z 1
q

f 32 lnðZ
2 þ A2Þ

e

Z2 þ e2
dZ, ð4:46Þ

where again f 32 is independent of Z.
For the first integral in Eq. (4.46),

mb

p

Z 1
�1

f 32 lnðZ
2 þ A2Þ

e

Z2 þ e2
dZ ¼ mbf 32 lnðAþ eÞ ¼ mbf 32 lnð2aþ 2AÞ. (4.47)

In the second integral in (4.46), by changing variables of integration, we obtainZ 1
q

lnðA2 þ Z2Þ
e

Z2 þ e2
dZ

���� ���� ¼ Z e=q

0

lnðA2 þ e2=x2Þ

1þ x2
dx

�����
�����

p
Z e=q

0

2 lnðxÞ

1þ x2

���� ����dxþ Z e=q

0

lnðA2x2 þ e2Þ

1þ x2

���� ����dx. ð4:48Þ

The last two integrals are of the order of Oða ln aÞ as A! 0, sinceZ e=q

0

2 lnðxÞ

1þ x2

���� ����dxp Z e=q

0

2 lnðxÞdx

�����
����� ¼ je=qð1� lnðe=qÞj ¼ Oðe=q lnðe=qÞÞ (4.49)

and Z e=q

0

lnðA2x2 þ e2Þ

1þ x2

���� ����dxpZ e=q

0

j lnðA2ðe=qÞ2 þ e2Þjdx ¼ Oðe=q lnðeÞÞ. (4.50)

The integral of the third term in Eq. (4.44) is rewritten as

mb

p

Z q

�q

g32ðy; tÞ
e

Z2 þ e2
dZ ¼

mb

p

Z d

�d
g32ðy; tÞ

e

Z2 þ e2
dZ

þ
mb

p

Z �d
�q

þ

Z �d
�q

� �
g32ðy; tÞ

e

Z2 þ e2
dZ, ð4:51Þ

where d ¼ oðaÞ is a small number. ThenZ d

�d
g32ðy; tÞ

e

Z2 þ e2
dZ

���� ����p2M0

Z d

0

e

Z2 þ e2
dZ ¼ 2M0 tan

�1ðd=eÞ ¼ OðaÞ, (4.52)

since g32 is bounded in the near field for t40.
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For the second integral on the right-hand side of Eq. (4.51), the limit of A! 0 may be taken under the
integral, so we have

lim
A!0

mb

p

Z q

�q

g32ðy; tÞ
e

Z2 þ e2
dZ ¼

mb

p
½g32ð0; tÞ þ g32ðp; tÞ�

Z z

d

e

Z2 þ e2
dZþ oðaÞ

¼
mb

2
½g32ð0; tÞ þ g32ðp; tÞ�tan

�1ðz=aÞ þOðaÞ

¼ ½g32ð0; tÞ þ g32ðp; tÞ�
p
2
� e=q

	 

þOðaÞ

¼
p
2
½g32ð0; tÞ þ g32ðp; tÞ� þOðaÞ. ð4:53Þ

Furthermore, as A! 0,Z q

�q

p1

e

Z2 þ e2
dZ

���� ����pM2

Z q

�q

e Z
Z2 þ e2

dZ ¼M2e lnðq2 þ e2Þ ¼ OðaÞ. (4.54)

Hence, combining the above results, we obtain, for a51,

lim
A!0

ISA ¼ mbf 32 lnð2aÞ þ
mb

2
½g32ð0; tÞ þ g32ðp; tÞ� þOða ln aÞ. (4.55)

The evaluation (4.40) and (4.41) are then proved. &

Proof of (4). Consequently, the self-force is thus given by

F1 ¼ lim
A!0

ISA ¼ lim
A!0
½IS1 þ IS2� ¼ lim

A!0
½IF þ IN�

¼
mbf 32

2
lnð2aÞ þ

mb

2
½g32ð0; tÞ þ g32ðp; tÞ� þOða ln aÞ. ð4:56Þ

Note that

g32ðp; tÞ ¼
Z p

0

g032ðy; tÞdyþ g32ð0; tÞ, (4.57)

where as in Eq. (3.56), g032ðy; tÞ is given by

g032 ¼ �
b_v cos y sin y

4pc22g
ð7g2 � 5Þ cos2 y� g2 ðg2 � 3Þsin2 y

ðcos2 yþ g2 sin2 yÞ3

� �
. (4.58)

