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Abstract 
 

The existence of a nucleation instability is demonstrated at the vanishing of the path-
independent M integral in linear anisotropic elasticity so that a region that is arbitrarily 
small can grow at constant potential energy.  It yields a quadratic equation for the critical 
pressure to balance the Eshelby dissipation and nucleate an inclusion undergoing both 
change in density and change in bulk modulus, and is independent of the radius of the 
defect. Regarding the shape of nucleation, the expression from Noether’s theorem allows 
also a symmetry breaking mode as a penny-shape “pancake”, and by comparison of the 
M integrals for the pancake and the sphere, it would require a greater loss of potential 
energy of the system to nucleate a pancake, but less to grow it larger. 
 
I. Introduction  
 
We are considering the problem of the nucleation of a phase change defect under 
pressure. It is shown that a “nucleation instability” exists, which allows a defect that is  
arbitrarily small to grow incrementally at constant potential energy when the pressure 
reaches a critical value depending on the phase change, but not on the radius. The 
nucleation instability occurs when the M integral, which is the energy-release rate under 
scaling of the defect (Budiansky and Rice, 1973) vanishes. The M integral was derived by 
Gunther (1962) based on Noether’s (1918) theorem for invariance of the Lagrangean 
under scaling of the defect, and it is path-independent in anisotropic linear elasticity 
(Knowles and Sternberg, 1972). Lubarda and Markenscoff (2007)  treated the dual 
integrals while Markenscoff and Singh (2015) analyzed the elastodynamic ones. The 
vanishing of the M integral determines a (quadratic) equation for the critical instability 
pressure in terms of the change in bulk modulus and concurrent change in density, and 
shows the Peach-Koehler type of terms that balance the Eshelby dissipation; the 
conditions for the existence of a positive root are investigated. The criterion of nucleation 
of defects proposed in the literature is that the interface becomes unstable point-wise 
when the “driving force” reaches a critical value [Stolz, 2018, and references within], 
while the M integral was proposed as a criterion for the growth of holes by Kienzler et al 
(2006) . Recently, Markenscoff (2019b) treated the problem of the dynamically 
expanding ellipsoidal region of phase change under pre-stress as an Eshelby (1957, 1961) 
inclusion, and showed, on the basis of Noether’s (1918) theorem for invariance of the 
Hamiltonian under a group of infinitesimal translations, that the shape of a self-similarly 
expanding Eshelby ellipsoidal region may or may not preserve symmetry, in which case 
it can nucleate and expand as a flattened ellipsoid “pancake-like” inclusion with 
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axisymmetric symmetry. Here, the comparison of the M integral for a sphere and a 
penny-shape “pancake” shows that it would require a bigger loss in potential energy to 
nucleate the “pancake” and but less to grow it. The phenomenon manifests itself in 
geophysics in deep focus earthquakes with phase transformation of volume collapse and 
change in moduli under high pressure . 
 
II. The M integral and a “nucleation instability” for a phase change spherical defect 
under pressure. 
 
The M integral is derived from Noether’s theorem for invariance of the Lagrangean 
functional under scaling and is path-independent in anisotropic linear elasticity (Knowles 
and Sternberg, 1972). With  l  denoting the scaling parameter so that the rate of an 
increment in the radius a is   δ !a = a!l , the relation of the M integral to the rate of change of 
the potential energyΠ  of a purely mechanical system is (Budiansky and Rice, 1973)  
 
    dΠ / dt = !Π = − !lM                                                                                              (1) 
 
 where the potential energy Π  of the system is (e.g. Mura 1982, eqtn (25.19)). 
  
 
  
Π =W elastic − Fi

S
∫ (ui + ui

(0) )dS ,                                                                         (2) 

 
 with  Fi  being the loading on the boundary surface S. 
  
The expression for the M integral is (Budiansky and Rice, 1973) 
 

  
M = (Wxini

S
∫ −Tju j ,ixi − (1/ 2)Tiui )dS                                                                  (3) 

 
 with   

!
T  denoting the traction vector, and for the spherical inclusion considered here, it 

takes the form (e.g. Kienzler and Herrmann, 2000), 
 

  
M (r) = (Wr − rσ rr ∂ur / ∂r − ur

0

π

∫
0

2π

∫ σ rr / 2)r 2 sinθdθdϕ                                            (3a) 

 
For a spherical inhomogeneity where the field quantities undergo jumps of the outside 
quantity minus the inside one (denoted by the double brackets) across the interface at 
 r = a  (e.g., Markenscoff, 2015), we have from (1) and (3) 
 

   [[M ]]!l = − !Π = −{∂Π / ∂a}∂a / ∂t = −{∂Π / ∂a}δ !a      (4)     
 

with 
   
[[M ]]!l = W⎡⎣ ⎤⎦⎡⎣ ⎤⎦ −

"
T ⋅ ∂"u

∂n
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ δ !a dS

S
∫         (4a)                                       
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where   δ !a = a!l .  The third term in the 3-D expression for the M integral in (3) does not 
contribute a jump in (4a), which makes the connection to equation (20) below for 
invariance in translation. 
 
