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Symmetry-breaking instabilities in high- pressure phase transformation produce the 
counterintuitive phenomenon of “volume collapse” producing only shear radiation, with little, or 
no, volumetric component, even under conditions of full isotropy, and explain the mystery of the 
long-standing observations in deep-focus earthquakes (400-700 km). Due to instability, at a 
critical “nucleation pressure”, an arbitrarily small densified region, in the shape of a “pancake-
like” flattened ellipsoidal Eshelby inclusion, grows self-similarly as a “lacuna” (zero particle 
velocity) with the phase transformation occurring under conditions of equilibrium in uniform 
strain/stress and at constant potential energy (at the vanishing of the M integral, when the 
radius-expanding driving force   pε kk

*  overcomes the radius-shrinking self-force). The symmetry-
breaking flattened shape favors minimization of the energy needed for the boundary to grow 
large, while for the accommodation of the large collapsing volume in the very thin inclusion 
deviatoric stresses are developed to avoid openings and overlaps. It is shown that, if an 
arbitrarily small flattened densified region is generated planarly, and the pressure exceeds the 
critical nucleation value, then it will necessarily produce a shear seismic source, with little or no, 
volumetric component, nucleated and driven to propagate by the pressure. The ellipsoid of phase 
change forms in the direction that minimizes the interaction energy with the pre-stress field and 
will be close to the direction of max shear pre-stress in the mantle. The obtained 
stress/deformation fields of a densified 2D flattened elliptical inclusion constitute a new defect 
that models the “anticrack” in geophysics and densified shear bands. The instability analysis can 
be extended to the nucleation and growth of the phase transition from water to a solid ice phase 
under high pressure, with the discovered instabilities providing insight to other phenomena of 
dynamic phase transformations, such as failure waves, amorphization, planetary impacts, etc. 
	
I . Introduction 
 
In a series of papers (Ni and Markenscoff, 2016a,b), Markenscoff (2019b), the solution to the 
dynamic generalization of the seminal Eshelby inclusion problem (Eshelby, 1957), which is the 
self-similarly expanding ellipsoidal inclusion with uniform transformation strain, was obtained 
extending the work of Burridge and Willis (1969) and Burridge (1971) on the self-similarly 
expanding crack. The dynamic problem has the static constant stress “Eshelby property” in the 
interior domain (Burridge and Willis, 1969, Ni and Markenscoff, 2016a), allowing for the phase 
change problem to be solved as equivalent eigenstrain (Markenscoff, 2019b). For the self-
similarly expanding ellipsoid with uniform transformation strain the governing hyperbolic system 
of pde’s exhibits a weak lacuna topological property (Atiya et al, 1970), (Burridge and Willis, 
1969), “a traveling zone of absolute quiet” (Burridge, 1967), so that in the interior of the self-
similarly expanding ellipsoid the particle velocity is zero, as shown explicitly in (Ni and 
Markenscoff, 2016a, Markenscoff, 2021). The constant stress “Eshelby property” has for over 
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half a century deeply affected the understanding of defects and inhomogeneities (Eshelby, 1957, 
1961). For an avalanche model of Stage II dislocation plasticity L.M. Brown writes in the 
Cavendish Magazine, issue 21, March 2019 : “The Eshelby theorem ensures that the strain/stress 
is uniform if and only if the inclusion has an ellipsoidal shape” (Markenscoff, 1998). “This 
ensures that inside the ellipsoidal shape all dislocations move together, as each has the same 
stress acting on it”. The avalanche phenomenon could be connected to the unstable growth of the 
region of volume collapse treated here. Thus, with the “lacuna” property, the phase 
transformations in the self-similarly expanding region can take place under equilibrium 
conditions, and, as shown here, at a critical pressure grow unstably at a constant rate at constant 
potential energy. Here, we will be focusing on the phase transformation due to change in density 
(“volume collapse”) and the instability created under pressure. The lacuna property and dynamic 
Eshelby problem for the ellipsoid is also valid for Newtonian fluids (Eshelby 1957, Bilby et al, 
1975, Markenscoff, 2021) and the dynamic nucleation and growth of phase transition from fluid 
(water) to a solid phase of ice under high pressures can be analyzed analogously to Markenscoff 
(2020), or here, providing insight into phase transformations occurring at different depths in  
Earth’s mantle (e.g, Tschauner, et al 2018). 
 
The shape of the self-similarly expanding regions of phase change is dictated by Noether’s 
theorem (Noether, 1918), which allows for an instability to occur and the expanding inclusion to 
assume a flattened “pancake”/band shape (Markenscoff, 2019b), which minimizes the energy 
needed for it to grow large (Markenscoff, 2020). The deformation field will be analyzed as the 
asymptotic limit of the flattened Eshelby inclusion (penny-shape) as it accommodates in a 
vanishingly small thickness a very large change of volume collapsing under pressure, in 
conditions of full isotropy. We will show, through the vanishing of the M integral (Jackiw, 1972, 
Budiansky and Rice, 1973) for invariance of the Hamiltonian under scaling, that at a critical 
value, the pressure acting on the flattened surface of the expanding ellipsoid of phase change 
provides enough driving force (which equals the pressure times the change in volume   ε kk

* ) to 
drive the expansion unstably, overcoming the self-stresses, once an arbitrarily small flattened 
inclusion has been generated (which is assumed, with the analysis not saying how it was 
generated). The analysis in this work presents instabilities of regions of phase transformation 
under pressure that can manifest themselves in deep earthquakes as well as in other phenomena of 
dynamic phase transformation under shock loading, such as amorphization (Zhao et al, 2016a, 
2016b) displaying similar features of densified ellipsoidal regions, and failure waves (Kanel et al, 
1991, Clifton, 1993, Espinosa et al, 1997, Said and Glimm, 2018). To demonstrate the main 
effect of the instability phenomenon we will focus the analysis on phase transformation involving 
change in density (as equivalent transformation strain of  “volume collapse”   ε kk

* ) in full isotropy; 
however, all the properties of the dynamic Eshelby problem are extendable to full anisotropy 
(Willis, 1971). For the application to the specific phase transformations in the deep-focus 
earthquakes the analysis would need to be reworked along the Willis Fourier transform approach 
and be evaluated numerically. 
 
Deep-Focus Earthquakes (Frohlich, 2006) (at 400-700kms) are an almost century-old mystery in 
geophysics, expressed in a recent statement (Wang et al, 2017) “how fractures initiate, nucleate, 
and propagate at these depths remains one of the greatest puzzles in earth science”. The deep-
focus earthquakes are different from the shallow ones that are due to brittle failure, because, 
under the very high pressures, the material is above the brittle-ductile transition; consequently, 
the phase transformation hypothesis (e.g., from metastable olivine to denser wadsleyite or 
ringwoodite) (Zhan, 2020, Burnley and Green, 1989) has been advocated as the most prevalent 
one (Zhan, 2020) with supportive evidence of geological material densities and analog 
experiments (Frohlich, 1989, Meade and Jeanloz, 1989,1991, Schubnel et al, 2013). Meade and 
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Jeanloz (1989) recorded emissions at 70GPA for a phase transition from  β  -Sn to a simple 
hexagonal structure in Ge, interpreted as an indication of the deep-focus earthquakes being a 
“shear instability”. The puzzle arises  “with the main issue being that a large volume change 
associated with phase transition would produce an isotropic component in the seismic focal 
mechanism in disagreement with most observations” (Meade and Jeanloz, 1991), as shear sources 
with no, or very little, volumetric radiation were observed consistently over a long time (Zhan, 
2020, Frohlich, 1989) with the statement that “any successful model of the deep-earthquake 
source must explain why deep earthquakes are predominantly deviatoric” (Frohlich, 1989). 
Knopoff and Randall (1970) proposed the model C producing a CLVD (Compensated Linear 
Vector Dipole) shear radiation, while a volumetric source with change in density was treated in 
spherical expansion by Randall (1964). Since, despite modeling by classical plasticity and 
advanced numerical techniques, the generation and propagation of the big earthquakes has 
remained unanswered e.g., Wang et al, 2017, the phase transformation hypothesis seemed to be 
losing ground and other venues were pursued, such as anisotropy, but the obtained CLVD was 
qualified as “artifact” of anisotropy in Zhan (2020). While the phenomenon of one fault initiating 
others as in a “self-organization” model in Green and Burnley (1989) is plausible, the present 
analysis focuses on one source being nucleated and driven to propagation before such interactions 
take place, and for which the self-similar expansion solution applies (Barenblatt, 1996). A main 
characteristic of deep-focus earthquakes is that they occur planarly, e.g., Frohlich, 1989, Schubnel 
et al, 2013. The analysis in this work obtains the stress and deformation field of a densified three-
dimensional flattened ellipsoid and of the flattened densified two-dimensional elliptical cylinder 
(band). This is the correct mechanics of the “densified anticrack” by Burnley and Green (1989), 
which is the prevalent model for deep earthquakes (Zhan, 2020). The “densified anticracks” are 
not the opposite of the Griffith crack, as incorrectly assumed in the aforementioned publications, 
but densification should also affect the in-plane direction; they constitute the new defect analyzed 
here. It is shown that the densified planar inclusions, in order to accommodate a large volume 
collapse into a very thin inclusion develop unequal eigenstrains, and, consequently, deviatoric 
stresses that produce to leading order distortional strain energy density, even under conditions of 
full isotropy.  Most significantly, because of the densification, it is shown here that “densified 
anticracks” do not “fail in shear mode under deviatoric stress” as stated in Zhan, 2020, Fig 5 (and 
has been implied in the literature all along), but they fail in shear mode under pressure (acting on 
the volume phase change), which is a central point in the analysis in this paper.  
 
