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ABSTRACT 
 
The dynamical fields that emanate from self-similarly expanding ellipsoidal regions undergoing 
phase change (change in density, i.e., volume collapse, and change in moduli) under pre-stress, 
constitute the dynamic generalization of the seminal Eshelby inhomogeneity problem (as an 
equivalent inclusion problem), and they consist of pressure, shear, and M waves emitted by the 
surface of the expanding ellipsoid and yielding Rayleigh waves in the crack limit. They may 
constitute the model of Deep Focus Earthquakes (DFEs) occurring under very high pressures and 
due to phase change. Two fundamental theorems of physics govern the phenomenon: the 
Cauchy-Kowalewskaya theorem, which, based on dimensional analysis and analytic properties 
alone, dictates that there is zero particle velocity in the interior, and Noether’s theorem that 
extremizes  (minimizes for stability) the energy spent to move the phase boundary so that it does 
not become a sink (or source) of energy, and which determines the self-similar shape (axes 
expansion speeds). The expression from Noether’s theorem indicates that the expanding region 
can be planar, thus breaking the symmetry of the input and the phenomenon manifests itself as a 
newly discovered one of a “dynamic collapse/ cavitation instability”, where very large strain 
energy condensed in the very thin region can escape out.  In the presence of shear, the flattened 
very thin ellipsoid (or band) will be oriented in space so that the energy due to phase change 
under pre-stress is able to escape out at minimum loss condensed in the core of dislocations 
gliding out on the planes where the maximum configurational force (Peach-Koehler) is applied 
on them. Phase change occurring planarly produces in a flattened expanding ellipdoid a new 
defect present in the DFEs. The radiation patterns are obtained in terms of the equivalent to the 
phase change six eigenstrain components, which also contain effects due to planarity through the 
Dynamic Eshelby Tensor for the flattened ellipsoid. Some models in the literature of DFEs are 
evaluated and excluded on the basis of not having the energy to move the boundary of phase 
discontinuity. Noether’s theorem is valid in anisotropy and nonlinear elasticity, and the 
phenomenon is independent of scales, valid from the nano to the very large ones, and applicable 
in general to other dynamic phenomena of stress induced martensitic transformations, shear 
banding, and amorphization.	
 
 
I.    Introduction 
 
An analysis is presented for the dynamical elastic fields that emanate from self-similarly 
expanding ellipsoidal regions where the material undergoes phase change (change in density i.e., 
volume collapse, and change in moduli under pre-stress). Self-similar expansion of the 
ellipsoidal surface of discontinuity starts from zero dimension with constant axes expansion 
speeds, with self-similarity grasping the early response of the system (e.g., Barenblatt, 1996). 
The problem constitutes the dynamic generalization of the Eshelby inclusion (Eshelby, 1957) 
problem with the “equivalent eigenstrain” obtained through the constant Dynamic Eshelby 
Tensor  (DET)  (Ni and Markenscoff, 2016, a, c). The emanated fields consist of P, S, and M 
waves, and we express the solution in terms of integrals over their slowness surfaces (rather than 
the unit sphere) in order to directly obtain the wave-front fields (“radiation patterns”) at the P 
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and S fronts and also near the surface of the expanding ellipsoid which is the M wave front. 
Because of the constant stress Eshelby property in the interior domain for self-similar expansion, 
constant tractions on the crack surfaces can be cancelled by those of an inclusion, and we thus 
obtain by a limiting process the elliptically expanding crack of Burridge and Willis (1969) where 
the M  waves yield the Rayleigh fields of elastodynamics. The M  waves also give the static 
Eshelby solution for the ellipsoid (Ni and Markenscoff, 2016c) in the particular limit where time 
goes to infinity and the axes speeds tend to zero, while their product tends to a constant, the axes 
lengths. In statics, crack solutions have been obtained as limits of Eshelby inclusions in Mura 
(1982) and more recently by Markenscoff (2018).  For the two respective limits, the Burridge 
and Willis (1969) self-similarly expanding elliptical crack and the static Eshelby inclusion, the M 
waves may be called “Burridge-Willis-Eshelby Waves”. We also refer to the works of Richards 
(1973, 1976) who solved the elliptically expanding crack by the Cagniard-de Hoop technique. 
 
Markenscoff and Ni (2010) analyzed a spherical inclusion with dilatational transformation strain 
expanding spherically in general motion  R = R0 + l(t)   by applying the expression given by Willis 
(1965) in terms of the dynamic Green’s function  integrated over an expanding region. Naturally, 
when applied to self-similar expansion  R =Vt  the solution of Markenscoff and Ni (2010) based 
on integrating the Green’s function on an expanding boundary coincides with the one of Ni and 
Markenscoff (2016, b) based on this self-similar approach, also in this paper. The M waves that 
arise in the self-similar expansion  R =Vt  can be shown to be produced from contributions of the 
wavelets emitted (and traveling at the pressure wave speed) by the expanding surface of the 
phase boundary at time  τ 2  (from the latest position of the expanding boundary that have the time 
to reach the field point (r,t)) while the wavelets  emitted from the earlier position  R =Vτ1   on the 
expanding inclusion that  have the time to reach the field point (r,t) are the P waves . The M 
waves have as degenerate wavefront the expanding surface of the sphere (ellipsoid). The nature 
of the M waves is seen in the present analysis as a slowness surface, where the governing 
equation for the expanding inclusion is made homogeneous by the application of the M operator 
as in Burridge and Willis (1969), and an additional slowness surface (the expanding ellipsoid) is 
generated (the solution expressed as integrals over the slowness surfaces). All the waves, P, S 
and M together satisfy zero initial and radiation conditions as required for the self-similar 
problem.  
 
For self-similarly expanding motion of an ellipsoidal surface due to stretch invariance the 
anisotropic inclusion with uniform eigenstrain is shown here on the basis of dimensional analysis 
alone and the ellipticity/ analyticity properties by means of the Cauchy-Kowalewskaya theorem 
(e. g, John, 1978) to have zero particle velocity in the interior domain. This is confirmed in 
isotropy by the full solution (Ni and Markenscoff, 2016a, eqtn (3.79)), where, in the 
corresponding expression of the particle velocity, the contributions of pressure P  and shear S  
waves are shown explicitly to be cancelled in the interior domain by the M  waves. As a result, 
no kinetic energy is radiated to the interior, and there is no focusing at the origin (with high 
stresses and dissipated energy), as it occurs in non-self-similar motion, such as in inclusions with 
time dependent eigenstrains  (Willis, 1965), and in generally accelerating motion of a spherical 
non-self-similar accelerating motion in Markenscoff and Ni, 2010. 
 
The self-similarly expanding ellipsoidal region of phase change under pressure is applied here to 
the modeling of deep focus earthquakes (DFEs), thought to be caused by high-pressure phase 
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transformation. For the concept of transformation strain in geophysics we refer to Rice, 1979. 
The radiation patterns obtained here for the particle acceleration in terms of the eigenstrains 
(equivalent to the phase change) can be used to relate seismic signals to information about the 
source. Nucleation in deep focus earthquakes (DFEs) happens at 400-700 kilometers under the 
surface of the earth where the mechanism is attributed to “polymorphic phase transitions under 
high pressures” of over 10GPa (Knopoff and Randall, 1970, Randall and Knopoff, 1970). 
Analog experiments (Meade and Jeanloz, 1989, 1991)  “recorded acoustic emissions and 
shearing instabilities due to rapid atomic motions across displacive phase transition in Si and Ge 
at pressures of 70 GPa, well above the brittle-ductile transition in both solids, not by fracturing or 
cracking of the samples”. There is additional literature including works regarding the olivine to 
spinel transition (Green and Burnley, 1989, Burnley and Green (1989), Green, 2007, Houston 
and Williams, 1991). Experiments were performed (Schubnel et al, 2013) on germanium olivine 
at 2 to 5 GPa to model in the laboratory the analog of deep focus earthquakes and found that 
“fault propagation must have been happening instantaneously as phase transition occurs”, and 
there has been a more recent quantitative modeling that is based on static micromechanics (Wang 
et al, 2017). The mechanism “ is poorly understood” (Wang et al, 2017) and the phenomenon has 
remained a deep mystery. Recent publications by Li et al (2018) and Romanowicz (2018) 
attribute the DFEs to anisotropy. 
 