It is then easy to see thatZ p

0

g032ðy; tÞdy ¼ 0, (4.59)

it follows that g32ðp; tÞ ¼ g32ð0; tÞ. Therefore,

F1 ¼
mbf 32

2
lnð2aÞ þ mbg32ð0; tÞ þOða ln aÞ, (4.60)

which completes the proof of (4). &

Therefore, from Eq. (4.60) and the expression (3.77) for g32ð0; tÞ, we have the self-force on an accelerating
screw dislocation based on a smearing (ramp-core) method,

F1 ¼ F in
1 þ Fnon

1 þ h:o:t:; (4.61)
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where F in
1 and Fnon

1 are the inertial part and the non-inertial part of the self-force, are given, for t40,
respectively as follows:

F in
1 ¼

mb2 _vðtÞ

2p
� lnð2aÞ

2c2g3
þ
½1þ lnðb=ð2g2Þ�

2c2g3

�
þ
½4ð1� 2bÞ þ b2ð2� bÞ�

2c2ð1� bÞ4
ln

1þ g
b

� �
þ
ð1þ b2Þ

2c2bð1� bÞ2g

�
, ð4:62Þ

Fnon
1 ¼

mb2

2p

Z ZðoÞ

0

cðt� tÞlðtÞdt

ðlðtÞ � lðtÞÞ2½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�1=2
þ

1

lðtÞ

�
þ

Z t

ZðoÞ

lnðlðtÞ � lðtÞÞKðt; t; vðtÞÞdt

½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�5=2

�
cðt� ZðoÞÞ

ðlðtÞ � oÞ2½c2ðt� ZðoÞÞ2 � ðlðtÞ � oÞ2�1=2

þ
c lnðlðtÞ � oÞ½ðt� ZðoÞÞvðZðoÞÞ � ðlðtÞ � oÞ�ðlðtÞ � oÞ

vðZðoÞÞ½c2ðt� ZðoÞÞ2 � ðlðtÞ � oÞ2�3=2

�
, ð4:63Þ

where a40 is the dimensionless smearing parameter defined in Eq. (4.4), c ¼ c2, vðtÞ ¼ _lðtÞ, and Kðt; t; vðtÞÞ is
defined by

Kðt; t; vðtÞÞ ¼
c

v2ðtÞ½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�5=2

�fv3ðtÞðt� tÞ½c2ðt� tÞ2 þ 2ðlðtÞ � lðtÞÞ2�

� 2v2ðtÞðlðtÞ � lðtÞÞ½2c2ðt� tÞ2 þ ðlðtÞ � lðtÞÞ2�

� 3c2vðtÞðt� tÞðlðtÞ � lðtÞÞ2

� _vðtÞðlðtÞ � lðtÞÞ2½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�g. ð4:64Þ

In the expression (4.63), the integrals represent the terms dependent on the history of the motion.
In the above expressions, it has been verified by direct calculation that the length-scale effects of L0 arising

from the ln � and Oð1Þ terms in Theorem 3 cancel each other.

4.3. The effective mass

From the self-force, we derive the effective mass for an accelerating screw dislocation. As discussed in
Section 2, the effective mass is defined analogously to Newton’s law,

F in ¼
d

dt
ðmevÞ, (4.65)

and given by

me ¼
1

vðtÞ

Z t

0

F in dt, (4.66)

for t40, and where vðtÞ ¼ _lðtÞ, F in is the inertial part of the self-force F .
Noting that expression (4.62) is valid for t40, e.g., it is valid on the closed interval ½t�; t�, for a positive t�

near 0, and that at t ¼ 0, mev is zero, we may decompose the integral in (4.66) into two partsZ t

0

F in dt ¼

Z t

t�

F in dtþ

Z t�

0

F in dt ¼

Z t

t�

F in dtþ

Z t�

0

d

dt
ðmevÞdt. (4.67)

For the first term of the right-hand side of the last equation, the near-field expansion (4.62) is applicable, the
integrated terms at the lower and upper limits for the first and second integrals, respectively, cancel out, and
the integrated term at t ¼ 0 for the second term of the right-hand side of the last equation vanishes. Then, the
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net contribution to the integral in Eq. (4.66) isZ t