 
II.  The nucleation of a 3D shear source as successive instabilities of “volume collapse” 
under pressure 
 
We shall assume fully isotropic conditions in material symmetry and a pre-stress of hydrostatic 
pressure, in order to demonstrate that a shear seismic source is nucleated even without deviatoric 
component in the pre-stress, or other asymmetries. The relaxation of some of the symmetries 
produces a Double Couple (DC), in addition to the CLVD. The densified region is modeled as a 
self-similarly expanding Eshelby ellipsoidal inclusion (Markenscoff, 2019b) (“pancake-like”) 
containing uniformly distributed transformation eigenstrain  ε ij

*  equivalent to the change in 
density. In geophysics the eigenstrain was first called “stress-glut” in Backus and Mulcahy 
(1976). The governing equation of elastodynamics for the displacement   u j (x,t)  of the self-

similarly expanding ellipsoidal inclusion, with constant axis speeds   1/ si  , (si for slowness), 
starting from zero dimension with zero initial and radiation conditions, is 
 



	 4	

ρ
∂2u j

∂t 2
−Cjklm

∂2ul
∂xk ∂xm

= −Cjklmε lm
* ∂
∂xk

H (t − (sr
2xr

2 )1/2 )                                                     (1) 

 
and constitutes the dynamic generalization of the Eshelby inclusion problem (Ni and 
Markenscoff, 2016a,b). The pre-stress is added to the stresses derived from equation (1).  Due to 
dimensional analysis and analytic properties the system reduces to an elliptic system in the 
variable    

!z = !x / t , and there is no particle velocity in the interior domain (Ni and Markenscoff, 
2016a), which is a “lacuna” because the M waves emitted by the expanding phase boundary (as to 
satisfy the Hadamard jump conditions on the interface) cancel the particle velocity due to the  P 
and S , and lock-in a constant (spatially and temporally) stress field in the interior of the self-
similarly expanding ellipsoid (Ni and Markenscoff, 2016a, Markenscoff, 2021). Thus, the phase 
transformation takes place under conditions of equilibrium (consistent with Incel et al, 2019) and 
under uniform stress; the Eshelby assumption of uniform eigenstrain in the inclusion is justified 
on the argument that, if the instability starts with a given change in density, it can continue at the 
same rate under constant potential energy, as shown below. The M waves give the static Eshelby 
ellipsoidal inclusion as a limiting case (Ni and Markenscoff, 2016b, Markenscoff, 2021). 	
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Figure 1: (A) A self-similarly expanding ellipsoidal inclusion with uniform transformation strain 

  ε ij
*   (change in density  ε kk

* ) emits pressure (P) waves, shear (S) waves and (M) waves emitted by 
the phase boundary, which is the degenerate M wave-front (eqtn(1)); the M waves cancel the 
particle velocity of the P and S in the interior of the inclusion (“lacuna”), and lock-in a constant 
stress interior field, so that the phase transformation occurs under equilibrium conditions and 
grows at a constant rate at constant potential energy (Fig 4). The inclusion assumes a flattened 
“pancake-like” shape (symmetry-breaking) to minimize the energy for the boundary of phase 
change to grow large and develops deviatoric eigenstrains (and stresses) to maintain material 
continuity. In (B2) the ellipsoid of phase change   ε ij

*  orients itself in a direction ψ  that minimizes 
the interaction energy (eqtn(2)) of the inclusion of phase change (“volume collapse”) with the 
pre-stress field   σ ij

(0)  (in (B1)). 
 
The shape and the energetics of the growth of moving defects are governed by Noether’s  (1918) 
theorem of the calculus of variations in a variable domain. The surface of the densified inclusion 
is a surface of discontinuity of the strain energy density and of the displacement gradient, and the 
mismatch between the two creates “an effective force” (configurational) on the interface, 

  dFl = [[Plj ]]njdS , where   Plj =Wδ lj −σ ijui,l  is the “energy-momentum tensor” (e.g. Eshelby, 1970, 

1977) , 
  
δ !Etot = δ !ξl

S
∫ dFldS   is the change in the total energy (Gibbs’ free energy (Eshelby, 1961)), 

due to a displacement of the interface by  δξl  .  Under total loading, the total configurational force 
on the interface has to vanish so that the moving boundary does not become a sink or source of 
energy (Markenscoff, 2019b). Ensuring that, the self-similar shape of a surface of discontinuity is 
obtained by use of Noether’s theorem for invariance of the Hamiltonian under translation 
(Markenscoff, 2019b), and the total energy-release rate on a contour surface  S d  surrounding the 
defect and shrinking onto it (independently of the shape of the shrinking contour) must be zero, 
i.e.,  
 

   
δ !Etot = − lim

S d→0
{[[W +T ]]υn + [[σ ij !ui ]]nj}dS =

S d
∫ − lim

S d→0
!l([[W ]]− <σ ij

S d
∫ > [[ui, j ]])dS = 0

        (2)
 

 
 where   υn ≡ !l   denotes the outward normal boundary velocity, the strain energy density in the 

inclusion with eigenstrain is   W = 1/ 2σ ij (ε ij − ε ij
* ) = 1/ 2Cijkl (ε kl − ε kl

* )(ε ij − ε ij
* )  , the double 

brackets denote jumps, and <.>  denotes the average across the surface of discontinuity. Eqtn (2) 
allows the possibility of a flattened shape with    !l = 0  in a symmetry-breaking instability, which is 
consistent with observations on deep earthquakes (e.g., Schubnel, et al, 2013). Eqtn (2)  also 
determines the direction in which the ellipsoid forms, minimizing the interaction energy of the 
ellipsoid of phase change with the pre-stress field if included in the field quantities in (2) (Fig 1 
B).  As shown in Markenscoff, 2020, the flattened shape minimizes the energy spent to expand 
the region of phase discontinuity as the radius of the flattened pancake inclusion becomes large 
(tending to infinity), as compared to the sphere that minimizes it for small radius (tending to 
zero), --the corresponding M integrals vary as   a2  versus   a3 --. We may note that Hurtado and 
Kim (1999) used the 3D M integral for the stability analysis of penny-shaped dislocation 
instability. 
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We proceed to analyze the self-similarly expanding penny-shape inclusion with change in density 
assumed to be produced by unknown eigenstrains with trace equal to the “volume collapse”   

  ε kk
* = (dV − dV0 ) / dV0 = (ρ0 − ρ*) / ρ*  given at zero stress, when the inclusion is taken outside the 

matrix in the Eshelby thought experiment; upon re-insertion in the matrix the strain in the body is 

  ε ij = Sijkl
dynε kl

* , with  Sijkl
dyn  denoting the Dynamic Eshelby Tensor in the self-similar expansion 

obtained in (Ni and Markenscoff, 2016b) for isotropy; it is a function of the (constant) axes 
speeds and the Poisson’s ratio of the matrix. The isotropic Eshelby Tensor allows for the isotropic 
material in the matrix to transform to anisotropic in the interior (Eshelby, 1961), while the 
constant stress “Eshelby property” is valid in general anisotropy as shown by Willis, 1971, which 
allows to obtain the solution for an anisotropic material to transform into another anisotropic in 
self-similar expansion by the use of Fourier transforms. In the asymptotic analysis of a flattened 
ellipsoidal inclusion accommodating a very large change in density as the ratio of the axes speeds 
tends to zero (Fig 1A), in order for the total strain energy to be finite (and not zero) in the very 
thin inclusion (  1/ s3 → 0 ), the eigenstrains must tend to infinity   ε ij

* →∞  as the ratio of the axes 

speeds (small to large) tends to zero,    s1 / s3 → 0 , so that their product 
  

lim
ε ij

*→∞,1/s3→0
s1 / s3ε ij

* → const is 

a finite constant. For simplicity, and to focus on the flattened effect of symmetry breaking we will 
first consider penny-shape axisymmetry in the “pancake”, i.e.,  ε11

* = ε22
* ≠ ε33

* , and   1/ s1 = 1/ s2  . 