The DFEs are modeled as self-similarly expanding ellipsoidal regions of phase change  
nucleating under prestress and assumed to grow at constant rate ; the phase change is an 
equivalent transformation strain obtained by the Dynamic Eshelby Tensor (DET) which depends 
on the yet undetermined axes speeds that are the variables of the problem. A central result of this 
paper is the determination of the shape that will be assumed by the self-similarly expanding 
region of phase change. Following Eshelby (1970) for statics, we postulate here as  
“equilibrium” shape of the self-similarly expanding phase boundary (it scales as   t2  )  the one that 
has invariance of the Hamiltonian (total strain and kinetic energy) under infinitesimal translation 
of the inhomogeneity position. On the basis of Noether’s theorem (1918) it will have to assume 
the shape that extremizes (minimizes, for stability) the energy-rate spent to move the 
inhomogeneity position, and for the boundary not to become a sink (or source) of energy it 
requires that under total loading the dynamic J integral (Rice, 1968) vanishes. This will 
determine the axes speeds. It may be noted that the variation of the Hamiltonian in an 
infinitesimal variation of the inhomogeneity position is given by the dynamic J integral if and 
only if linear momentum is preserved in the domain (Gupta and Markenscoff, 2012).  
 
The expression from Noether’s theorem gives as a possibility that the normal boundary velocity 
be equal to zero. Thus, a major result is obtained, which is that the expanding region of phase 
change can propagate planarly for minimization of the energy spent in the expansion process 
(for any type of eigenstrain), which constitutes a symmetry breaking of the input (Markenscoff, 
2018). It has been called a dynamic collapse instability by R. Jeanloz and a dynamic 
cavitational instability by J.W. Hutchinson (private communications), cavitation for allowing 
the energy to escape out.  If the pre-stress is very high, the strain energy propagating in the very 
thin region can be finite, and not infinitesimal, with the eigenstrains becoming infinitely large, 
which explains why the phenomenon happens at the pressures of the deep earthquakes. The 
Dynamic Eshelby Tensor for the penny-shape flattened ellipsoid obtained here allows the 
solution of these problems where a 3D phase change is condensed into a 2D flattened ellipsoid 
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(“pancake”) so that the assumed shape can be the limit as the ellipsoid becomes flattened to a 
penny-shape ellipsoid or flattened elliptical cylinder (two-dimensional band, containing not only 
shear eigenstrain), as in Figure 1(b), (c), respectively. The planarity is consistent with 
observations in nature and the laboratory in analog experiments for DFEs (Schubnel et al, 2013, 
Wang et al, 2017), and in amorphization experiments under shock loading  (e.g., (Zhao et al, 
2017), and references within. 
 
In summary, it is demonstrated how two fundamental theorems of mathematical physics, the 
Cauchy-Kowalewskaya and Noether’s theorems, taken together result in maximizing the energy 
rate that is available to radiate out as seismic energy in this model. 
 

 
 
 
Figure 1: Schematics of the expanding ellipsoidal inclusion, penny-elliptical shape and 2D band, 
and wave-fronts (P in red, S in green and M in blue) 
 
On the perimeter of the flattened ellipsoid the expansion will be governed by the symmetry-
preserving factor of the driving force given by Noether’s theorem. The expression from 
Noether’s theorem gives the physical law (kinetic relation) that drives the expansion relating the 
applied load to the phase boundary velocity though the dynamic J integral for an interface. 
 
In the presence of unequal normal stresses, the flattened ellipsoid will orient itself in space on the 
planes of maximum shear stress where the Peach-Koehler type of configurational force will be 
maximum and the self-stress due to inertia can be overcome first.  This determines the 
orientation (Figure 2) where the motion starts and the directions (and magnitudes) of the axes 
speeds along which the dislocations (loops or straight) (produced by infinite large eigenstrains in 
the infinitesimally thin region) will glide with maximum velocity, and the phase change can 
escape out gliding condensed in the Burgers vector of a dislocation. 

A B C
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Figure 2: Orientation of the flattened ellipsoid/elliptical cylinder (band) in space with 
dislocations loops/ straight dislocations emitted on directions of maximum Peach-Koehler force 
applied on them. 
 
The radiation patterns for the particle acceleration at the wave-front are obtained and they relate 
it to the equivalent eigenstrain and the expansion speeds. There are six components of the 
eigenstrain, which are infinitely large in the infinitesimally thin region so that they produce finite 
displacement discontinuities (actually, rates of displacement discontinuities): the three of them 

  ε3i
*   produce the components of a Burgers vector of a dislocation loop in the limit of the flattened 

ellipsoid (“double couple”), while the in-plane components  ε11
* ,ε22

* ,ε12
*  are different in nature. The 

self-similarly expanding flattened penny-shape inclusion containing in-plane transformation 
strains may be considered a new singular dynamic defect (also square-root singular as the crack) 
and the analysis has to be produced. In particular, one such defect is volume collapse (change in 
density) that may break symmetry and propagate planarly with in-plane (infinite large) 
eigenstrains. This is a defect that is not occurring in shallow earthquakes, and can differentiate 
them from the deep ones. The radiation patterns have shear contributions unless there are onkly 
three equal longitudinal eigenstrains, which is not the case if the defect is planar (flattened 
ellipsoid). 
 
While the phenomenon of expanding regions of phase change under pressure as manifested in 
DFEs occurs at large scales, it is valid independently of scale, from the nano to the very large 
ones, and is applicable to other phenomena of phase induced martensitic transformations under 
pressure (Escobar, et al 2000), amorphization (Zhang, et al, 2017), dynamic shear banding, etc. 
Noether’s theorem is valid in anisotropy and nonlinear elasticity. 
 
II. The waves of phase change from a self-similarly expanding ellipsoid  
 
(a) P, S, and M waves 
 
We consider a self-similarly expanding inclusion with uniform transformation strain (which will 
be the “equivalent eigenstrain of the phase change” problem) in the interior domain  
 



	 7	

 ε lm
* (!x, t) = ε lm

* H (t − (sr
2xr

2 )1/2 ) ,                (1) 
 
where xi  is the position vector, t  the time, 1 / s1,1 / s2 ,1 / s3 , are the axes speeds of the expanding 
ellipsoid in the argument of the Heaviside step function 		H .( ) . 
 
The governing equations expressing conservation of linear momentum in elastodynamics , where 
Cijkl  are the elastic stiffness tensor and ρ   is the density are (Ni and Markenscoff, 2016a, c) 
 

ρ
∂2u j

∂t 2
−Cjklm

∂2ul
∂xk ∂xm

= −Cjklmε lm
* ∂
∂xk

H (t − (sr
2xr

2 )1/2 )               (2) 

 
with initial conditions 
 

 
!u(!x,0) = 0  and 

 

∂!u
∂t
(!x,0) = 0                 (3)                                                                                                     

 
and where vanishing radiation conditions at infinity are applied. In terms of the Navier operator 
of elastodynamics  
 

Ljl (
∂
∂t
,∇) = ρ ∂2

∂t 2
δ jl −Cjklm

∂2

∂xk ∂xm
                (4) 

 
with δ ij  denoting the Kroenecker delta, the system (2) is written as  
 

Ljl (
∂
∂t
,∇)ul = −K j (∇)H (t

2 − sr
2xr

2 )
   

with  K j (∇) = Cjklmε lm
* ∂
∂xk

           (5) 

 
The system (2) was solved by the Radon transform (e.g., Willis, 1973, Wang and Achenbach, 
1994)  in Ni and Markenscoff  (2016, a). Here we follow the method of Burridge and Willis 
(1969) for the elliptically expanding crack. We introduce the operator 
 

M{ ∂
∂t
,∇} = ∂2

∂t 2
− 1
sr
2
∂2

∂xr
2  which satisfies the identity M 2{ ∂

∂t
,∇}H (t 2 − sr

2xr
2 ) = 8π

s1s2s3
δ (t)δ (x)  

              
so that, with the application of Duhamel’s principle the governing system of equations becomes 
the homogeneous system of equations  
 

M 2{ ∂
∂t
,∇}L{ ∂

∂t
,∇}u = 0

            
t > 0               (6) 

 
with inhomogeneous initial condition 
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 ∂k ui (0) / ∂t
k = 0  for  k = 1,2, 3, 4  and ∂5ui (0) / ∂t

5 = −8π / (ρs1s2s3 )Kiδ (x)                                        (7) 
 
The solution of the system (6) under the initial conditions (7) consists of contributions from the 
poles of the differential operators L  and M , which give waves emanated from the three 
slowness surfaces, SP ,  S S , SM    (the first two corresponding to the poles of  L  , and the third 
one to those of M ), which, for an isotropic material with Cijkl = λδ ijδ kl + µ(δ ikδ jl +δ ilδ jk )  ,  where 
λ  and µ  denote the Lame’ constants, are: 
 