An instability will occur when eqtn (4) vanishes for any incremental  δ !a , with the defect  
growing in scaling by   δ !a   without loss of potential energy, i.e.,   ∂Π / ∂a = 0  , which 
provides the nucleation criterion as   
 

 
   
[[M ]]!l = W⎡⎣ ⎤⎦⎡⎣ ⎤⎦ −

"
T ⋅ ∂"u

∂n
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ δ !a dS =

S
∫ −{∂Π / ∂a}δ !a = 0                                              (5) 

 
The vanishing of the M integral marks the nucleation event, and it is independent of the 
radius for the sphere as shown below in eqtn (10).  
 
We consider the nucleation of a region of phase change modeled as an Eshelby inclusion 
(Eshelby, 1957, 1961) and the matrix material will be assumed isotropic.  The analysis is 
also valid in anisotropy with the Eshelby Tensor obtained by Willis (1971). The spherical 
inclusion undergoes change in density  (superscript “cd”) with corresponding eigenstrain 

  ε ij
*cd (as the “plastic” eigenstrain in Mura’s (1982) terminology) and a concurrent change 

in bulk modulus change (“inhomogeneous inclusion” according to Eshelby 1957, 1961) 
under remotely applied pressure  ε kk

(0)  producing an inhomogeneity with eigenstrain  ε ij
*inh . 

 
The reason that two different types of eigenstrains are considered is because the 
transformation strain due to change in density occurs independently of the presence of an 
applied field at infinity, while the one due to the inhomogeneity is due to the presence of 
the applied field, and the interaction energies are different. The inhomogeneity (change in 
bulk modulus) under applied pressure has interaction energy depending only on the 
pressure acting on the eigenstrain, but not on the inclusion internal stresses acting on the 
eigenstrain (Eshelby 1957, eqtn (4.10)). By contrast, for an inclusion with the change in 
density ( “inhomogeneous inclusion”), the interaction energy depends on the internal 
stresses acting on the eigenstrain (Eshelby, 1961, eqtn (3.21)) in addition to the applied 
stresses.  This difference results in the corresponding terms affecting the M integral 
differently in eqtn (12) below. 
 
We consider an infinite solid under pressure at infinity   p = −Kekk

(0) , where p is a positive 
number related through the bulk modulus K to the dilatation   ε kk

(0)  (negative in this 
application) uniformly applied at infinity. We assume that the inclusion undergoes a 
change in bulk modulus from K to   K * , and simultaneously, at zero pressure   Kε kk

(0) , a 
change in density. 
 
If the material of an inclusion with initial density  ρ0  as the matrix has a change in density 
to  ρ

*   given outside the matrix during the Eshelby (1957, 1975a) thought experiment, it 
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can be considered as an eigenstrain    (ρ0 − ρ*) / ρ* = dV * / V = ε kk
* . When reinserted in the 

matrix (of the same material) it produces a change in volume in the constrained inclusion 
that corresponds to a density ′ρ   in the constrained inclusion 
 

  (ρ0 − ′ρ ) / ′ρ = ε kk = Skkijε ij
* = (1+ν ) / 3(1−ν )ε kk

*cd = (1+ν ) / (1−ν )e*cd

                               (6)                                                                  

 
 with   ε ij

* = δ ije
* . For increase in density (volume collapse) the equivalent eigenstrain in (6) 

is negative   ε kk
*cd < 0 . 

 
If there is a change in density simultaneously with change in bulk modulus under remote 
pressure (pre-stress)   ε kk

(0) , then the total eigenstrain, due to the inhomogeneity and the 
change in density under pressure is   ε ij

** = ε ij
*inh + ε ij

*cd , where (e.g. Mura, 1982, eqtn (22.25)) 
 

   ε kk
** ={3[(K − K *)ε kk

(0) + K *ε kk
*cd ](1−ν )}/{2(1− 2ν )K + (1+ν )K *}                                  (7) 

 
Equation (7) indicates that without applied pressure, but only change in bulk modulus, 
the eigenstrain due to change in density with concurrent change in bulk modulus 
produces an “inhomogeneous inclusion” with equivalent eigenstrain given from the 
second term in (7), as 
 

  

3K *ε kk
*cd (1−ν ) /{2(1− 2ν )K + K *(1+ν )}=

9(1−ν ) / (1+ν )ε kk
*cd / [3+ 4µ / K *]                                                                 (8) 

 
which depends on the ratio of the shear modulus of the matrix over the bulk modulus of 
the inclusion, and with the expression in (8) being in agreement with Eshelby (1975c). 
 