With the dynamic Eshelby Tensor in the asymptotic limit as   s1 / s3 → 0  the normal strain is 
(Markenscoff, 2019b, Mura, 1982, eqtns (11.23)), 
  

  ε33 = S33kl
dynε kl

* = 2{ν / (1−ν )}[1−{(4ν +1) / 8ν}π (s1 / s3)]ε11
* + [1−{(1− 2ν ) / 4(1−ν )}π (s1 / s3)]ε33

*

        
                                                                                                                                                       (3) 
 
which  gives the static limit, in the ratio of the axes lengths  

  
lim

t→∞,1/si→0
s1t / s3t → a3 / a1  , and 

consists of the contributions of the M waves (Markenscoff, 2019b). In order that the strain 

  ε33 → const  (and not infinite), so as to maintain material continuity (the faces of the pancake not 

to open or overlap as a very large (infinite in the asymptotic analysis) volume   ε kk
*  is 

accommodated in a very thin inclusion), we will impose the condition that the infinitely large 
terms in the eigenstrains cancel each other in equation (3), i.e., the zero-th order term vanishes by 
satisfying  2ν / (1−ν )ε11

* + ε33
* = 0 , which we call the “planarity condition”. The unequal principal 

eigenstrains have a mean value   εm
* = ε kk

* / 3= −(1− 2ν ) / 3νε33
* , which yields the deviatoric 

components of a CLVD (e.g., Julian et al, 1998), as 
 

 

  

ε11
* − εm

* 0 0

0 ε11
* − εm

* 0

0 0 ε33
* − εm

*

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= −(1+ν ) /{3(1− 2ν )}ε kk
*

−1/ 2 0 0
0 −1/ 2 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

                 (4a) 

 
If we remove the axisymmetry, and consider that the three eigenstrains are unequal, 

 ε11
* ≠ ε22

* ≠ ε33
* ≠ ε11

* , and also unequal in-plane axes speeds,   1/ s1 #1/ s2  , the volume change of the 
flattened ellipsoid is 
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ΔV / V = ε kk = Skk11
dyn ε11

* + Skk 22
dyn ε22

* + Skk 33
dyn ε33

* = [ν / (1−ν )+ (1− 2ν ) / (1−ν )π / 4(s1 / s3)]ε11
* +

[ν / (1−ν )+ (1− 2ν ) / (1−ν )π / 4(s2 / s3)]ε22
* + [1− (1− 2ν ) / (1−ν )π / 2(s1 / s3)]ε33

*

       (5)
 

 
so that, the “planarity condition” obtained from the vanishing of the zero-order terms in  ε33 ,  i.e.,  

 ν / (1−ν )ε11
* +ν / (1−ν )ε22

* + ε33
* = 0  , produces a zero change of volume   ΔV / V  radiation in 

equation (5), also for the pancake with unequal in-plane eigenstrains and axes speeds. 
 
For unequal in-plane eigenstrains,  ε11

* ≠ ε22
* , a double couple (DC) is produced in the last term (in 

addition to the CLVD’s), by decomposing as 
 

 

ε11
* 0 0

0 ε22
* 0

0 0 ε33
*

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 1/ 2

ε11
* 0 0

0 ε11
* 0

0 0 ε33
*

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+1/ 2

ε22
* 0 0

0 ε22
* 0

0 0 ε33
*

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+1/ 2

ε11
* − ε22

* 0 0

0 ε22
* − ε11

* 0

0 0 0

⎛

⎝
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⎜
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⎟
⎟

 
(4b) 
 
A double couple (DC) is also produced (in addition to the CLVD) by a “pancake” shape inclusion 
with change in shear modulus µ  under uniaxial extension, which is Model C in Knopoff and 
Randall (1970). Since they considered spherical growth of the region of phase change, they 
correctly predicted only a CLVD radiation for their model C. 
 
For the penny-shape dynamically expanding inclusion the interior stresses   σ ij = Cijkl (ε kl − ε kl

* )  
with inertia are (to leading order) 
 
   σ 11

int / 2µ =σ 22
int / 2µ = −ν / (1−ν )(ε11

* + ε22
* )− ε11

* = (1+ν ) / 2νε33
* = −(1+ν ) /{2(1− 2ν )}ε kk

* ,    (6a) 

   σ 33 ∼O(s1 / s3ε kk
* )                                                                                                                        (6b) 

   σ m = −(1+ν )2µε kk
* / 3(1− 2ν ) ≡ −Kε kk

*                                                                                      (6c) 
 
For infinitely large eigenstrains the in-plane normal stresses due to volume collapse occurring 
planarly are very large and tensile, while in the normal direction the stress is small, creating large 
deviatoric stresses; the mean stress is given by (6c).  
 
Having obtained the stress fields we can evaluate eqtn (2) and obtain the energetics of the 
“driving force” on the boundary of the self-similarly expanding “pancake” shape inclusion. “The 
driving force” on a surface of discontinuity per unit surface area was evaluated (Markenscoff and 
Ni, 2010) to be 
 
   f ≡ [[W ]]− <σ ij > [[ui, j ]] = − <σ ij > [[ε ij

* ]] =<σ ij > ε ij
*

                                                             (7) 
 
where the (self) stresses  σ ij   are those derived from eqtn (1) with zero initial conditions. We will 
proceed to consider the presence of pre-stress of an applied large hydrostatic pressure 

  p1
appl = p2

appl = p3
appl = pappl , so that the total configurational force (per unit area of the phase 
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boundary) is by linear superposition in elasticity   < pij +σ ij > ε ij
* , also Markenscoff (2010). We 

will evaluate eqtn (2) (Fig 2) on a contour surrounding the surface of the self-similarly expanding 
densified penny-shape inclusion with axes lengths   a1 = t / s1 = a2  , and the ratio   a3 / a1 = s1 / s3  . 

With   !l  denoting the outward normal boundary velocity (derived in terms of the axes speeds of 
the ellipsoid in Markenscoff, 2019b), we set    

!l = !λa3 = !λt / s3  on the upper and lower faces of the 

densified “pancake”, and    
!l = !λa1 = !λt / s1  at the tip perimeter, where !λ  is a dimensionless scaling 

parameter. We consider the scaling with  !λ  and eqtn (2) will reduce to the MO integral about the 
origin of the coordinate system. The M integral for scaling symmetry associated with dimensional 
analysis in theoretical physics (Jackiw, 1972) is a path-independent integral in anisotropic linear 
elastostatics and is derived from Noether’s theorem for invariance of the Hamiltonian Π  under 
scaling (e.g., Markenscoff and Pal Veer Singh (2015)). In self-similar dynamic expansion of the 
region of phase change, with no kinetic energy in the interior domain, for the M integral, as with 
the dynamic J integral (energy-release rate under translation (Markenscoff, 2019b, Rice, 1985), 
we have “contour independence” (rather than path-independence) as the contour shrinks onto the 
surface of the phase discontinuity and is independent of the shape of the shrinking contour in the 
limit (e.g. for dislocation, Clifton and Markenscoff, 1981), with the inertia effects to be discussed 
for the 2D case in the last section.  We consider quasi-static expansion and we evaluate the 
integral in (2) on the surface of the “pancake” (  a1 = a2 , a3 / a1 <<1 ) with the use of (7), and with 

   δ !a1 = !λa1 , and write the (quasi-static) M integral as, 
 

   

δ !E = −MO
!λ = !λ lim

a3/a1→0
a3{(σ 33 + p3

appl )ε33
* +1/ 2(σ 11

− +σ 11
+ + 2 p1

appl )ε11
* +1/ 2(σ 22

− +σ 22
+ + 2 p2

appl )ε22
* }2πa1

2 + !λa1Jtip (2πa1)

= [ lim
a3→0,ε ij

*→∞
a3{(σ 33 + pcr )ε33

* +1/ 2(σ 11
− +σ 11

+ + 2 pcr )ε11
* +1/ 2(σ 22

− +σ 22
+ + 2 pcr )ε22

* }− Jtip ]2πa1δ !a1 = 0

 
(8) 
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Figure 2: Nucleation instability is the self-similar growth by    δ !ai = !λai  of an arbitrarily small 

defect (3D penny-shape inclusion,   a1 = a2 , a3 / a1 <<1) at the vanishing of the M integral (i.e., at 
constant potential energy). The  Peach-Koehler “driving force” on a contour surrounding the 
pancake inclusion is provided by the leading  term   p(ε11

* + ε22
* + ε33

* )  (pressure times volume 
change) in the M integral in eqtn (8), and at the critical pressure it balances the self-stresses 

  ppancake
cr ε kk

* +σ 11
(int)ε11

* = 0  (radius-increasing driving force versus radius-shrinking self-force). The 
Jtip integral resisting the advance of the tip (in 2D, eqtn (50)) is of lower order in the ratio of the 
axes lengths a3 / a1 <<1  than the driving force   pε kk

*  .  
 