SP :  ξ 2 =
ρ

λ + 2µ
=
1
a2

, SS :  ξ 2 =
ρ
µ
=
1
b2

, SM : ξ1
2

s1
2 +

ξ2
2

s3
2 +

ξ3
2

s3
2 = 1                  (8) 

 
and where  a  and b   denote the pressure and shear wave speeds. The solution of (6) with (7) is 
obtained following the procedure in Burridge and Willis (1969) in terms of integrals over the 
slowness surfaces, rather than over the unit sphere as in Ni and Markenscoff, 2016a, c), since in 
this formulation we can readily obtain the wave front behavior for the radiation patterns for the P 
and S waves and also for the  M  wave front (surface of the ellipsoid).  By asymptotically 
expanding around the M wave front we obtain the crack limit and Rayleigh waves as we will 
show below. The solution for the displacement is 
 

ul (x,t) =
1

π s1s2s3
Nlk (1,ξ )Kk (ξ )

∂D / ∂γ (1,ξ )M 2 (1,ξ )SL
∫∑ (t + ξ ⋅x)sgn(t + ξ ⋅x) dS

∇γ L (ξ )
 

− 1
4πs1s2s3

ρLlk
−2 (1,ξ )Kk (ξ ) (t + ξ ⋅ x)sgn[{

SM
∫ (t + ξ ⋅ x)− (t −ξ ⋅ x)sgn(t −ξ ⋅ x)]  

+Llk
−1(1,ξ )Kk (ξ )(ξ ⋅ x)H (t − ξ ⋅ x )} dS

∇γ M (ξ )
            (9) 

 
with, for isotropy, 
 

 Kk (
!
ξ ) = Cjklmε lm

* ξ j = λεmm
* δ jkξ j + µ(ε jk

* + ε kj
* )ξ j  

 

and where Nij (γ ,ξi )   and D(γ ,ξi )  are defined by  
  
L−1

ij (γ ,ξi ) =
Nij (γ ,ξi )

D
   

with Nlj (γ ,ξ ) = ρ[(γ 2 − a2 |ξ |2 )δ jl + (a
2 − b2 )ξ jξl ]  and D(γ ,ξ ) = ρ 2 (γ 2 − b2 |ξ |2 )(γ 2 − a2 |ξ |2 )           

   γ
Μ (
!
ξ ) = ±(ξk

2 / sk
2 )1/2

 ,    
∇γ (
!
ξ ) = (ξk

2 / sk
4 )1/2

                                                                                (10)  
 
The solution (9) satisfies the Hadamard jump conditions across a moving surface of 
discontinuity, with normal boundary velocity  !l , which are 
 

 
[[∂ul
∂t
]] = − !l[[ ∂ul

∂xm
]]nm   and  

 
[[σ ijn j ]] = −ρ!l[[∂ui

∂t
]]                 (11) 
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with the brackets denoting  the jumps across the moving interface.  
 
For the expanding ellipsoid the normal  

!n  at a point ( x1, x2 , x3 ) on the boundary is 

 
!n = (s1

2x1,s2
2x2 ,s3

2x3) / (sk
4xk

2 )1/2 , the velocity vector is ( x1 / t, x2 / t, x3 / t ), and it can be written as, 
((1 / s1)cosθ sinφ,(1 / s2 )sinθ sinφ,(1 / s3)cosφ)  --where the angles θ  and φ  are those of spherical 
coordinates--, and the normal velocity  !l  is its projection on the normal vector which is  
 
!l = 1/ (sk

4 (xk / t)
2 )1/2 . 

 
It may be remarked that the solution obtained for a spherical inclusion in self-similar expansion 
(Ni and Markenscoff, 2016b) giving the P, S and M waves coincides with the one of 
Markenscoff and Ni (2010) obtained by the Green’s function method for a spherically expanding 
inclusion with general acceleration when applied to self-similar expansion. 
 
 
Radiation patterns 
 
We next obtain the radiation patterns for the particle acceleration at the P and S wave fronts 
following  Lighthill, 1960, and Burridge, 1967. Singularities occur when the plane   t +

!
ξ ⋅ !x = 0  

is tangent to the slowness surfaces   S
L ,S M   at the point   

!
ξ0 . The particle acceleration is  

 

 

∂2ui (
!x,t)

∂t 2
= 1
πs1s2s3

Nlk (1,
!
ξ )Cjklmε lm

* ξ jδ (t +
!x ⋅
!
ξ )

∂D / ∂γ (1,
!
ξ )M 2 (1,

!
ξ )

dS
!
∇γ L (

!
ξ )SL

∫
 

 
+ 1
4πs1s2s3

−2ρLik
−2 (1,
!
ξ )Cjklmε lm

* ξ jδ (t +
!x ⋅
!
ξ ){

SM
∫

 

 

+ Lik
−1(1,
!
ξ )Cjklmε lm

* ξ j δ (t +
!
ξ ⋅ !x)+ t ′δ (t +

!
ξ ⋅ !x)⎡⎣ ⎤⎦} dS

!
∇γ M (

!
ξ )

           
(12) 

Based on the above expression for the particle acceleration, the jump at the wave front   
!
ξ0  is 

obtained following Lighthill (1960) and Burridge (1967), as  
 

 

!!ul t,
"x( )⎡⎣ ⎤⎦ =

−2 f
"
ξ0( )

s1s2s3K
1/2
"
ξ0( )

H t +
"
ξ0 ⋅
"x( )

"x
                              

(13) 

 
where   K (

!
ξ0 )   is the Gaussian curvature of  S L  at   

!
ξ0  , and where  

 
 

 

f
!
ξ0( ) = Nlk 1,

!
ξ0( )Kk

!
ξ0( )

∂D / ∂γ 1,
!
ξ0( )M 2 1,

!
ξ0( )

1
!
∇γ L

!
ξ0( )  

                       
(14) 
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For the P   wave-front   K1/2 = a  : 
 

 

!
ξ
2
= 1/ a2  , 

 
γ L
!
ξ( ) = a !ξ , M 2 = 1− 1

a2
x̂1
2

s1
2 +

x̂2
2

s2
2 +

x̂3
2

s3
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

2

, ∂D
∂γ

= 2ρ 2 λ + µ
λ + 2µ

= 2ρ
a2

λ + µ( ) , 

Nlk 1,ξ( )
∂D / ∂γ 1,ξ( )M 2 1,ξ( ) =

a4ξ̂lξ̂k
2ρ a2 − p2( )2

 , p2 = ξ̂k
2

sk
2  ,   

		 

!
∇γ L

!
ξ( ) = a

                    
(15)

	

 

Setting 
 

!
ξ0 = − x̂

a
, where   x̂  is a unit vector at the P  wave-front, the radiation pattern for 

acceleration emitted by an expanding three-dimensional ellipsoidal inclusion with eigenstrain   ε ij
* , 

at the P  front we have the radiation pattern 
 

 

∂2ui
∂t 2

=
λδ jkεmm

* + µε jk
* + µε kj

*( ) x̂i x̂k x̂ j
πρa3s1s2s3 1−

1
a2

x̂1
2

s1
2 +

x̂2
2

s2
2 +

x̂3
2

s3
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

2

H t −
!x
a

⎛
⎝⎜

⎞
⎠⎟

!x
                     

(16)

	
 
and, analogously, at the S  wave-front we have 
 

Nlk 1,ξ( )
∂D / ∂γ 1,ξ( )M 2 1,ξ( ) =

b4 δ lk − ξ̂lξ̂k⎡
⎣

⎤
⎦

2ρ b2 − p2( )2                        
(17) 

and we obtain the radiation pattern at the shear wave-front	

 

∂2ul
∂t 2

=
δ lk − x̂l x̂k[ ] λδ jkεmm

* + µε jk
* + µε kj

*( ) x̂ j
πρb3s1s2s3 1−

1
b2

x̂1
2

s1
2 +

x̂2
2

s2
2 +

x̂3
2

s3
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

2

H t −
!x
b

⎛
⎝⎜

⎞
⎠⎟

!x
                     

(18) 

	
	
The shear contributions in (18) will only vanish if there are three equal longitudinal eigenstrains, 
but that is not the case for the flattened ellipsoid, where the third eigenstrain is necessarily 
unequal (through the dynamic Eshelby Tensor for the penny-shape) so there will always be both 
P and S wave radiation due to planarity. 
 