0

F in dt ¼ FðtÞ, (4.68)

where F is the time dependent part of the antiderivative of the near-field expression (4.62). From Eqs. (4.62),
(4.66) and (4.68), we hence obtain the expression for the effective mass

me ¼
mb2

2p
� lnð2aÞ

2c2g
þ

1

2c2g
ln

b
2g

� �
� 1

� �(

þ
1

2c2b
tan�1

b
g

� �
þ
ð2� bÞg

3c2bð1� bÞ2
þ

1

2c2b
ln

b
1þ g

� �
þ

1

2c2b

Z b

0

4� 8rþ 2r2 � r3

ð1� rÞ4
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

r

 !
dr

)
, ð4:69Þ

for t40, and c ¼ c2, b ¼ v=c, g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
.

5. The self-force and effective mass based on the theory of distributions

5.1. Regularization of divergent integrals

When an integral does not exist as the usual improper integral, then the divergent integral may possibly be
regularized based on the theory of distributions.

Distributions are linear continuous functionals on the space of the fundamental functions (or, test
functions). One example of the space of fundamental functions is K ¼ C10 ðR

nÞ, i.e., the space of infinitely
differentiable functions with compact supports in Rn. A locally integral function f on Rn corresponds to a
linear continuous functional on K, which is defined as

ðf ;fÞ ¼
Z

Rn

f ðxÞfðxÞdx, (5.1)

where f 2K, and x denotes an n-dimensional vector.
If f is not locally integrable, then the integral (5.1) does not exist for all f 2K. Suppose that f only has

isolated singularities, then the regularizationReg:f of f satisfies the following conditions (Gel’fand and Shilov,
vol. I, 1964):
(i)
Plea

disl
Reg:f is a linear continuous functional on K.

(ii)
 For all f 2K which vanishes in a neighborhood of a singularity x0 of f ,

ðReg:f ;fÞ ¼
Z

Rn

f ðxÞfðxÞdx. (5.2)
There are several ways to construct a regularization, e.g.:

(1) The CPV.

ðReg:f ;fÞ ¼
Z
�f ðxÞfðxÞdx, (5.3)

if it exists. The CPV has been used in fracture mechanics, and used to calculate the energy of elastic
defects (Dascalu and Maugin, 1994).

(2) The Hadamard finite part.

ðReg:f ;fÞ ¼¼
Z

f ðxÞfðxÞdx, (5.4)
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if the right-hand side exists, which denotes the Hadamard finite part of a divergent integral.
The Hadamard finite part of a divergent integral is defined by removing the divergent part of
the integral and keep the finite part. (see, Hadamard, 1952; Kanwal, 1998; Estrada and
Kanwal, 1994).
The finite part integral arises naturally in problems of bridged cracks in fracture mechanics, see e.g.,
Nemat-Nasser and Hori (1987), Willis and Nemat-Nasser (1990), Hori and Nemat-Nasser (1990),
Nemat-Nasser and Hori (1999), and Ni and Nemat-Nasser (2000).

(3) If f ðxÞ has an algebraic singularity at x0, i.e., f ðxÞjx� x0j
m is locally integrable for an integer

m40, then

ðReg:f ;fÞ ¼
Z

UnBa

f ðxÞfðxÞdxþ

Z
Ba

f ðr; yjÞ fðr; yjÞ

"

�
X

jkjom�nþ1

1

k!
qk

rfðx0; yjÞr
k

#
rn�1 drdO, ð5:5Þ

where Ba is a closed ball of the dimensionless radius a at x0, a is an arbitrary positive number, r and yj,
for 1pjpn� 1 are the spherical coordinate variables at x0, and dO is the area element of the unit ball at
x0 (Gel’fand and Shilov, 1964; Kanwal, 1998).

For the regularization of a singular distribution defined by those three ways, it is easy to verify that the
conditions (i) and (ii) of a regularization are satisfied.

For a divergent integral, we may decompose the integrand into two factors with one in the function spaceK
and for the other its regularization is available. Then we view the divergent integral as a linear continuous
functional, corresponding to a singular distribution, evaluated on an element in the infinitely differentiable test
function space, which gives the regularization of the divergent integral.