In eqtn (8) the Jtip integral is equal to the energy-release-rate G to advance the tip of the penny-
shape incrementally by   δa1  (Rice, 1985) and is obtained in section III, eqtn (50) for the 2D 
quasi-static case, while in eqtn (54) are included inertia considerations. In eqtn (8) the minus sign 
superscript denotes the limit of the quantities to the inner side of the surface of discontinuity and 
the plus sign the limit to the outer side. We note that the traction is continuous across the 
top/lower surfaces due to the vanishing of the boundary velocity for a “pancake”, that the external 
stress components  σ 11

+ ,σ 22
+   parallel to the interface are of the order of the ratio of the axes speeds 

(and, thus, lower than the interior in-plane stresses), and that the interior stresses  σ 11
− ,σ 22

− ,σ 33
−  are 

the stresses with inertia obtained in eqtns (6). Eqtn (8) has the same expression for equal or 
unequal eigenstrains in the pancake plane  (which produce an additional DC), so that the pressure 
acting on the change in volume is driving both the CLVD and DC propagation. 
 
The vanishing of the M integral in eqtn (8) produces a nucleation instability at the vanishing of 
the quantity in the brackets, which gives the critical value of the hydrostatic pressure, at which  at 
any arbitrarily small densified pancake-shape inclusion can grow incrementally by    δ !a1 = !λa1  

(scaling  with   !λ  ) at the same rate   ε kk
*   (uniform eigenstrain for Eshelby inclusions)  at constant 

potential energy of the system. In the words of an anonymous referee “the radius-expanding 
driving force on the surface of discontinuity overcomes the radius-shrinking self-force” in eqtn 
(8), where the Peach-Koehler force   p

crε kk
*   balances the self-forces, to the leading order,  for   

  ppancake
cr ε kk

* +σ 11
(int)ε11

* = 0 ,  yielding the critical pressure for the nucleation of a pancake-like 
densified 3D inclusion as, 
 

   ppancake
cr = (1+ν )(1−ν ) /{2(1− 2ν )2}µε kk

*

                                                                           (9a) 

 
The critical pressure to nucleate a densified  2D band is obtained in section III, eqtn (53), to 
leading order as                                            
 
      pband

cr = (1−ν ) / (1− 2ν )2µε kk
*

                                                                                           (9b) 
 
Equations (9)  show that, to leading order, the critical nucleation pressure depends only on the 
“volume collapse”,  Poisson’s ratio, and shear modulus, and are plotted in Fig 3. The pressure to 
nucleate a spherical inclusion was obtained in Markenscoff (2020)  as 

  p
cr (sph) = (2 / 9)µ(1+ν ) / (1−ν )ε kk

*  , (Fig 3, in blue), and it is much smaller than the pressure 
needed to nucleate a flattened shape densified defect in eqtns (9), which additionally contains a 
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CLVD shear deformation. This suggests that spherical inclusions may have been nucleated but 
not be able to grow larger, as they would require too much energy to grow to a large radius 
(Markenscoff, 2020), consistent with observations of planar zones and non-volumetric radiation 
in deep-focus earthquakes. It should be    noted that the self-similarly expanding Eshelby solution 
does not allow for a change in shape and self-similarity must be maintained, and the arbitrarily 
small generated densified inclusion must be considered of penny-shape (pancake-like) shape. The 
theory is not considering how the arbitrarily small flattened densified inclusion has been 
“generated”. “Nucleation” has been defined in Markenscoff (2020) as growth at constant 
potential energy from an (already “generated”) arbitrarily small size, and is used here in the same 
sense. In eqtn (8) the term of the Peach-Koehler driving force  p

crε kk
*  is larger than the resisting Jtip 

, ( eqtn (50) in 2D), so that the growth will be unstably fast --unhindered, as a collapsing “house 
of cards”-- in the absence of other dissipation, once nucleated. 
 
The total volumetric stress in the inclusion is the sum of the applied pressure   p

A( incl ) = Kε kk
(0)   

(pre-stress) plus the mean stress  p
I  in the inclusion (Eshelby, 1961), 

 
   p

inc = p A( inc) + pI ≡ Kε kk
(0) + K (ε kk − ε kk

* )                                                                            (10) 
 
 and, by comparison of eqtn (9) to eqtn (6c) (Fig 3), the critical pressure to nucleate the densified 
flattened inclusion is always larger in magnitude than the mean stress   p

I =σ mean = K (ε kk − ε kk
* )   

(or    p
I
), if the inclusion is a 2D band, while for the penny-shape it is larger for Poisson’s ratio 

>0.2 , which is indeed the case for olivine (0.29)  and geological materials at these depths 
(Dziewonski and Anderson, 1981). With a densification eigenstrain   ε kk

*  of the order of 10% , the 
nucleation pressure in eqtn (9) is in general agreement with values of the pressure at the depths of 
the deep-focus earthquakes (e.g. Dziewonski and Anderson,1981). Also, to be remarked, in 
serpentine acoustic emissions were recorded at pressures corresponding to depths below the 
seismic barrier at 700kms (Meade and Jeanloz, 1991), thus implying that some other phenomenon 
causes the seismic barrier (R. Jeanloz, private communication).  
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Figure 3: Shear seismic source: The magnitude of the critical pressure (  p

cr / µε kk
*  ) at nucleation 

of a 3D “pancake” (orange) and a 2D band (red ) as function of Poisson’s ratio (Poisson’s ratio 
is > 0.2 for the geological materials -- for olivine is 0.29-- at these depths (Dziewonski and 
Anderson (1981));  the large tensile mean stress (blue) in the inclusion due to “volume collapse” 

  ε kk
*  is cancelled by the large compressive pressure of the pre-stress, while, for small deviatoric 

pre-stress, the deviatoric stresses (due to deviatoric eigenstrains in the flattened shape,- 
“planarity”-) remain large and predominant, producing to leading order distortional strain 
energy density, and a shear- seismic source. The pressure needed to nucleate a flattened shape is 
higher than the one to nucleate a sphere (green), but the spherical inclusions require more 
energy to grow to a large radius. 
 
 
Thus, for a pre-strain   ε kk

(0)  of the order of the “volume collapse”   ε kk
* , the compressive pre-stress 

cancels the tensile stress   −Kε kk
* , and the remaining volumetric term  Kε kk  is of lower order 

according to eqtn (5) with the zero-th order terms vanishing (planarity condition). However, the 
deviatoric stresses in the inclusion 
 
   µ( ὲij

A + ὲij − ὲij
*)           (ij=11,22,33)                                                                                   (11) 

 
are large due to the large deviatoric eigenstrains   ̀εij

* , since the deviatoric pre-stress   µ ὲij
A  at the 

depths of deep-focus earthquakes is of much smaller order (Frohlich, 2006)  than the pressure, 
and it cannot cancel the ones due to the deviatoric eigenstrains (caused by the pancake geometry/ 
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“planarity condition”). Thus, the leading order contribution to the strain energy density in the 
flattened inclusion with large volume collapse under high pressure will be the deviatoric 
component, and the densified inclusion will constitute a shear seismic source, with zero, or 
negligible, volumetric component. Although the Eshelby property is not valid in nonlinear 
elasticity, the asymptotic analysis for the flattened inclusion differentiates the order of the 
eigenstrains (large/asymptotically infinite) from the order of the strains (small/finite), with the 
order of the pre-stress (large for pressure, small for deviatoric pre-stress) governing the behavior 
of the system, and yielding the predominantly shear-source behavior.  
 
We have shown that, under full isotropy in material, geometry and loading, a CLVD can be 
nucleated at a critical pressure. If we relax the symmetries, so that the eigenstrains  ε11

* ≠ ε22
*  are 

unequal, or assume the presence of a deviatoric pre-stress with change in shear modulus, this will 
produce a double couple  (DC) (Markenscoff, 2019b) added to the present analysis. The 
additional effects of change in bulk modulus can be included as equivalent eigenstrains, as in 
Markenscoff, 2020.	
For change in shear modulus (from µ  to  µ

* ) under the applied strain  ε31
(0) , we have the 

eigenstrain 
 
   ε31

* = (µ − µ*)ε31
(0) /{2S3131

dyn µ* + (1− 2S3131
dyn )µ}                                                                           (12a)                                                 

 
with   S3131

penny−shape = 1/ 2{1+ (ν − 2) / (1−ν )π / 4s1 / s3}  to the leading order for the penny-shape 

“pancake”. This produces in the “pancake” a shear strain,   ′ε31 = S31ij
dynε ij

* , and a shear stress 

  ′σ 31 = 2µ( ′ε31 − ε31
* ) = µ(ν − 2) / [2(1−ν )]πs1 / s3ε31

*  to be added to the pre-stress  σ 31
(0) so that 

  σ 31
tot =σ 31

(0) + ′σ 31 . 
 