There are six components of the eigenstrain, which are infinitely large in the infinitesimally thin 
region so that they produce finite displacement discontinuities (actually, rates of displacement 
discontinuities): the three of them   ε3i

*  are the components of a Burgers vector and produce a 
dislocation loop in the limit of the flattened ellipsoid. In the limit, as the third axis speed goes to 
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zero, if we set lim
1/s3→0

1 / s3ε3s
* = bs , we retrieve the radiation patterns expression (a double couple, 

modified with a coefficient for the expanding ellipsoid) in the Burridge and Willis (1969) crack 
(which has a typo). The in-plane components  ε11

* ,ε22
* ,ε12

*  are different in nature (non double 
couple). Volume collapse propagating planarly in a circular penny-shape will produce equivalent 
to the volume change eigenstrains  ε11

* ,ε22
*  , and  ε33

*   obtained through the Dynamic Eshelby 
Tensor (for the penny-shape self-similarly expanding ellipsoid) where the  planarity effect gives 
a Poisson’s ratio dependence in the eigenstrains which might be misinterpreted as anisotropy in 
the moment tensor used in seismology. 
 
The above radiation patterns depend on the “equivalent” eigenstrain, which is a function of the 
input parameters of pre-stress and phase change and the expansion speeds   1/ si  .  The expansion 
speeds themselves are functions of the phase change and pressure determined in the sequel from 
Noether’s theorem, so that the boundary does not become a sink (or source) of energy. 
 
(b) Self-similarity and dimensional analysis: zero particle velocity in the interior domain 
 
From the field solution for the displacement equation (10) the particle velocity is obtained in the 
form of integrals over the slowness surfaces as 
 
∂ul
∂t
(x,t) = −1

π s1s2s3

Nlk (1,ξ )Cjkpqε pq
* ξ j

∂D / ∂γ (1,ξ )M 2 (1,ξ )SL
∫∑ sgn(t −ξ ⋅x) dS

∇γ L (ξ )
 

+ 1
2π s1s2s3

ρLlk
−2 (1,ξ )Cjklmε lm

* ξ j sgn{
SM
∫ (t −ξ ⋅ x)

 
−Llk

−1(1,ξ )Cjklmε lm
* ξ j (ξ ⋅ x)δ (t − ξ ⋅ x )} dS

∇γ M (ξ )                           
(19) 

 
The critical property of the self-similarly expanding inclusion is that the contributions from the 
slowness surfaces pertaining to the pressure and shear waves are cancelled by those of the M  
surface in the interior domain, as the corresponding terms (integrated though over the unit 
sphere) can be identified in the expression given in Ni and Markenscoff (2016, a, eqtn 3.79). It 
must be noted here that for self-similar expanding motion these contributions to the particle 
velocity have constant values in the interior domain (and are not singular at the origin). 
 
The	governing system of p.d.e.’s (2) for general anisotropy with initial conditions (2) is stretch-
invariant (Ni and Markenscoff, 2016a) so that the number of independent variables can be 
reduced by one, and it allows for a self-similar solution in terms of the variable  

!z = !x / t  and the 

function 
 
φ(!z , t) =

!u(!x, t)
t

. In the new variables, the system is easily shown  (Ni and Markenscoff, 

2016a) to be elliptic in the region z <υ0
min  (in the interior of the velocity surfaces for an 

anisotropic solid corresponding to the operator L ), in which region the pertinent determinant 
does not vanish, while in the exterior the system is hyperbolic.  
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We then consider the fundamental properties of the system (2) with initial conditions (3). In the 
interior domain of the expanding anisotropic inclusion the system is an elliptic system of partial 
differential equations with analytic coefficients. The Cauchy-Kowalewskaya theorem (e.g. John, 
1978) will provide the solution fully determined in the region of analyticity from the initial 
conditions (3) (on the displacement and particle velocity). Since these are zero, then the solution 
will be zero everywhere in the region of analyticity, which is the interior domain of the inclusion. 
Thus, the vanishing of the particle velocity in the interior domain is dictated by dimensional 
analysis alone and analytic arguments (answering a question asked by J.R. Rice in 2015 at the 
Broberg meeting, “what follows from dimensional analysis alone? ”) so that the  M   waves have 
to be emitted to cancel the pressure and shear ones to fulfill this requirement. Note that for 
subsonic motion the inclusion lies within the region of ellipticity of the system of p.d.e’s and this 
is the reason that the property is valid only for subsonically expanding inclusions.  
 
 (c) The phase change as an equivalent eigenstrain of the expanding ellipsoid with phase 
change under pressure 
 
Following here the method of Eshelby (1957) for an inhomogeneity under prestress, the full field 
quantities for the expanding ellipsoidal region with phase change problemunder prestress are the 
superposition of the uniform pre-stress field   σ ij

0   and the solution of the equations (2) with (3), 
with eigenstrain  equivalent to the change in moduli under prestress as shown in this section. 
 
For isotropic materials the displacement gradient can be explicitly calculated and the Eshelby 
property of constant constrained strain is proven explicitly (Ni and Markenscoff, 2016a,c). From 
eqtn (10) we obtain the displacement gradient as integrals over the slowness surfaces,  
  
 
∂ul (x,t)
∂xm

= 1
πs1s2s3

ξmNlk (1,ξ )Kk (ξ )
∂D / ∂r(1,ξ )M 2 (1,ξ )SL
∫∑ sgn(t + ξ ⋅ x) dS

∇γ L (ξ )
 

− 1
4πs1s2s3

2ρξM Llk
−2 (1,ξ )Kk (ξ )H (t − ξ ⋅ x ){

SM
∫  

+ξM Llk
−1(1,ξ )Kk (ξ ) H (t − ξ ⋅ x − tδ (t − ξ ⋅ x )⎡⎣ ⎤⎦} dS

∇γ M (ξ )
           (20) 

 
In the interior domain, in equation (20), by the Schwarz inequality, the step and signum functions 
are 1, the delta function zero, and thus, the displacement gradient does not depend on the 
position  and we have the Eshelby property extended to dynamics (Ni and Markenscoff, 
2016a). From (20) the Dynamic Eshelby Tensor (DET)    Sijkl

dyn(1/ si ) , defined by the relation of the 

strain to the eigenstrain ε ij = Sijkl
dynε kl

*  , is constant in space and time, depending  on the axes speeds

  1/ si   and was obtained for isotropic materials by Ni and Markenscoff, 2016c, in terms of 
integrals over the unit sphere. The constant DET allows to solve the problem of a self-similarly 
expanding ellipsoidal inhomogeneity with  “phase change” . Due to change in moduli to    Cijkl

*   as 

the inhomogeneity expands in a matrix with constants  Cijkl under a uniform applied strain   ε ij
0  at 

 
!x
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infinity (prestress), the “phase change” is an equivalent  “eigenstrain”   ε ij
*   . If there is a change in 

density, i.e., a volume collapse, with a corresponding trace of the strain  ε kk
vc , then the volume 

collapse is equivalent to an eigenstrain   ε ij
*vc such that  

 
   ΔV / V = ε kk

vc = (1/ 3)Smmij
dyn (1/ sr )ε ij

*vc ,                                                                                                      
(21) 
 
so that the components of    ε ij

*vc   are dependent on the axes speeds (shape). In the presence of both 
modulus drop and volume collapse, we will have ε ij** = ε ij

* + ε ij
*vc   as in Eshelby (1957), and 

equation 
 

  Cijkl
* (ε ij

0 + Sklmn
dyn (1/ sr )εmn

** − ε kl
*vc ) = Cijkl (ε ij

0 + Sklmn
dyn (1/ sr )ε kl

** − ε kl
**)                                                                        

(22) 
 
expresses the point-wise Hooke’s law (Eshelby, 1957). Eqtn (22) can be separated into a 
volumetric and a deviatoric part (Eshelby, 1957). The components of equivalent eigenstrain   ε ij

*vc  
due to volume collapse in eqtn (21) are determined through the DET and they contain the effects 
of the geometry, such as expanding penny-shape, for planar propagation. 
 
Equations (22) are also applicable for interior anisotropy   Cijkl

*   (see Eshelby, 1961, for statics) but 
not exterior anisotropy (when the DET is not known) in a matrix of isotropic material with Lame 
constants  (λ,µ)  when they are written as 
 

  Cijkl
* (ε kl + ε kl

0 ) = λ(ε kk − ε kk
* + ε kk

0 )δ ij + 2µ(ε ij − ε ij
* + ε ij

0 )                                                                     (23)  
 
Anisotropy has been considered central in DFEs in recent literature (Li et al (2018) and  
Romanowicz (2018)). We may remark that the DET for the sphere Ni and Markenscoff (2016,b) 
is smaller than the static one for subsonic motion, and, if this is also true for the ellipsoid, the 
system (22) would be always invertible for ε ij*  (see also, Markenscoff, 2016). The equivalent 
eigenstrain ε ij**  depends through (22) on the axes speeds, which will be determined below in 
terms of the input parameters. 
 