5.2. The self-force based on regularization

As shown in Section 3, in the surface-independent dynamic J-integral for the self-force on an accelerating
(screw) dislocation, the volume integral does not exist even in the sense of CPV. Specifically, here we seek to
use (5.5) to regularize the divergent volume integral in Eq. (2.16),Z

V

gdv �

Z
V

q
qt
½r _u3u3;l �dv. (5.6)

As discussed before, we choose V to be a cylindrical volume around the dislocation line. The problem may
hence be considered to be two-dimensional, all volumes and surfaces have an unite length in the z-direction.
The regularization is performed in the two-dimensional framework. Namely, we may choose a sufficiently
small positive number q, and define the regularization of the integral through the regularization of a singular
distribution, specifically by using (Gel’fand and Shilov, 1964; Kanwal, 1998):

ðReg:g;fÞ ¼
Z

VnBq

gðxÞfðxÞdV

þ

Z
Bq

gðr; yÞ fðr; yÞ �
X
jkjom

qk

qrk
fðx0; yÞrk=k!

" #
rdrdy, ð5:7Þ

where Bq is a closed circle of dimensionless radius q at the core of dislocation x0, r and y are the circular
coordinate variables at x0. The infinitely differentiable function fðxÞ 2K ¼ C10 is chosen to be identical to 1
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on V with a support in a small neighborhood of V . Then, the regularization of Eq. (5.6) is written as

Reg:

Z
V

gðxÞdv ¼

Z
VnBq

gðxÞdV . (5.8)

The self-force on a generally accelerating screw dislocation in the x-direction is then expressed as

F1 ¼

Z
VnBq

gðxÞdV þ

Z
S

½ðW � TÞd1j � s3ju3;j�dSj, (5.9)

where S ¼ qV . By using the conservation laws (2.9) over the homogeneous region VnBq, (5.9) is further
reduced to

F1 ¼

Z
Sq

½ðW � TÞd1j � s3ju3;j�dSj, (5.10)

where Sq � qBq. In other words, it follows that

F1 ¼ Iq, (5.11)

where Iq ¼ I � ia evaluated by (3.80) for � ¼ q. Therefore, from Eq. (3.80), we have

F1 ¼ �
mb2 _v

4pc22g3
ln qþ

mb2 _v

4pc22g3
lnðgð1þ gÞ=2Þ �

4þ b4 � b2ð7þ 2gÞ

ð1þ gÞ2

� �
þ mbg32ð0; tÞ þ h:o:t. ð5:12Þ

Now 0oq51 is a fixed number, and the self-force F1 is well-defined.
From Eq. (5.12) and the expression (3.77) for g32ð0; tÞ, the explicit expression of F1 based on the theory of

distributions is obtained as follows:

F1 ¼ F in
1 þ Fnon

1 þ h:o:t:; (5.13)

where F in
1 and Fnon

1 are the inertial part and the remain part of the self-force, are given, for t40, respectively,
as follows, where again c ¼ c2,

F in
1 ¼

mb2 _vðtÞ

2p
� lnðqÞ

2c2g3
þ
½1þ lnðb=ð2g2Þ�

2c2g3

�
þ
½4ð1� 2bÞ þ b2ð2� bÞ�

2c2ð1� bÞ4
ln

1þ g
b

� �
þ
ð1þ b2Þ

2c2bð1� bÞ2g

�
þ

mb2 _v

4pc2g3
lnðgð1þ gÞ=2Þ �

4þ b4 � b2ð7þ 2gÞ

ð1þ gÞ2

� �
, ð5:14Þ

Fnon
1 ¼

mb2

2p

Z ZðoÞ

0

cðt� tÞlðtÞdt

ðlðtÞ � lðtÞÞ2½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�1=2
þ

1

lðtÞ

�
þ

Z t

ZðoÞ

lnðlðtÞ � lðtÞÞKðt; t; vðtÞÞdt

½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�5=2

�
cðt� ZðoÞÞ

ðlðtÞ � oÞ2½c2ðt� ZðoÞÞ2 � ðlðtÞ � oÞ2�1=2

þ
c lnðlðtÞ � oÞ½ðt� ZðoÞÞvðZðoÞÞ � ðlðtÞ � oÞ�ðlðtÞ � oÞ

vðZðoÞÞ½c2ðt� ZðoÞÞ2 � ðlðtÞ � oÞ2�3=2

�
, ð5:15Þ
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where q is the regularization parameter, c ¼ c2, vðtÞ ¼ _lðtÞ, and Kðt; t; vðtÞÞ is defined by

