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RESEARCH AREAS

1) The dynamic Eshelby problem solves the deep earthquakes
(publications # A. 130, 131,132, 133, 134, 135, 137, 138, 139, 140, 141, 142)

The self-similarly expanding Eshelby ellipsoidal inclusion constitutes the dynamic 
generalization of the Eshelby problem, where the interior strain/stress is constant, the 
interior particle velocity is zero (lacuna), and the Dynamic Eshelby tensor is obtained. The 
static Eshelby inclusion is obtained as a particular limit, as well as the elliptically expanding 
crack of Burridge and Willis (1969) , in which limit Rayleigh waves are obtained as a  
particular limit of the dynamic Eshelby problem. 
The Dynamic Eshelby Tensor allows the solution of the solution of a self-similarly 
expanding region with phase change (change in density (volume collapse) and moduli) 
under prestress, and this solution has been applied to solve the problem of deep 
earthquakes, considered a deep mystery, as to why a phase transformation with substantial 
change in density (up to 10%) under pressure would produce the radiation from a shear 
wave source with zero or no volumetric components. It is shown that the energetics of the 
self-similarly expanding ellipsoid through Noether’s theorem of the calculus of variations in 
a variable domain (dyn J and M integral) produce instabilities (in the shape and growth) 
under high pressure, so that the inclusion can assume a flattened ellipsoidal shape that can 
grow large at less energy expense than the sphere. The asymptotic limit of the Eshelby 
inclusion in the penny-shape limit produces shear deformation to accommodate a large 
volume into a very thin inclusion to avoid openings or overlaps. By a successive instability 
the symmetric center of shear (CLVD) decomposes into two anti-symmetric centers of 
shear (Double Couple) with the one radiating through the perimeter without interaction 
energy losses. Thus, a symmetric input (volume collapse in isotropy under pressure) 
results in an anti-symmetric output, consistent with observations, allowing the radiation of 
the deep earthquakes unhindered by the pressure. It is also shown that at a critical 
pressure (nucleation pressure) an arbitrarily small densified inclusion (anticrack, solved 
here) can grow unstably at constant potential energy. At the value of the pressure pre-
stress the tensile mean stress due to the volume collapse is cancelled while for small 
deviatoric prestress the remaining strain energy density is distortional resulting in a shear 
seismic source, explaining the puzzle. The phenomenon is ubiquitous in dynamic phase 
transformations under high pressure in nature, with the dynamic Eshelby problem being 
valid also in Newtonian fluids, with the instabilities providing insight into planetary 
impacts, amorphization, failure waves, and also to an avalanche model of plasticity.

Dislocation dynamics with inertia effects
(Publications # A.14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 38, 81, 

83, 85, 105, 107, 108, 109, 110, 111, 116, 120)

Dislocation dynamics with inertia effects, screw, edge dislocations in general motion, 
generally expanding dislocation loops, also screw and edge dislocations in anisotropic 
solids in general motion, detailed treatment of the singularities for the near field (singular 
asymptotics of integrals for the logarithmic singularities). The transition from subsonic to 
supersonic /transonic motion of a Volterra dislocation was analyzed, and the “effective 
mass” of a moving Volterra dislocation was also obtained; both being classical long-
standing problems in dislocation theory.



2

Expanding Eshelby inclusions/ inhomogeneities with transformation strain. 
(Publications # A.112, 113, 114, 117, 118, 122,124, 127, 130, 131)

Solutions were obtained for generally dynamically (with inertia) expanding spherical Eshelby 
inclusions and plane phase boundaries with transformation strain, as well as for 
expanding inhomogeneities with transformation strain (i.e. when the material properties 
change as the inclusion expands).  The “driving forces,” i.e the energy-release rate 
required to create (dynamically) an incremental region of eigenstrain, or of 
inhomogeneity with eigenstrain, were obtained.

 it is shown that self-similarly expanding Eshelby ellipsoidal inclusions preserve the constant 
stress Eshelby property in the interior domain where the particle velocity vanishes. The 
Dynamic Eshelby Tensor for the spherical expanding inclusion under general eigenstrain 
is obtained. By a limiting procedure the static Eshelby Tensor is obtained. Three papers 
are under preparation for submission in the summer of 2015.

Asymptotic homogenization (publications # A.123, A.125)
 At the unit cell level the microcrack interaction and growth is governed by the J integral 

(energy dissipation) and the microhole interaction and growth by the M integral. This 
energy dissipation at the microlevel is carried to the macro-level as macroscopic damage 
by asymptotic homogenization. Currently , by dynamic asymptotic homogenization the 
dynamic damage evolution is accounted by the energy loss through the dynamic J and M 
integrals for the early motion of defects (cracks, inclusions) in the unit cell.  This  extends  
the early work of Clifton and Markenscoff (1981) on elastic precursor decay and 
radiation from moving dislocations.