(d) A limit yields the Burridge and Willis (1969) elliptically expanding crack and Rayleigh 
waves 
  
An important limiting property of the expanding ellipsoidal inclusion with eigenstrain arises 
from the fact that the Burridge and Willis expanding elliptic crack solution can be retrieved, as 
anticipated by them, and, hence, the natural name to give to these waves is “Burridge-Willis-
Eshelby Waves”. The crack solution is obtained in the limit of an ellipsoidal inclusion as the 
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speed of the third axes tends to zero, i.e.
   

1
s3
→ 0 , and the eigenstrain  ε31

*  tends to infinity, in 

such a way that 
 

 
lim
1
s3→0

1
s3
ε3i
*( ) = lim1

s3→0
1
s3
∂ui

*

∂x3

⎛
⎝⎜

⎞
⎠⎟
= const = Δ !ui

*            (24)  

 
tends to a constant, the rate of displacement discontinuity		 Δ !ui

* , with crack opening displacement 
 

 Δui (x1, x2,t) = Δ !u*i (t
2 − s1

2x1
2 − s2

2x2
2 )

1
2H (t 2 − s1

2x1
2 − s2

2x2
2 )                                                         (25) 

 
The constant interior stresses (Eshelby property in dynamics) of the self-similarly expanding 
(flattened) inclusion with eigenstrain  ε ij

*   can cancel constant applied tractions on the crack faces 
(since in the Hadamard condition (11) the R.H.S is zero across the crack faces), satisfying the 
equation 
 
σ 3i
0 +C3imn Smnkl

dyn ε kl
* − εmn

*( ) = 0  ,                                                                                                      (26)  
 
which determines the corresponding eigenstrain as to cancel the applied tractions   σ 3i

0  . The idea 
of obtaining a crack solution from an inclusion in statics is initially due to Eshelby (1957,1961) 
and treated in Mura, 1982, chapter 5 and is due to the constant stress Eshelby property in the 
interior domain. Recently a full analysis for the Griffith cracks as limits of Eshelby inclusions 
was presented in Markenscoff (2019). 
 
The elliptically expanding crack surface is actually the slowness surface  S M  that is a degenerate 
wave-front with the curvature becoming infinite at the elliptical tip of the crack. The near tip 
field is obtained by the asymptotic expansion near the M wave-front according to Burridge and 
Willis (1969) and we will follow them to obtain the traction on the plane   x3 = 0  in front of the 
expanding flattened elliptical inclusion in the limit as it becomes a crack. The slowness surface
 S M   is  now a cylinder parallel to the  ξ3  axis,   ξ3 → ±∞  . The near tip field is obtained following 
Burridge and Willis (1969) for the asymptotic evaluation of the M slowness surface contribution 
in (20). The traction vector    

!
t (3)  on the plane in front of the elliptical edge with the normal 

boundary velocity 
 

1
!l2
= s1

2 cos2θ + s2
2 sin2θ , is obtained in the limit as  1/ s3 → 0  and   x3 → 0  , from 

 

ti
(3) = Ci3lm

∂ul
∂xm

= 		

 

= lim
1/s3→0

1
π s1s2

⎛
⎝⎜

Ci3lmξmNlk (1,
!
ξ )Ckn3qξn

ε3q
*

s3SL
∫ sgn(1+

!
ξ ⋅
!x
t
) dS
∇γ L (

!
ξ )
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− 1
4πs1s2

{2ρCi3lmξmLlk
−2Ckn3qξn

ε3q
*

s3
H (t −

!
ξ ⋅ !x

SM
∫ ) 	

 
+ Ci3lmξmLik

−1(1,
!
ξ )Ckn3qξn

ε3q
*

s3

⎡

⎣
⎢ 	

 

+Ci3k3(ξ1 = 0,ξ2 = 0,ξ3 = 1)
ε3k
*

s3

⎤

⎦
⎥ H (t −

!
ξ ⋅ !x )− tδ (t −

!
ξ ⋅ !x )⎡

⎣
⎤
⎦}

dS
∇γ L (

!
ξ )

																																							(27) 

 
 In (27) the leading contribution is from the M slowness surface, and the leading term of the 
integral over  (the axis parallel to  ξ3  ) near the inclusion (crack) edge is evaluated at 

x1 =
(1+ ε )t
s1 	

  ,x2 = 0,  x3 = 0 ,	 as  ε → 0  from the integral 

	
 
I ≈ lim

1/s3→0

1
4π

1
(2ε )1/2

{Ci3lmξmLlk
−1(1,
!
ξ )Ckn3qξn +Ci3q3}

ε3q
*

s3

⎡

⎣
⎢

⎤

⎦
⎥

−∞

∞

∫ dξ3 +O(1)
																																									(28) 

 with 

          
		

  ξ1 = s1
2x1 / t,ξ2 = s2

2x2 / t
 

         
 

Following Burridge and Willis (1969) the traction vector at a distance of order ε  from the axes 
tips of the expanding inclusion (crack)  

for prevailing plane strain, at x1 =
(1+ ε )t
s1

 ,   x2 = x3 = 0  , along the -  x1  axis, has stress intensity 

factors 
 

 
KI = 2εσ 33 ∼ Δ "u3

* µ 2R(s1 )
2ρ(s1

2 −1 / a2 )1/2
, 
 
KII = 2εσ 31 ∼ Δ "u1

* µ 2R(s1 )
2ρ(s1

2 −1 / b2 )1/2
                              (29)  

 
where 
 

  
R(s1) = 4s1

2 s1
2 −1/ a2( )1/2

s1
2 −1/ b2( )1/2

− 2s1
2 −1/ b2( )2

           (30)       
 
is the Rayleigh wave function, which vanishes as the speed 1/ s1   of the - x1  axis approaches the 
Rayleigh wave speed cR .  If, at this end, conditions of anti-plane strain prevail due to  Δ !u2

* , we 
have asymptotically 
 

 
 
KIII = 2εσ 32 ∼ Δ "u2

* (−µ)(s1
2 −1/b2 )12

2                                                                                       (31) 
which vanishes as the boundary propagates at the shear-wave-speed b. 
 
        
III. The shape of the self-similarly expanding ellipsoidal inclusion 
(determination of axes speeds) and a dynamic cavitational instability 

 S M
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The criterion for the assumed self-similar shape of a region of phase change is based on the 
extension of the static “equilibrium shape” of a region of martensitic transformation due to 
Eshelby, 1970, to self-similar dynamics, where the geometrical shape of the ellipsoidal boundary  
(with constant axes speeds) is independent of time (with the surface area scaling as t 2 ). In non-
self-similar expansion wavelets emitted from one position would alter the shape at another point 
at a later time when they reached that point, and the shape changes as a function of time. 
 
Eshelby, 1970, reasoned on a basis of translational invariance in a thought experiment to reach 
the conclusion that we must have   δ Etot = 0  for the static equilibrium position of phase 
boundaries. Indeed, the “equilibrium shape” is the one that, when assumed,  

  
ΠH (ui ,ui, j ) = W (xi

Ω
∫ ,ui ,ui, j )dV

                                                                                                    (32)    
 
the Hamiltonian energy of an elastic body with strain energy density W  under total loading will 
be invariant under any family of infinitesimal translations (parallel displacement) of the 
inhomogeneity position   xk

* = xk + εak ,   ui
* = ui , (Figure 3). 

 

 
 
Figure 3: Translation of the inhomogeneity position 
 
 
Then, according to Noether’s theorem (i.e., Gelfand and Fomin p. 177) the shape will be an 
extremal surface of   ui (xi )  on which the total variation of the total energy of the body under an 
arbitrary translation  δξl = εal  of the inhomogeneity position should be equal to zero, i.e.,   
 
δEtot = δΠH = − δξl ([[W ]]δ lj− <σ ij > [[ui,l ]])

S
∫ dSj = −δξl Jl

dyn =

− δξk ([[W ]]− <σ ij > [[ui, j
S
∫ ]])dSk = 0                                                           (33)                                           
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as in Eshelby,1970.  The double brackets [[ . ]]  denote jumps across the phase boundary and <.> 
denotes the average of the values across the two sides of the interface (surface of discontinuity), 
with the quantity in parenthesis being the energy-momentum tensor. 
 