Kðt; t; vðtÞÞ ¼
c

v2ðtÞ½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�5=2

�fv3ðtÞðt� tÞ½c2ðt� tÞ2 þ 2ðlðtÞ � lðtÞÞ2�

� 2v2ðtÞðlðtÞ � lðtÞÞ½2c2ðt� tÞ2 þ ðlðtÞ � lðtÞÞ2�

� 3c2vðtÞðt� tÞðlðtÞ � lðtÞÞ2

� _vðtÞðlðtÞ � lðtÞÞ2½c2ðt� tÞ2 � ðlðtÞ � lðtÞÞ2�g. ð5:16Þ

In the expressions (5.15), the integrals represent the terms dependent on the history of the motion. From the
comparison between the self-force, Eqs. (4.62) and (4.63), evaluated by the smearing (ramp-core) approach
and the one, Eqs. (5.14) and (5.15), obtained by the distribution approach, it is seen that the evaluations of the
self-force on a generally accelerating screw dislocation by both methods agree up to the leading terms.

5.3. The effective mass

As discussed before, the effective mass is defined analogously to Newton’s law

F in ¼
d

dt
ðmevÞ, (5.17)

and given by

me ¼
1

vðtÞ

Z t

0

F in dt, (5.18)

for t40, and where F in is the inertial part of the self-force.
In a similar manner as discussed in previous section, by using the expression (5.14) of F in, we obtain the

effective mass

me ¼
mb2

2p
� lnð4qÞ

2c2g3
þ

8

3c2g
þ

lnð1þ gÞ
2c2g

�
g

3c2ð1� bÞ2

(

þ
tan�1ðb=gÞ

2c2b
�

3 sin�1b
2c2b

�
lnðð1þ bÞ=ð1� bÞÞ

4c2b

þ
ln b
2c2g
þ

2g

3c2bð1� bÞ2
þ

lnðb=ð1þ gÞÞ
2c2b

þ
1

c2b2

þ
4

3c2b2gð1þ gÞ
�

5

3c2b2g

þ
1

2c2b

Z b

0

4� 8rþ 2r2 � r3

ð1� rÞ4
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ

p
r

 !
dr

)
, ð5:19Þ

for t40, and again c ¼ c2, b ¼ v=c, g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þ

q
.

6. Concluding remarks

By using the dynamic J-integral, explicit and complete expressions for the self-force and effective mass of a
generally accelerating screw dislocation are obtained. An essential part for this calculation is the complete
evaluation for the near-field expansions (Section 3). Due to the divergence of the volume integral in the
dynamic J-integral for the case of a generally accelerating motion, two methods are used to treat it: smearing
the singularity of the core (ramp-core), and regularization based on the theory of distributions. In the
smearing (ramp-core) method, since there is surface-independence of the dynamic J-integral, the infinite strip
is chosen for the evaluation as mathematically simpler and physically meaningful. The self-force is then given
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in terms of an integral over the infinite length of the strip containing the smeared fields, which is then reduced
to a convolution of the Volterra fields with a delta sequence. In the convolution, only the near-field (of the
Volterra) plays a role. Finally, after taking the limit of the width of the strip A! 0, the self-force is obtained
by Eq. (4.60) in terms of the smearing parameter a and the near-field coefficients derived by a singular
perturbation analysis in Section 3. In the method based on the theory of distributions (Gel’fand and Shilov,
1964, vol. I; and Kanwal, 1998), the divergent volume integral in the dynamic J-integral is regularized, and the
evaluated self-force depends on a length parameter q. The small parameter used in both methods, which
corresponds to the cut-off core radius—and is undetermined here—will have to be determined by matching the
self-force of this continuum dislocation model to the self-force of a lattice scale one, such as the model of
Kresse and Truskinovsky (2003).

The methods developed here for the calculation of the self-force and effective mass of a generally
accelerating screw dislocation can be also applied to those of a generally accelerating edge dislocation, which
will be presented in a separate paper (part II).

In principle, the approaches applied in the present analysis can be extended to calculate the self-force on a
moving dislocation loop, the radiated near fields of which have been investigated by using singular
perturbation analysis in Markenscoff and Ni (1990).
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