Inverse problem of Eshelby inclusions:
(Publications # A.61, 62, 63, 70, 94, also: 69, 70)

Proved that the ellipsoid is the only shape for which the Eshelby property of constant stress is 
maintained after perturbation of the inclusion domain, and also that polyhedra are 
excluded from having the Eshelby property.

2) Configurational forces

Configurational forces on moving defects
(Publications # A. 108, 112,113,114,115, 116,117,120,124, 125,129, 133,141)

The self-forces for moving defects, dislocations (“effective mass”) and phase boundaries 
with transformation strain (“driving force”) have been obtained. On the basis of 
Noether’s theorem, an interpretation of the dynamic J integral was given as necessary 
and sufficient condition for linear momentum to be preserved in the domain for any 
perturbation of the inhomogeneity position, which settles the open issue of how loading 
and phase boundary velocity are related (evolution equation).

Conservation laws and integrals:
(Publications# A.74, 86, 92, 95, 100, 101, 102, 103, 104, 106, 12)
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(a) Conservation laws for incompatibility:
Based on Noether’s theorem for a positive definite functional that has as Euler-Lagrange 

equations the Beltrami-Michell compatibility equations for the stress, new 
conservation laws were obtained that allow from surface data to determine the 
incompatibility content in the volume.

(b) Conserved integrals for couple-stress and micropolar elasticity (based on Noether’s 
theorem) and interpretation as energy-release rates.

(c) Dual integrals based on complementary energies for elasticity and micropolar elasticity.

3) Singular asymptotics for thin ligaments
(Publications # A.30, 37, 39, 52, 55, 56, 75, 76, 99, C4)

The singular amplification of the stress as a function of the ligament thickness (for thin 
ligaments) has been obtained analytically for different geometries of ligaments (two 
holes, two cracks, etc.) and loadings, by newly developed singular asymptotics of series. 
The singular dependence of the stress is also found by matched inner and outer 
expansions. This amplification can account for the acceleration of the damage at the 
macroscale due to interaction of microcracks/microholes, in the framework of an 
asymptotic homogeneization model.

4) The Cosserat Spectrum Theory of Elasticity (spectral theory of elasticity). 
(Publications # A.49, 51, 58, 59, 64, 65, 66, 67, 68, 72, 73, 89, 90, 91, 93)

The spectral theory of elasticity, initiated by the Cosserat brothers and mathematically 
developed by Mikhlin (1970) has been further developed both theoretically and by 
obtaining the eigenfuctions for the spherical shell, and applying the theory to problems in 
elasticity , thermoelasticity, viscoelasticity, and poroelasticity. The spectral theory allows 
for the unique representation (due to the completeness of the eigenfuctions) of the 
solution in terms of the geometry, loading, and elastic properties. 

Necessary and sufficient conditions for the Poisson’s ratio dependence of the stress in 
multiply connected domains in the presence of body force loading have been also 
obtained generalizing the classical Michell conditions.

5) Theory of Elasticity.
 (Publications# A.32, 33, 40, 41, 42, 45, 46, 47, 48, 50, 53, 54, 96)

The wedge paradox (and Saint Venant’s principle) was viewed from the point of interaction 
of a load induced singularity (concentrated moment, dislocation dipole, etc.) and a 
geometric singularity (wedge vertex, crack tip), and a new interpretation was given to the 
paradox.

Rigid line inclusions (coined anticracks) were considered as dual to cracks, and their 
interaction with load induced singularities was analyzed.  Green’s functions were given 
for point forces and dislocations in an infinite solid containing a rigid line inclusion.

 Interface conditions in elasticity: expressing continuity of displacement in terms of strains 
through the continuity of curvature.  Jump conditions and Cesaro integrals for slipping 
interfaces.
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General conditions for the reduction in the number of elastic constants in the stress 
dependence of multi-phase composites with bonded and slipping inclusions under body 
force and boundary traction loadings.  

 
6) Robotics
Publication# A.35 (The Geometry of Grasping) provides the solution to the problem of the 

number of fingers required to hold an object of arbitrary geometry in any position (that 
had been open for over a hundred years): (12 fingers for general geometry, 7 fingers for 
polyhedra, 4 with friction. We have five fingers, why?); it is a classic, of permanent value 
to robotics with 486 citations (according to Google Scholar), while the application of it 
A.31 has 236 citations.

7) Other topics

 1.Asymptotic homogenization (publications # A.123, A.125)
 2.Hadamard instability analysis for coupled mechano-thermo-chemical systems.  Conditions 

for “negative creep.”
3.Publications # A.77, 78, 82, 84, 128)
4.Third and fourth order elastic constants (crystal symmetries) 
(Publications # A.6, 9, 13, 11, 12, 13)
 4. High Frequency Vibrations of crystal plates under large initial deformation
(Publications# A.1, 3, 5, 7)
Miscellaneous topics
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