To quote Eshelby (1970) : “Eqtn (33) can be used to find the equilibrium positions of phase and 
twin boundaries in the presence of stresses produced by the transformation itself, or externally 
applied or both”. Eshelby (1970) further argued that, since   δ Etot = 0  must be zero for any 
arbitrary  δξk , the integrand in (33) must vanish, i.e., the “effective normal force” (Eshelby, 
1970)  , i.e., [[W ]]− <σ ij > [[ui, j ]] = 0                                                                                                           
must vanish point-wise all along the boundary. 
 
We extend the above static definition to elastodynamics with the Hamiltonian functional 
containing the strain energy density W and the kinetic energy density T, 
 

                                                                              
 
and, for the self-similarly expanding inhomogeneity, we postulate that the shape that the 
boundary will assume, and which is independent of time for self-similar expansion (just 
scaling in time), must be such that the rate of the Hamiltonian will remain invariant for any 
family of infinitesimal translations    xk

* = xk + εak ,uk
* = uk  of the inhomogeneity position. 

Consequently, by Noether’s theorem,  will be an extremal surface both of the rates of 
the Lagrangean and of the Hamiltonian  (since the variation of the Hamiltonian is minus to 
the variation of the Lagrangean for a purely mechanical system e.g., Stolz, 2003, Markenscoff 
and Singh, 2015), so that 
 
    δ !E

tot = δ !ΠH = 0 ,                                                                                                               (34) 
 
which is the generalization of (33) to the elastodynamic Hamiltonian. Thus, Noether’s theorem 
dictates that the system will take a shape that extremizes (minimizes for stability) the total 
energy spent to move the boundary. 
 
We then give to the inhomogeneity position a translation per unit time such that   ε !ak = ευk  where 

 υk  is the defect velocity. With the near-field asymptotic behavior of the dynamic field of the 
defect satisfying 

   u j ,kυk = !u j , we obtain from  J dyn  (Rice, 1968) the expression for the energy 
release rate for a moving surface of discontinuity S d   (the surface of the expanding ellipsoid), 
which is the instantaneous rate of energy flow through  S d , same as for a crack (without the 
brackets in Freund, 1972) due to self-stresses as 
 
 
   
δ !Etot / ε = !ak Jk

dyn =υk {[[W +T ]]nk − [[σ iju j ,k ]]ni}
S d
∫ dS = {[[W +T ]]υn + [[σ ij !u j ]]ni}dS

sd
∫                             

(35) 
 

  ui (xk ,t)



	 18	

The integrals in (35) can be easily shown to be path-independent of the shape of the surface of 
the flux surrounding the boundary  S d

  as it shrinks onto the surface of the ellipsoid, and, it may 
be noted, that the above expression of  Jk

dyn  is valid both in linear and nonlinear anisotropic 
elasticity.  
 
 Eqtn (35) with total loading (as eqtn 33) yields  
 

   
  δ !E

tot =
     

{[[(W +T )]]υn
S d
∫ + nj[[σ ij !ui ]]}dS = 0                                                                             (36)                          

 
                                                     

where  υn  is the normal boundary velocity on a contour surrounding the defect (Freund, 1972) 
and moving with it,  same as  in the notation in Appendix A. The interpretation of equation 
(36), and the criterion for growth is that the self-similarly expanding boundary will assume a 
shape such that the total energy flux through the moving boundary (with all loading included, 
external plus due to self-stresses) is zero. Equivalently, we can state that the moving boundary 
will assume a shape for which, under total loading, it will not become a sink or source of 
energy. 
 
The expression for the jump in the displacement gradient across the expanding ellipsoid of phase 
change under pre-stress is obtained in Appendix A by generalizing to dynamics the Hill jump 
conditions as in Markenscoff (2015). The jump quantities in (35)-(36) for self-similar expansion 
of an ellipsoidal inclusion are independent of time and depend only on the direction of the 
normal to the boundary and not time. Consequently, the integral in equation (35) with the self-
stresses scales in time as   t2 . The scaling of the integral is also valid in the limiting  “flat” cases 
of the ellipsoid as discussed further below.  
 
With the Hadamard jump conditions (11) equation (36) under total loading yields 
 

   
δ !Etot = lim

S d→0
!l([[W ]]− <σ ij

S d
∫ > [[ui, j ]])dS = 0             (37)  

 
Equation (37) is the expression for the energy release rate with the quantity in parenthesis being 
the “driving force” . There are two possibilities that the integrand in (37) is zero,  
 
 either    !l = 0  , or [[W ]]− <σ ij > [[ui, j ]] = 0                                                                                      (38)  

                                              corresponding to two different “modes” of  expansion governed by the boundary velocity   !l  .  
 
The first possibility of the normal boundary velocity    !l = 0  is satisfied on the upper and lower 
surfaces of the ellipsoid if they become flattened (  1/ s3 <<1/ s1,1/ s2  ) and   1/ s3 → 0  (circular 
penny-shape, or elliptical penny-shape,  Figure 2B), and in the two-dimensional limit of the 
ellipsoid becoming an elliptic cylinder , which, in turn, becomes flattened,   1/ s2 →∞,s1 / s3 → 0  , 
as a propagating band  (Figure 2C). The band may contain any type of eigenstrain, longitudinal 
and/or shear. Thus, no energy is expended to move the upper and lower surfaces, and this is the 

  !l
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mode of minimum energy lost by the system to move the boundary. This flattened mode    !l = 0  is 
a symmetry breaking instability, and may be called a “dynamic collapse/cavitation 
instability” (the names attributed to R. Jeanloz and J.W. Hutchinson respectively). For this to 
occur the strain energy rate in the very thin ellipsoid in the  

  
lim1/ s3 → 0  (that scales with a factor 

  4π t2 )  must be finite. i.e.,   
 

  
W / (s1s2s3) = lim

1/s3→0
(W / s3) / s1s2 = const

                                                                                    (39) 
                                                                             
where  W  denotes the strain energy density in the inclusion, computed by means of the DET for 
the flattened ellipsoid. This may occur in DFEs where the pre-stress is extremely high. It may be 
noted here that for the possibility that it becomes a needle (a question raised by R. Jeanloz) we 
would need to have 

 
 

 

  
W / (s1s2s3) = lim

s2→0
lim

1/s3→0
(W / s3s2 )s1 = const                    

                                               
(40) 

 
which means that the strain energy density  W would need to tend to infinity faster than in (39). 
  
The second possibility is that the second part in (38), which is the energy-momentum 
tensor/driving force, is zero on the whole boundary, which is symmetry preserving.  Symmetry 
will require energy to be spent to move the whole spherically expanding boundary, which as a 
maximum may be unstable for volume collapse, or, which it may not have enough to move the 
boundary, as discussed next for model B of Knopoff and Randall (1970) of drop of bulk modulus 
under pressure. 
 
We consider the case that the ellipsoid will flatten, which is the least energy consuming mode to 
move the boundary and is stable.  Equation (37) dictates that among all the possible 
orientations in the three dimensional space the ellipsoid will choose to flatten on that plane 
where the second factor becomes zero, i.e., where on the line part of the boundary the 
energy release rate becomes zero, so that 

   
δ !Etot = lim

S d→0
!l([[W ]]− <σ ij

S d
∫ > [[ui, j ]])dS = 0  is satisfied 

over the whole boundary, and the energy rate to move the boundary will be the minimum 
among all other orientations within the solid angle. If the integral in (37) along the line 
boundary is negative, the boundary will not move. It will expand on the plane on which the 
energy-momentum tensor (38b) first becomes zero (under total loading), and this will be 
the one of maximum Peach-Koehler type of configurational force applied on the moving 
boundary as to overcome the self-stress to move it. This determines both the magnitude 
and directions of the axes speeds. 
 
We may remark here that the axes speeds in the Burridge and Willis (1969) elliptically 
expanding crack may be determined by extremizing the total Gibbs free energy around the 
elliptical boundary by taking the variations with respect to the two axes speeds equal to zero, 
analogously to Mura, eqtns (27.25), 1982). 
 