For change both in bulk and shear moduli in an inhomogeneous inclusion under applied loading 
we write in the notation of Eshelby (Eshelby, 1961, Bilby et al, 1975) 
 

  K
*(ε kk

A + ε kk
C − ε kk

*cd ) = K (ε kk
A + ε kk

C − ε kk
** )                                                                            (12b) 

 

  µ
*( ὲij

A + ὲij
C − ὲij

*cd ) = µ( ὲij
A + ὲij

C − ὲij
**)                                                                           (12c) 

 

where   ε ij
** = ε ij

*cd + ε ij
*inh

is the total equivalent eigenstrain due to change in density and change in 
moduli (inhomogeneity), and the constrained strain with superscript C in Eshelby is the strain 
denoted without superscript in this text; see also, Mura, 1982, Markenscoff, 2020. 
  
The ellipsoid forms in the direction ψ  of minimization of the interaction energy (which is eqtn 
(2)), of the stress field due to the phase change in the pancake with the pre-stress (Fig 1 (B2)).  
For the 2D densified band the plane of the pancake will form with   Ox1 along the direction of the 
maximum shear pre-stress (bisecting the directions of max and min normal stresses) in the 
mantle, while for 3D pancake in the 3D pre-stress field it can be more complex (Markenscoff, in 
preparation). Within the pancake, the CLVD radiation direction will be according to eqtn (4a). 
 
The above instability analysis is extendable to a Newtonian fluid, for which the Eshelby  
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ellipsoidal inclusion property is also valid (Eshelby, 1957);  it was applied by Bilby, et al, 1975, 
for the change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix 
having a different viscosity and was extended to self-similar expansion by Markenscoff (2021). 
For the aqueous fluid, the displacement in eqtn (1) is the particle velocity, and the lacuna property 
also holds, so that the expanding region of phase transformation has zero particle velocity in the 
interior where the M waves cancel the P and S (Markenscoff, 2021). The phenomenon of the 
dynamic phase transition of a Newtonian fluid (water) to a phase of ice can be analyzed by this 
approach, and it has important implications as to where it may occur in Earth’s mantle (e.g., Bina 
and Navrotsky, 2000). The Eshelby method with the isotropic Eshelby Tensor (Ni and 
Markenscoff, 2016b) is applicable to a phase transformation where the interior transforms into 
anisotropic, while the matrix is isotropic (Eshelby, 1961). For solids, the critical instability 
pressure for spherical nucleation and growth of an inclusion undergoing change in density and 
bulk modulus at constant potential energy was obtained by Markenscoff (2020) as a function of 
Poisson’s ratio; however, for the water to ice transition, the relation between density and modulus 
has to be obtained from the equation of state as related to the pressure, which requires solving a 
nonlinear problem. The pancake-like expansion favors expansion to a larger radius than the 
sphere (Markenscoff, 2020) minimizing the energy spent to move the phase boundary. In the 
fluid, the pancake-like geometry will induce large deviatoric eigenstrains and deviatoric stresses 
according to the analysis presented here; however, if the applied loading can cancel these large 
deviatoric stresses, which may happen under uniaxial applied loading (producing a CLVD as in 
eqtn (4a)), then, to leading order, only volumetric strain energy will remain in the ice inclusion, 
inducing the emission of only pressure waves to the outside aqueous fluid. The phenomenon of 
water to ice transition (with volume increase) under uniaxial compression is the counterpart to the 
deep-focus earthquakes (with volume decrease) under pressure in solids described above, --
volumetric versus the distortional strain energies, respectively--. The presence of ice VII 
inclusions in diamond discovered in Tschauner, et al, 2018, indicates the presence of an adjacent 
aqueous fluid during the formation of the diamond in the Lower Mantle/Transition Zone, which 
may also imply a more complex interaction between the two dynamic phenomena, the ice 
formation and the phase transformation into diamond, or the deep-focus earthquakes. The strains 
in the self- similarly expanding pancake-like inclusion with ice, which are rates of deformation in 
the fluid, are of lower order (finite) than the rates of the eigenstrain (which tend to infinity in the 
asymptotic analysis), and thus, the interior of the pancake inclusion with ice deforms as a solid, 
yielding the fluid to solid transition. 
 
  
III.  Volume collapse in a two-dimensional self-similarly expanding flattened Eshelby 
elliptical densified inclusion: “anticrack” in geophysics, or densified shear band  
 

(a) Volume collapse in a flattened elliptical cylinder 
 

We consider the two-dimensional problem of an isotropic material undergoing change in density 
(densification) under high pressure with the finite “volume collapse” occurring planarly in a 2D 
band as the asymptotic limit of an elliptical cylindrical Eshelby inclusion. A densified flattened 
elliptical inclusion under pressure has been called “anticrack” (Green and Burnley, 1989, Burnley 
and Green, 1989) in the geophysics literature and was incorrectly treated as a Griffith crack by 
omitting the effect of densification in the longitudinal direction inside the anticrack; it also differs 
from the rigid line inclusion which were called “anticrack” by Dundurs and Markenscoff (1989). 
More importantly, the analysis shows that it is the pressure acting on the volume phase change 
that drives the anticrack, correcting the literature where the deviatoric stresses are considered to 
be the driving force, e.g. Zhan, Fig 5a, 2020. The analysis presented here is also applicable to 
amorphized bands such as in Zhao et al, 2016a, 2016b, creating densified shear bands.  
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The following analysis for the two-dimensional problem follows the three-dimensional one 
above. We consider that the planar change in density induces equivalent transformation strains 
with components (to be determined)  ε11

* ≠ 0 ,  ε22
* ≠ 0  , ε33

* = 0  and the shear eigenstrains to be 

zero, in an Eshelby elliptical cylinder inclusion with cylinder axis in the   x3  direction (Fig 4(a)). 
The change in density is treated as an imaginary equivalent eigenstrain that creates a change in 
volume equal to   ε11

* + ε22
* = ε kk

* = (dV − dV0 ) / dV0 = (ρ0 − ρ*) / ρ*                                                                        
given at zero stress, when the inclusion is taken outside the matrix, in the Eshelby thought 
experiment . 
 

 
 
 

 
Figure 4: a A self-similarly expanding Eshelby inclusion (a flattened ellipse   a2 / a1 → 0   with 
uniform eigenstrain) emits pressure (P) waves, shear (S) waves and (M) waves, emitted by the 
phase boundary, of which it is the degenerate wave-front; they cancel each other in the interior of 
the inclusion (a“lacuna” of zero particle velocity) locking-in a constant strain interior field; b A 
densified flattened inclusion with change in density   ε kk

*  that is large in the asymptotic analysis  
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develops deviatoric eigenstrains (symmetry breaking) so that the faces do not open or overlap

  
lim

a2 /a1→0,εkk
* →∞

a2 / a1ε kk
* → const , and the fields decompose into a symmetric part I (center of 

dilatation) and an antisymmetric part II ( ε11
* = −ε22

*  , which is a symmetric center of shear); c the 

interior longitudinal stress  σ 11  is of the order of the eigenstrain (large) and tensile, while  σ 22  is 
small, so that a very large deviatoric strain energy is produced (the seismic energy). The pre-
stress is superposed to the above self-stresses.  
 
The change in volume (densification/“volume collapse”) is negative, so that the eigenstrain   ε kk

*  is 
negative. The components of the eigenstrain, considered unknown now, will satisfy a relation 
among them, to be derived below, such as to maintain material continuity when the material 
densifies a finite volume collapsing into a very thin inclusion. 
 
The strains in the 2D flattened elliptical cylinder (band) of “volume collapse” are determined 
through the Eshelby tensor   ε ij = Sijklε kl

* , with the Eshelby tensor  Sijkl  pertaining to the elliptic 

cylinder (Mura, 1982, eqtn (11.22)) to be taken asymptotically as the ratio of the axes   a2 / a1 → 0
(the long axis being   a3 →∞ ), and yielding the interior strains       

  ε11 = (1/ 2(1−ν ))[{2a2 / a1 + (1− 2ν )a2 / a1}ε11
* − (1− 2ν )a2 / a1ε22

* ]                                        (13a) 

  ε22 = ν / (1−ν )ε11
* + ε22

* − (1− 2ν ) / 2(1−ν )a2 / a1(ε11
* + ε22

* )                                                    (13b) 
 
where ν  is the Poisson’s ratio. The density/volume change in the inclusion constrained by the 
matrix is 
 

  (ρ0 − ′ρ ) / ′ρ = ε kk = Skkijε ij
* = (1+ν ) / 3(1−ν )ε kk

*

                                                             (14) 
and the stresses are   
 

  σ ij = Cijkl (ε kl − ε kl
* )                                                                                                                   (15) 

 
As in the 3D case, in the asymptotic analysis of a flattened ellipsoidal inclusion accommodating a 
very large change in density as the ratio of the axes speeds tends to zero (Fig 4), in order for the 
total strain energy to be finite (and not zero) in the very thin inclusion (  a2 / a1 → 0  ), the 

eigenstrains   must tend to infinity   ε ij
* →∞  as the ratio of the axes speeds (small to large) tends to 

zero,    a2 / a1 → 0  , so that their product 
 
 
  

lim
ε ij

*→∞,a2→0
(a2 / a1)ε ij

* → const                                                                                                    (16) 

 
For a volume collapse   ε kk

*  to occur planarly we shall assume that, for material continuity with no 
opening or overlapping of the band faces, to the leading order we must have in (13b) the strain

  ε22 → const  , so that we have the vanishing of the zero-th order terms in (13b), which gives, what 
we call “the planarity condition” among the eigenstrains 
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 ν / (1−ν )ε11
* + ε22

* = 0                                                                                                              (17) 
 
so that a deviatoric part of the eigenstrains is created in the anticrack. From (17) we have  
 

  ε11
* = (1−ν ) / (1− 2ν )ε kk

*

                                          ε22
* = −ν / (1− 2ν )ε kk

*                                (18)                                                                                     
 
with  ε11

*  being negative for increase in density and decrease in volume, while  ε22
*  is positive. The 

strains in (13a) and (13b) will be finite under the assumption of eqtn (17). Thus, with finite strains 
in (13), but with infinite eigenstrains, with stresses infinitely large due to (16), the strain energy 
density will be infinite, and the total strain energy in the very thin (zero volume) “anticrack” will 
be finite, and not zero. We will determine the stresses, interior and exterior to the flattened 
elliptical cylinder under the above conditions. We decompose the problem into a symmetric 
(volumetric) (I) and an anti-symmetric (deviatoric) (II) part (Fig 4, b), which, in view of (17) and 
(18), are 
 

  

ε11
* 0

0 ε22
*

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε11
* 0

0 −ν / (1−ν )ε11
*

⎛

⎝
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⎞

⎠
⎟
⎟
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(1−ν )
(1− 2ν )
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*
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⎟
⎟
⎟
⎟⎟

=

ε kk
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⎛
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⎜
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⎟
+
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*
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*
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⎜
⎜
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⎜
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⎟
⎟
⎟
⎟
⎟

                      (19) 
 
 
 
    (b) The interior and exterior stress and displacement fields of a densified band: 
(“anticrack”). 
  
According to eqtn (19) the problem of volume collapse into a two-dimensional densified band 
decomposes into a symmetric one and an antisymmetric one, which is a symmetric center of 
shear; the antisymmetric center of shear has nonzero eigenstrains  ε12

* = ε21
* . In the sequel we will 

use (x,y) rather than (1,2) notation for the coordinate axes. We will first solve the symmetric 
Problem I, which is a center of dilatation with eigenstrains 
 
    ε xx

* = ε yy
* = ε kk

* / 2                                                                                                                  (20) 
 
negative for reduction in volume. The interior stresses in the flattened cylinder are directly 
obtained through the Eshelby tensor for the cylinder  (e.g., Mura, 1982) by the asymptotic 
expansion in the flat limit expansion in the small variable  a2 / a1  and are obtained as 
 

  σ xx
I ( int ) = −2µε xx

* / (1−ν ) = −µε kk
* / (1−ν )                                                           (21)                                                                                                   

  σ yy
I (int) = −2µ / (1−ν )(a2 / a1)ε yy

* = −µ / (1−ν )(a2 / a1)ε kk
*                                                               (22) 
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  σ xy
I (int) = 0   

                                                                                            
In the flattened cylinder the stress in eqtn (21) is infinitely large tension. The exterior fields are 
found by distributing in the flattened cylinder centers of dilatational eigenstrain with density 
 
   p(x) = ( p0 / a1)(a1

2 − x2 )1/2 , 
  
p0 = lim

a2→0,ε xx
* →∞

2a2 (ε kk
* / 2) , 

  
lim

εkk
* →∞,V→0

(1/ 2ε kk
* )V = p = const     (23) 

 
with  p  being defined as the strength of the inclusion, where V is the volume of the inclusion per 
unit thickness along the cylinder axis. 
 
The stresses exterior to the flattened ellipsoid are found by integration of the stresses due to 
distributed centers of dilatational eigenstrain of strength   p(ξ )  at the position ξ , each producing 
the stresses 
 

  σ xx
I (ext ) (x, y) = −σ yy

I (ext ) (x, y) = −µp(ξ ) /{π (1−ν )}{−1/ r 2 + 2x2 / r 4}                                     (24)                                              

  σ xy (x, y) = 0                                                                                                                           (25) 
 
with    r

2 = (x −ξ )2 + y2  , so that the external stresses of the inclusion at a field point in the plane 
is the integral of their contributions 
 

  
  
σ xx

I (ext ) (x, y) = −σ yy
I (ext ) (x, y) = −µ /{π (1−ν )} p(ξ ){−1/ r 2

−a1

a1

∫ + 2x2 / r 4}dξ                            (26) 

 
The integral is evaluated as a principal value as in Kaya and Ergogan, 1987, also in Markenscoff, 
2019a, so that along the Ox axis we obtain the square-root singular field exterior field 
 
 

  
σ xx

I (ext ) (x,0) = −σ yy
I (ext ) (x,0) = µ / (1−ν ) p0 / a1 1−|x|/( x2−a1

2 )1/2
1{

a1<|x|

|x|<a1

                                           (27) 

 
The displacements are 
 

  
ux (x,0) = p0 /{2(1− v)a1} x−( x2−a1

2 )1/2 sgn x
x{ |x|<a1

a1<|x|<∞
                                                                    (28) 

 
and 
 
   uy (x,0+ )− uy (x,0− ) = p0 /{a1(1−ν )}(a1

2 − x2 )1/2        for   | x |< a1                                          (29) 
 
 
where   p0  is given by eqtn (23). The solution obtained in eqtn (27) provides the stress intensity 
factor at the square-root singular tips, and also confirms the continuity of the traction on the faces 
of the inclusion by comparison of eqtns (22) and (27). The above external field is one of zero 
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dilatation (pure shear), which is consistent for an inclusion of any shape with dilatational 
eigenstrain according to Eshelby, 1961 (and, previously, Crum as referenced by Eshelby, 1961; 
the additional antisymmetric part II is a modification removing the singularity from the strain 
affecting the application of the divergence theorem in Crum, or Bitter-Crum). 
 
In the antisymmetric Problem II, the second matrix on the RHS of (19) can be called a symmetric 
center of shear. The eigenstrains are  
 

  ε xx
* = −ε yy

* = 1/{2(1− 2ν )}ε kk
* = e*II                                                                                         (30)                                                                                          

   
with   e*II  negative for reduction in volume and the interior stresses are obtained through the 
Eshelby Tensor for the elliptical cylinder expanded asymptotically for   a2 / a1 → 0  in the flattened 
limit to yield 
 

  σ xx
II (int) = −2µν / (1−ν )ε xx

* = −µν /{(1−ν )(1− 2ν )}ε kk
*                                                             (31)                                                                                          

 

  σ yy
II (int) = 4µ / (1−ν )(a2 / a1)2ε xx

* = 2µ /{(1−ν )(1− 2ν )}(a2 / a1)2ε kk
*                                         (32) 

  σ xy
II ( int ) = 0   

 
 From eqtn (31), it is seen that that internal in-plane stress is infinitely large uniaxial tension. 
 
 To obtain the external fields we consider the distributed centers of shear with eigenstrains given 
by (30), with the strength q defined analogously to p, in (23), with the eigenstrain   e*II . 
 