IV. Model of Deep Focus Earthquakes (DFEs) 
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Based on the self-similarly expanding ellipsoidal inclusion we present a model for deep-focus 
earthquakes (DFEs).  Nucleation is assumed to occur as the material undergoes phase change (a 
change in the moduli and density (“volume collapse”) under high pressure. We will assume that 
an instability of phase change starts instantaneously from zero dimension and that the initiation 
of phase transformation may induce the instability to continue to grow by the same amount per 
unit volume and time. Moreover, we assume that the expanding region of  “phase change” is 
ellipsoidal in shape, expanding with constant axes speeds (to be determined) for some time t , 
until self-similarity is broken (due to interactions) and the scaling ceases. The equivalent phase 
change is obtained from equations (22) with the axes speeds in the Eshelby Tensor being 
unknown and determined from equation (37).  The field quantities are those obtained from the 
solution of the self-similarly expanding inclusion and the Dynamic Eshelby Tensor as a function 
of the eigenstrain and the axes speeds (Ni and Markenscoff, 2016c). 
 
Symmetry preserving spherical expansion and exclusion of DFE models in the literature 
 
We consider the cases where eqtn (38b) is satisfied point-wise on the expanding boundary, as 
would be the case for spherical symmetry of the input (loading, eigenstrain, geometry) and 
spherical expansion, where we have for the “driving force” per unit area in the direction of the 
normal 
 
   [[W ]]− <σ ij > [[ui, j ]] = 0                                                                                                           (41) 
 
We may note that, in the presence of dissipation, the right-hand-side of the equation of (41) will 
be not be equal to zero, but to a dissipative term    f ( !l)  depending on the boundary velocity, so 
that point-wise we have 
 
  
 
[[W ]]− <σ ij > [[ui, j ]] = f (!l)                                                                                                        (42) 

 
which is the equation that drives the expansion (kinetic relation, equation of motion), relating the 
pre-stress and the phase change to the axes expansion speeds involved in the field quantities. The 
effects of dissipation are to be explored in the future, as this study focuses on inertia only, but 
they can be large as in dislocations (Clifton and Markenscoff (1981)) 
 
For an expanding inclusion with eigenstrain in a homogeneous elastic material Markenscoff and 
Ni, (2010) have shown that the driving force can be further written as  
 
   [[W ]]− <σ ij

dyn > [[ui, j ]] = − <σ ij
dyn > [[ε ij

* ]] =<σ ij
dyn > ε ij

*                                                                    (43) 
 
 which is the same expression as in statics (Eshelby (1978), valid for  eigenstrain loading only 
and denoting the self-stresses by  σ ij

dyn  . The last expression in (43) corresponds to the one in 
Truskinovsky (1987).  In the presence of pre-stress, due to linearity   we superpose 
   σ ij =σ ij

0 +σ ij
dyn , and  eqtn (41) with (43) reads   
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   <σ ij > [[ε ij
* ]] = 0                                                                                                                        (44)                                                                                                          

 
so that 
 

  σ ij
0ε ij

*+ <σ ij
dyn > ε ij

* = 0                                                                                                                 (45) 
 
Equation (45) expresses the decoupling of the applied loading and the self-stress for a moving  
boundary with eigenstrain, as for dislocations Eshelby (1953), and gives physical meaning to 
equation (37) obtained from Noether’s theorem that a Peach-Koehler type of configurational 
force applied on the phase boundary by the pre-stress must balance the self-force needed to move 
the boundary, and yields a kinetic relation in the presence of inertia. For an expanding spherical 
inclusion the self-stress term in (45) was obtained by Markenscoff and Ni (2010, 2016). In 
Markenscoff (2010) are given the evolution equations for a plane and spherical phase inclusion 
with dilatational eigenstrain in general motion. 
 
The energetics to move the boundary of phase discontinuity as dictated by Noether’s theorem 
have not been considered in the seismology literature before, and, in view of that, we are 
reassessing whether some models proposed in the literature are possible. Equation (45) allows to 
determine whether the inclusion boundary has enough energy to propagate in self-similar 
expansion, and at what speed, given the input quantities, so that the deep focus earthquake 
becomes possible in this mode. Considering the energy expended  to move the boundary, we 
may remark that in dynamic fracture, in the self-similar growth of a plane crack at one-half the 
shear wave speed, about one third of the input energy is consumed in the fracture process 
(Freund, 1990, p329).  We examine below Model B of Knopoff and Randall (1970). 
 
Model B of Knopoff and Randall (1970) is the case of drop in the bulk modulus under pressure. 
We have checked the assumption of spherical growth and the calculation outlined below yielded 
numerically the result that the energy to move the boundary would exceed the available, and, 
thus, the spherical dynamic growth is shown not to be possible in model B. 
 
 The equivalent eigenstrain for change in bulk modulus under pressure is from (22) 
 

  ε kk
* = 3(K − K *)ε kk

0 /{K *Smmnn
dyn + (3− Smmnn

dyn )K}                                                                               (46)  
  

with Skklldyn = (1+ v
1− v

) (1+ 2V / a)
(1+V / a)2

 ( based on Ni and Markenscoff, 2016b), 

 
 and equation (45) yields 
 
σ ij
0ε ij

* − 2µ(3λ + 2µ) / (λ + 2µ)ε *2   
−2µ(3λ + 2µ) / (λ + 2µ)(V / a)2 (3−V / a) / [(1+V / a)(1− (V / a)2 ]ε *2 = 0                                            (47) 
 
where the first term is of the Peach-Koehler configurational type, and the second term is the 
static term (same as in Eshelby, 1978) that would need to be overcome before the motion 
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starts,and the third is the “drag-force” due to inertia. It was obtained in Markenscoff and Ni 
(2016) for an inclusion with eigenstrain in a homogeneous material, which we are applying for 
the eigenstrain being the equivalent eigenstrain in a homogeneous inclusion. However, this may 
be approximate, since it may differ for eqtn (42) for an inhomogeneity, where the external stress 
has to be computed as in Appendix A. Considering that σ ij

0ε ij
* = 3Kε kk

0 ε * , and in view of (46) 

relating the eigenstrain to the applied strain  ε kk
0  , the term ε *2  will factor out in (47) , and 

numerical calculations have shown that the energy to move the boundary would substantially 
exceed the input energy. In addition, of course, dissipative loss would need to be overcome. 
Thus, the analysis has to be obtained of whether drop in bulk modulus under pressure has enough 
energy to propagate planarly as circular penny-shape, on its own. 
 
Essentially, in the Eshelby approach, the equivalent eigenstrain due to drop in moduli under 
pressure is proportional to the pressure (eqtn (22). If you increase the pressure, the eigenstrain 
increases, so the pressure increase does not give enough driving force to move the boundary, 
because the eigenstrain induced by pressure also has increased proportionally. However, if you 
have change in density (“volume collapse”), this is an equivalent eigenstrain which in magnitude 
is independent of the pressure (eqtn (21)). So more pressure will provide more energy to move 
the phase boundary in volume collapse that has eigenstrain independent of the pressure (this does 
not include the deformation due to the pressure itself). So, volume collapse under high enough 
pressure has enough energy to expand spherically and also simultaneously with bulk modulus 
drop (it would provide the difference). However, Noether dictates that in self-similar expansion 
the inclusion will take the shape that extremizes the energy to move the boundary, and for 
stability we may assume that the minimum (planarity) will be favored, and volume collapse may 
expand planarly, simultaneously with other phase change. Thus, the model of Randall (1964) 
with spherical expansion for change in density may not happen corresponding to a maximum of 
the energy spent to move the boundary that can be unstable.  
 
Symmetry breaking planar expansions of a region of phase change 
 
The symmetry breaking planar expansion is a flattened self-similarly expanding eIlipsoid 
(penny-shape), where the boundary shape (two axes speeds) are determined from equation (37). 
Except for special symmetric cases of loading and geometry it is not possible to satisfy point-
wise eqtn (38b), and eqtn (37) may be solved as a minimization problem,  that is not addressed 
here further. We will address some particular physical features of planar propagation (flattened 
ellipsoid). 
 
In the case that the pre-stress is not hydrostatic pressure, but, due to some tension added in some 
direction, the principal applied stresses become unequal, there will be planes of maximum shear 
at 45 degrees to the principal directions so that the flattened ellipsoid will orient itself on them 
(Figure 2). Equation (45) will express that the maximum in- plane shear acting on the flattened  
band/ellipsoid will produce the maximum Peach-Koehler force acting on a dislocation (line or 
loop), since in the very thin expanding ellipsoid the very large eigenstrain   ε3i

*  will give (in 
the limit with the thickness in the   x3  direction ) a finite rate of displacement  discontinuity 
(Burgers vector). Thus, suddenly emitted gliding dislocations will be produced on the 
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planes of max shear to glide out at maximum speed, with the strain energy produced by the 
phase change under pre-stress condensed into the core of the Burgers vector. 
  