The stress field (in the plane Oxy) of a symmetric center of shear with the eigenstrains in (30) in a 
circular cylinder is obtained following the stress function determination by matching the 
boundary conditions at the inclusion boundary satisfied by the stress function 
  U = µq /{2(1−ν )}cos2θ , --the internal stresses agree with the Eshelby inclusion--, so that  
 

  σ xx
II (x, y) = 2µq /{π (1−ν )}{3x2 / r 4 − 4x4 / r6}                                                                   (33)             

  σ xy
II (x, y) = 2µq /{π (1−ν )}{2xy / r 4 − 4x3 y / r6}                                                                (34) 

  σ yy
II (x, y) = 2µq /{π (1−ν )}{1/ r 2 −5x2 / r 4 + 4x4 / r6}                                                       (35) 

 
and, at y=0: 
 
   σ xx

II (x,0) = −2µq /{π (1−ν )}(1/ x2 )                                                                                  (36) 

  σ yy
II (x,0) =σ xy

II (x,0) = 0                                                                                                      (37) 
 
We note that in polar coordinates the solution takes the form: 
 

  σ rr
II = −2µq /{π (1−ν )}cos2θ / r 2                                                                                      (38) 

  σθθ
II (ext ) = 0                                                                                                                          (39) 
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Integrating the stresses in (31) due to centers of eigenstrain distributed over the flattened 
inclusion, with the principal value taken according to Kaya and Ergogan, 1987, also in 
Markenscoff, 2019a, we obtain the square-root singular field 
 

  
σ xx

II (ext ) (x,0) = −2µq0 / a1{π (1−ν )} (a1
2

−a1

a1

∫ − ξ 2 )1/2 / (ξ − x)2 dξ = 2µq0 /{a1(1−ν )}
1−|x|/( x2−a1

2 )1/2
1{

a1<|x|

|x|<a1

      

  σ yy
II (ext ) = 0                                                                                                                            (40) 

 
  
where     

  
q0 = lim

a2→0,ε xx
* →∞

2a2ε xx
* = lim

a2→0,εkk
* →∞

a2ε kk
* / (1− 2ν )                                                     (41) 

 
 The displacements are: 
 

  
ux (x,0) = q0 / a1 x−( x2−a1

2 )1/2 sgn x
x{ |x|<a1

a1<|x|<∞
                                                                                 (42) 

 
 

  uy (x,0+ )− uy (x,0− ) = −q0 / a1{(1− 2ν ) / (1−ν )}(a1
2 − x2 )1/2    for   | x |< a1                             (43) 

 
which is positive for   q0 < 0  . 
 
We note that eqtn (32) is consistent with eqtn (37) regarding the continuity of the normal tractions 
on the band faces to the leading order, and, of course, that the hoop stress σ xx

ext  is finite 
(eigenstrain times small axis length) on the top side of the “ densified anticrack” faces in (40). It 
is smaller in order than the internal stress, as it experiences a jump across the boundary by the 
infinite amount of the (infinitely large) eigenstrain. At the tips the stress in the direction of the 
crack is square root infinite (tensile for volume reduction). The total stress is the sum of the fields 
I and II, which for the interior stresses are: 
 

  σ xx
(int) =σ xx

I (int) +σ xx
II (int) = −µε kk

* / (1− 2ν )                                                  (44)

   σ yy
(int) =σ yy

I (int) +σ yy
II (int) ∼ (−)µ / (1−ν )(a2 / a1ε kk

* )                                                                         (45)

  σ xy
( int ) = 0                                                                                                                                        (46) 

Moreover, in plane strain, the out of plane stress is   σ zz = ν (σ xx
I+ II +σ yy

I+ II )  and the mean stress in 
the “ densified anticrack” is to the leading order 
 
   σ m = −(1+ν )µε kk

* / 3(1− 2ν )                                                                                                        (47) 
 
which is tensile for reduction in volume, and coincides with eqtn (6c) . Eqtn (44) shows that there 
is infinitely large tensile stress in the “ densified anticrack” inclusion in the direction of the band, 
and that the directions of the maximum shear are at 450 angles to the inclusion as seen in Zhao et 
al, 2016b. The distribution of the stresses is shown in Figure 5. 
 
The displacements for the sums of the displacements of problems I and II are: 
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  uy
I+ II (x,0+ )− uy

I+ II (x,0− ) = 0                                                                                             (48) 
 

  
ux

I+ II (x,0) = [ p0 / 2(1−ν )+ q0 ] / a1 x−( x2−a1
2 )1/2 sgn x

x{ |x|<a1

a1<|x|<∞
                                                (49) 

 
where we note in (48) that the there is indeed no difference in the vertical displacements of the 
faces of the “densified anticrack” , consistent with material continuity and the “planarity 
condition”. The stress distributions for Problems I and II are graphed in Figure 5. 
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Figure 5: The internal and external stresses due to a densified 2D band (“anticrack” in 
geophysics,) are obtained as superposition of the distribution of  symmetric dilatational centers of 
eigenstrains (symmetric Problem I) and of symmetric centers of shear (antisymmetric Problem 
II). The plot shows the stress distribution at y=0. 
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(c) The energy-release rate to incrementally advance the densified band  
 

The  Jtip
band

  integral which is equal to the energy-release rate needed to advance incrementally the 

tip of the “anticrack” (densified band with densification   ε kk
* ) is obtained in statics by the 

incremental work (e.g., Rice, 1985) done by the singular longitudinal stress at the tip acting on 
the corresponding longitudinal strain during an infinitesimal advancement of the “densified band” 
(which is the only work done at the tip), as 
 

  

J bandΔa = GΔa = 1/ 2 σ xx
I+ II (x,0)[ux

I+ II (x+ ,0)− ux
I+ II (x− ,0)]dx

a1

a1+Δa

∫ =

−(1/ 2)µ( p0 + 2q0 ) / (1−ν )[ p0 / 2(1−ν )+ q0 ] / a1 (x − a1
a1

a1+Δa

∫ )1/2 / (x − a1)1/2 dx

≡ −µ f (ν ) lim
a2→0,εkk

* →∞
(a2 / a1ε kk

* )2 a1Δa

              (50) 

 
with   f (ν ) = (3− 2ν )(3− 4ν ) /{4(1− 2ν )2(1−ν )2}                                                    (51) 
  
The derivation in the next section provides the driving force to overcome the value of the J 
integral for a given densification and advance the “anticrack”, with other dissipative effects being  
neglected.  
 
(d) The energetics of the growth in scaling and propagation of a densified shear band under 
pressure, quasi-statically and with inertia 
 
We will consider the presence of pre-stress of an applied large hydrostatic pressure 

  p1
appl = p2

appl = p3
appl = pappl  so that the stresses in the inclusion are the superposition of those due 

to the eigenstrains plus the hydrostatic pressure. We are evaluating eqtn (2) on a contour 
surrounding the surface of the self-similarly quasi-statically growing densified 2D band inclusion 
of length   a1 = t / s1  , with the ratio   a2 / a1 = s1 / s2  remaining constant for self-similarity, and in 

the presence of applied pressure (Fig 6). With   !l  denoting the outward normal boundary velocity 
(derived in terms of the axes speeds in Markenscoff, 2019b), we set    

!l = !λa2 = !λt / s2  on the upper 

and lower faces of the densified band, and    
!l = !λa1 = !λt / s1  at the tips, where !λ  is a dimensionless 

scaling parameter as is considered in the MO integral about the origin of the coordinate system 
(Budiansky and Rice, 1973). Thus, from eqtn (2) we can produce the M integral for a self-
similarly quasi-statically growing band inclusion where all field quantities have been obtained 
above, and we write the counterpart of eqtn (8) in two-dimensions, as  
 

   

δ !E = −MO
!λ = !λ[a2{(σ 22 + p2

appl )ε22
* +1/ 2(σ 11

− +σ 11
+ + 2 p1

appl )ε11
* }2a1]+ !λa1Jtip

band =

[2(a2 / a1){p2
cr (ε11

* + ε22
* )+1/ 2(σ 11

− )ε11
* + (σ 22ε22

* +σ 11
+ε11

* )}− µ f (ν ) lim
a2→0,εkk

* →∞
(a2 / a1ε kk

* )2]a1δ !a1 = 0  

(52) 
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with 
  
Jtip

band = −µ f (ν ) lim
a2→0,εkk

* →∞
(a2 / a1ε kk

* )2(2a1)  ,    f (ν ) = (3− 2ν )(3− 4ν ) /{2(1− 2ν )2(1−ν )2}   
  
obtained in eqtn (50)/(51) to advance the tip of the densified band incrementally by   δa1  . 
 

 
  
 
Figure 6: Nucleation instability is the growth at constant potential energy of an arbitrarily small 
defect (densified 2D band): the driving force on a contour surrounding the inclusion is provided 
by the Peach-Koehler term   p(ε11

* + ε22
* )  (pressure times change in volume) in the M integral and 

balances the self-stress resistance to growth in scaling  !λ  . It yields the critical pressure at which 
the band grows incrementally by    δ !a1 = !λa1  at constant potential energy. The J integral 

resistance to advance the tip is of lower order in the ratio of the axes lengths   a2 / a1 <<1  than the 
Peach-Koehler driving force, so that the band will grow unstably at the critical nucleation 
pressure overcoming the effect of the internal self-stress,  at   pband

cr ε kk
* +1/ 2σ 11

(int)ε11
* = 0   

 
 
The vanishing of the M integral, which is growth at constant potential energy, on the LHS of eqtn 
(52), produces a nucleation instability at the vanishing of the quantity in the brackets, which 
gives the critical value of the hydrostatic pressure, at which any arbitrarily small densified band 
can have an incremental extension in scaling       δ !a1 = !λa1  at constant potential energy of the 

system. The work (  p2ε22
* + p1ε11

* = pε kk
*  )  produced by the pressure acting on the change in 

volume   ε kk
*   (Peach-Koehler force, radius-increasing) balances the self-forces (radius-shrinking)  

on the surface of discontinuity due to the internal self-stresses including the J integral at the tips 
(obtained in (50)), and, eqtn (52) to leading order in the ratio of the axes speeds, and yields the 
critical pressure for nucleation of a 2D densified band as 
 
   pband

cr ε kk
* +1/ 2σ 11

(int)ε11
* = 0      or     pband

cr = (1−ν ) / (1− 2ν )2µεkk
* +O(s1 / s2εkk

* µ)                          (53) 
 
The critical pressure in a 2D band always exceeds the mean (tensile) stress in eqtn (47),  (Fig 3), 
and cancels it, so that, to leading order, there will remain a large distortional strain energy. 
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We will examine now the effects of inertia on the nucleation and propagation of a self-similarly  
expanding 2D inclusion through the M integral, evaluated in self-similar dynamic expansion on a 
contour shrinking onto the surface of discontinuity; it will be independent of the shape of the 
contour (“contour independence” rather than “path-independence”) in the limit as it shrinks onto 
the defect, as with the dynamic J integral in dynamic fracture mechanics and also in dislocations 
jumping to constant velocity shown in Clifton and Markenscoff,1981. For the dynamically self-
similarly expanding flattened inclusion the values of the interior stresses are as those with the 
corresponding axes speeds ratio, locked-in  by the M waves (Markenscoff, 2019). From the 
Hadamard jump conditions there is continuity of the traction  σ 22  due to the vanishing of the 

boundary velocity on the top/lower surfaces, and the external dynamic stress  σ 11
+  is of the order 

of the ratio of the axes speeds  (and, consequently, of lower order than the interior stress  σ 11
−  ). As 

we have not explicitly obtained the dynamic outside fields and the  J dyn   integral with inertia for 
the above problem, we will take as an approximation for its value the dynamic energy-release rate 
obtained for a screw dislocation jumping from rest to a constant velocity given  in Clifton and 
Markenscoff, 1981, eqtn (40). A CLVD is a screw pair (attributed to Weertman in Knopoff and 
Randall, 1970), which in 3D is a screw cone pair at 450 angles e.g., Julian et al, 1998); as a rough 
approximation, we shall obtain the order of magnitude of the pressure needed in (52) for 
overcoming the  “drag force” due to inertia to dynamically emit a screw dislocation. We write 
eqtn (52)  relating the driving force of the pressure to the energy-release rate, as in Clifton and 
Markenscoff, 1981, eqtn (40) for the emission of a screw dislocation with Burgers vector b,  
(which relates to the eigenstrain as   

   
b ∼ lim

a2→0,εkk
* →∞

2a2ε kk
*  ), with  vd  denoting the dislocation 

velocity and   c2  the shear wave speed, as  
 

   

δ !E = −MO
!λ = !λ lim

a2→0,ε ij
*→∞

a2{(σ 22 + p2
appl )ε22

* +1/ 2(σ 11
− +σ 11

+ + 2 p1
appl )ε11

* }2a1 + !λa1Jtip
dyn ∼

lim
a2→0,εkk

* →∞
(2a2ε kk

* ) p( !a1)−Cµb2 / (2π t)[1−{1− (vd / c2 )2}1/2 ] / (1− (vd / c2 )2 )1/2 = 0
                           

(54) 
 
with the constant C containing a Poisson’s ratio and angular dependence effect to relate the screw 
dislocation to the CLVD . Ignoring higher order terms, and assuming  small   vd / c2  , we obtain 
from (54) the pressure needed to overcome the inertia “drag force” on a screw dislocation 
jumping from rest to a constant velocity  vd  as, 
  
     p

appl ∼ Cµb(vd / c2 ) /{4π tc2}                                                                                                (55) 
 
which decays with time as 1/t. The nucleation time t will not be considered zero, but such that 

   tc2 ∼ 5b , (for dislocations, the time is taken to be large relative to a period of lattice vibrations, 
and the expression (55) being in agreement for a screw dislocation with Eshelby, 1953). We can, 
thus, conclude that the “nucleation pressure” given by eqtn (53) is large enough to overcome the 
“drag force” on a screw dislocation jumping to a constant velocity in (54), and that the nucleation 
and propagation instability by the M integral can be fully dynamic for small expansion speeds in 
this approximation. Obtaining the relation between the pressure and the expansion speeds, as 
obtained for a dislocation in Clifton and Markenscoff, 1981, requires further analysis for the 
calculation of the dynamic energy-release rate for the self-similarly expanding 3D penny-shape 
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densified inclusion from the external tip fields based on the solution of Ni and Markenscoff, 
2016a; then, the dynamic M integral, as in eqtn (54) will provide such relation for the purely 
mechanical inertia effects. This remains open for future investigation. 
 
IV.  Conclusions 
 
In summary, the nucleation and propagation of deep-focus earthquakes are a manifestation of a 
new physical phenomenon in solid mechanics exhibiting successive instabilities in high pressure 
dynamic phase transformations with “volume collapse”.  If, at a point, a densified flattened 
ellipsoidal inclusion of an arbitrarily small size (“pancake-like” in 3D, or densified band in 2D) 
is generated (-- the model does not say how--), then, due to an instability, at a critical 
“nucleation” pressure (at the vanishing of the M integral), the densified flattened inclusion can 
grow with the same volume change   ε kk

*  at constant potential energy.  The dynamic Eshelby 
problem of the self-similarly expanding ellipsoidal inclusion with uniform transformation strain 
has the remarkable “lacuna” physical property (zero particle velocity in the interior domain/no 
kinetic energy), thus making the phase transformation to take place under conditions of 
equilibrium and under uniform interior stress (Eshelby property). The Eshelby assumption of 
uniform eigenstrain inside the inclusion is justified on the argument that, if the instability starts 
with a given change in density, it can continue at the same rate under constant potential energy. 
The flattened densified inclusion is treated as the asymptotic limit of the ellipsoid (penny-shape), 
and it was shown that (for Poisson’s ratio >0.2) the critical pressure (compression) is higher than 
the mean tensile stress in the densified inclusion, so that it cancels it, and, thus, to leading order, 
the strain energy density is distortional, producing a predominantly shear seismic source. The M 
integral shows that the growth of the densified inclusion (which is a shear seismic source) is 
driven by the pressure (acting on the change in volume of the phase transformation), even under 
conditions of full isotropy, and even in the absence of deviatoric pre-stress.  The flattened shape 
of the ellipsoid is the manifestation of a symmetry-breaking instability that favors the 
minimization of the energy (M integral) needed for the inclusion to grow large (while the sphere 
minimizes it for small radius). The solution and methodology are completely extendable to full 
anisotropy (Willis, 1971) and are also extendable to a Newtonian fluid (Markenscoff, 2021) in 
self-similar dynamic expansion of an inclusion of a fluid of different viscosity, extending the 
approach of Bilby et al, (1975). The high- pressure dynamic nucleation and growth of an 
arbitrarily small inclusion in the water to a solid ice phase transition can be studied in spherical 
expansion by extending Markenscoff, 2020, or in pancake-like expansion as here, with significant 
implications on Earth’s structure, water budget and seismicity. Although the Eshelby property is 
not valid in nonlinear elasticity the asymptotic analysis for the flattened inclusion differentiates 
the order of the eigenstrains (large/infinite) from the order of the strains (small/finite), with the 
order of the pre-stress (large for pressure, small for deviatoric pre-stress) governing the behavior 
of the system. While in the deep-focus earthquakes the pre-stress is a static field constant in time, 
the phenomenon and analysis are also generally applicable to other dynamic phenomena, such as 
failure waves, phase transformation of metastable materials occurring in the short time interval 
and under shock-loading conditions, as the amorphization transformations, etc. Thus, the 
discovered phenomenon of shear instabilities in dynamic phase transformations under pressure 
unravels the mystery of the cause of the deep-focus earthquakes and provides insight into the 
concepts and analytical tools for a host of other dynamic phase transformation phenomena in 
materials under extreme conditions. 
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