The components of the eigenstrain   ε ij

*   in the flattened ellipsoid are six, the three of which will 
produce a dislocation loop (double couple) on a plane on which the ellipsoid is flattened (with 
the edge components giving a “double couple”), while the longitudinal in plane eigenstrain 
components in a very thin ellipsoid are a new dynamic defect. Knopoff and Randall (1970) 
describe a uniaxial longitudinal eigentrain as screw-pairs according to Weertman.  
 
A defect of a flattened ellipsoid will be volume collapse (change in density) that may break the 
3D symmetry and propagate the 3D phase change planarly with infinite large in plane 
eigenstrains. For this circular defect for isotropy, with the two in-plane longitudinal eigenstrains 
equal, equation (38b) can be satisfied pointwise, and we can determine the axes speeds when we 
obtain the self-force. This is a defect that is not occurring in shallow earthquakes. It is a “new” 
singular dynamic defect that can be viewed as the counterpart of the circularly expanding crack 
(Craggs, 1966), and may manifest itself in this phenomenon predominantly, differentiating the 
shallow and deep earthquakes. 
 
We may note that, for general time dependent eigenstrains, Willis (1965) found that inclusions 
do not yield a dislocation in the limit as Eshelby showed in statics; however, it has to be 
investigated whether this is the case for self-similar motion of the inclusion. It is conjectured that 
the limit gives a dislocation loop in self-similarly expanding motion based on the fact that the 
static Eshelby inclusion is a limit of the self-similarly expanding one (Ni and Markenscoff, 
2016c). The motion of dislocations jumping to constant velocity (but starting from rest) was 
analyzed in Markenscoff (1980) and Markenscoff and Clifton (1981). The self-force, or “drag-
force”, or energy-release rate, needed to be provided for a dislocation to jump from rest to a 
constant velocity was obtained in Clifton and Markenscoff (1981), with the difference here being 
that they are generated instantaneously and not from rest. Additional dissipation effects for 
motion of dislocations are discussed in Clifton and Markenscoff (1981). 
 
V. The dynamic Eshelby Tensor for the penny-shape ellipsoid 
 
Both cases of penny-shape ellipse and flattened elliptical cylinder  (band) can be computed by 
means of the Dynamic Eshelby Tensor (DET) for the particular limiting planar cases of the 
ellipsoid, which are of the same form as the static ones (see Mura, 1982), but with the ratio of 
axes speeds in place of the ratio of the axes lengths, which has been also confirmed numerically 
from the full three dimensional expression of the DET in Ni and Markenscoff, 2016 c). This is 
because the static Eshelby Tensor is obtained from the dynamic one only from the contributions 
of the M waves. For example, Figure 4 plots the component   S1313

dyn   for the ellipsoid given in [Ni 
and Markenscoff, 2016c, eqtn 3.9] as an integral evaluated numerically, and compares it with the 
analytical (asymptotic) penny-shape value for it from the expression in Mura , 1982, eqtn, 
(11.23) for the penny-shape inclusion, but with ratio of the axes speeds in the place of  the 
lengths, i.e.,  
 

  S1313
dyn( penny−shape) = (1/ 2){1+ (ν − 2) / (1− v)(π / 4)s1 / s3}                                                                         (48) 
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Figure 3. Dynamic Eshelby Tensor component for penny-shape ellipsoid ( v = 0.25 ) 
 
The agreement is very good for the expansion speed of the third axis (flattened ellipsoid) up to 
 10−2  of the in-plane speed. All computations of the expanding flattened ellipsoids, as in Figures 
1b, 1c, can be computed with the expressions for the Dynamic Eshelby Tensor obtained from the 
corresponding static penny-shape (e.g., Mura, 1982) 
 
  
 
VI. Conclusions 
 
In conclusion, we have treated the problem of a self-similarly expanding region of phase change 
(change in density, i.e., volume collapse, and change in moduli) under pre-stress, with the phase 
change being an equivalent eigenstrain (obtained through the Dynamic Eshelby Tensor) in the 
dynamic generalization of the Eshelby ellipsoidal inclusion problem. The axes speeds are the 
variables of the problem, and, for self-similar expansion, Noether’s theorem dictates that they 
will take the values that extremizes (minimizes for stability) the total energy spent to move the 
boundary, and that it does not become a sink or source of energy. A particular possibility given 
by the expression derived from Noether’s theorem is that the ellipsoid is “flattened” making the 
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expanding region of phase change planar, which constitutes breaking of the symmetry of the 
input and a newly discovered mode of dynamic cavitational instability or collapse instability. 
The planarity is preferred for stability and the ellipsoid takes a flattened shape; in the presence of 
shear orients itself in space in the directions where the Peach-Koehler force can first generate the 
defect (dislocations at 45 degrees). The difference with the shallow earthquakes is that the 
eigenstrains produce cracks with no stresses inside, while in the phase change DFE models we 
have in-plane components which produce a counterpart new defect.  “Volume collapse” (change 
in density) may break the symmetry and preferably propagate planarly (for energy minimization) 
so that the 3D phase change is condensed into the two-dimensional expanding region with phase 
change (circular in isotropy), and the planarity will manifest itself in the radiation patterns 
through the effects of the Dynamic Eshelby Tensor. The flattened penny-shape expanding 
ellipsoid is a fundamental new problem of a dynamic defect to be solved. The radiation patterns 
are obtained in terms of the eigenstrains (phase change) and the axes speeds, and the model 
opens the field for further investigation with regard to seismological data.  Both theorems, the 
Cauchy-Kowalewskaya and Noether’s are valid also for anisotropic elasticity. However, for self-
similarly expanding anisotropic inclusions we have not yet proven the Eshelby property for the 
interior domain and we do not have the Dynamic Eshelby Tensor, although an anisotropic 
interior in an isotropic matrix is obtainable by the isotropic Dynamic Eshelby Tensor as shown 
here. For full anisotropy in static inclusions the Eshelby property was proven by Willis (1970), 
and we conjecture that it is true also for self-similarly expanding anisotropic inclusions. The 
planarity (symmetry breaking) due to Noether’s theorem (valid in nonlinear anisotropic 
elasticity) is independent of scale, valid from the nano to the very large (kilometers) one, and 
models analogous to the one for DFEs can be developed for other phenomena, such as the 
dynamic stress inducement of martensitic transformations (Escobar et al, 2000), dynamic shear 
banding, and amorphization (Zhao, et al, 2017).  
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Appendix A 
 
The jump in the displacement gradient across the self-similarly expanding ellipsoidal  
inhomogeneity boundary. 
 
We can generalize the Hill (1961) jump conditions to dynamics across the expanding ellipsoidal 
inclusion, as in Markenscoff (2015) (where a typo needs to be corrected with   Cijkl

*   in eqtn (28)). 
We write as in Hill (1961) 
 
[[uk ,l ]] = λknl         

                       
(A1) 

 
where the vector λk  will be determined point-wise by satisfying the Hadamard jump conditions. 
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Using the Hadamard equations (11) 
  

   [[σ ij
0 +σ ij ]]nj = ρ !l[[∂ui / ∂t]]                                                                                                    (A2) 

 
and with   σ ij

0 = Cijkluk ,l
0  we obtain 

 

   {Cijkl[[uk ,l ]]+ ΔCijkluk ,l
0 + ΔCijklSklmn

dyn εmn
** }nj = ρ !l2[[∂ui / ∂x j ]]nj                                                         (A3)     

 
 (having used the other  Hadamard condition in (11) ), so that from (A3) we have an equation for
λk  
 
Kik

mbλk = −{ΔCijklε kl
0 + ΔCijklSklmn

dyn εmn
** }nj      

                        
(A4) 

 
with 
 

 
Kik

mb = {Cijkl − ρ!l2δ ikδ jl}njnl       .                                                  
                          

 
 
We invert as in Mura, 1982,eqtn 6.8, and obtain 
 

 
λi = −{ΔCjkmnεmn

0 + ΔCjkmnSmnrs
dyn ε rs

**}nkNij (γ ,
!n) /D (γ , !n)                            

                           
(A5) 

 
with    γ

2 = !l2ξiξi  
 
The exterior stress σ ij

+  is then computed and it depends on the applied strain   ε ij
0  , the phase 

change  ΔCijkl  , the ellipsoid axes expansion speeds, the equivalent eigenstrain, the Dynamic 
Eshelby Tensor and the direction of the normal, but not on time. 
 
  
 
 
 