The eigenstrain due to the inhomogeneity of different bulk modulus does not only include 
the effect of pressure on the change of bulk modulus, but also the effect of the change in 
density as “loading” on a material with a different bulk modulus, and is 

  

  

3e*inh = ε kk
*inh = ε kk

** − ε kk
*cd ={3[(K − K *)ε kk

(0) + K *ε kk
*cd ](1−ν )}/{2(1− 2ν )K + (1+ν )K *}− ε kk

*cd =

3(1−ν ) / (1+ν )(1− K * / K )(− p / K ) /{2(1− 2ν ) / (1+ν )+ K * / K}
+9(1−ν ) / (1+ν )ε kk

*cd / [3+ 4µ / K *]− ε kk
*cd

(9) 

                                                                                                                                        
The total change in volume is  
 

  ΔV / V = ε kk = Sllmmε kk
** / 3= (1+ν ) / 3(1−ν )ε kk

**

.                                                                 (10) 
 
and, with  (7) and (9), it is                                 
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ΔV / V = ε kk = (1+ν ) / 3(1−ν )ε kk
** = (1− K * / K )(− p / K ) /{2(1− 2ν ) / (1+ν )+ K * / K}

+3ε kk
*cd / [3+ 4µ / K *]         (11) 

 
For the calculation of the M integral according to (4), the change of the potential energy 
of the system in (2) for an inclusion with eigenstrains   ε ij

*cd ,ε ij
*inh  under an applied stress 

field   σ ij
(0)   is evaluated as equal to the “interaction energy” , which according to Mura 

(1982, eqtn (25.24)) is 
 
 

  
ΔW = −1/ 2 σ ij

(0)

Ω
∫ ε ij

*inhdV − σ ij
(0)ε ij

*cd dV −1/ 2 σ ijε ij
*cd

Ω
∫

Ω
∫ dV                                                (12) 

 
We have remarked earlier why there is a difference on how   ε ij

*inh  and    ε ij
*cd  affect 

differently the interaction energy in (12). We need to evaluate the stress  σ ij  in the last 

term in (12) for the spherical inhomogeneity with transformation strain   ε ij
** = ε ij

*inh + ε ij
*cd   

with a superposed field of radial stress   σ rr
(0) = − p   at infinity. The displacement field 

external and internal to the spherical inclusion is given by Mura (1982,eqtns 
(11.44)/(11.45)), and the stress field is calculated accordingly.  The internal stresses in 
the inhomogeneous inclusion are 
 

  σ 11 =σ 22 =σ 33 = −(4 / 3)(1+ν ) / (1−ν )µe**                                                                    (13) 
 
 Thus, (12) yields 
 

  ΔW = 2π pe*inha3 + 4π pe*cd a3 +8πµ{(1+ν ) / 3(1−ν )}(e*inh + e*cd )e*cd a3                           (14) 
 
 
III. Instability pressure for nucleation of a phase change defect 
 
The instability criterion of the vanishing of the M integral in eqtn (5), for a defect of 
phase change under pressure to grow in scaling incrementally under no loss in potential 
energy, in view of eqtn (14), takes the form 
 

   

[[M ]]!l = −∂Π / ∂aδ !a = −∂(ΔW ) / ∂aδ !a = −
{−6π pe** − 6π pe*cd −8πµ{(1+ν ) / (1−ν )}e**e*cd }a2δ !a = 0                                          (15)  

 
with   δ !a = a!l  .  We may note that  ΔW  in (15) is related to   [[W ]]  since the LHS of (15) is 
given by (4a). The expression (15) is in agreement with the calculation of the change in 
potential energy in eqtn (2) using the above fields for a spherical inhomogeneity under a 
radial applied stress performed by S. P.V. Singh. (To be noted here that the domain has 
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always to be considered finite when the derivative with respect to the radius is taken, and 
then take the limit for the outside boundary to go to infinity).  
 
For any infinitesimally small nonzero radius a, the vanishing of the term in curls in eqtn 
(15) with eqtns (6), (7), (8) and (9) gives an equation for the critical pressure for 
nucleation of a defect with change in density and bulk modulus; it is independent of the 
radius. Equation (15) yields a quadratic equation for the instability pressure  
 

  A( p / K )2 + B( p / K )+C = 0                                                                               (16) 
 
with 
 

 
  
A = − (1− K * / K )

[2(1− 2ν ) / (1+ν )+ K * / K ]
                                                                       (17) 

  

  

B = [{9{(1−ν ) / (1+ν )}/ [3+ 4µ / K *]+1}

−2{(1− 2ν ) / (1+ν )} (1− K * / K )
[2(1− 2ν ) / (1+ν )+ K * / K ]

](1+ν ) / 3(1−ν )ε kk
*cd                       (18) 

 

   C = 2{(1− 2ν ) / (1−ν )}(ε kk
*cd )2 / [3+ 4µ / K *]]                                                       (19) 

 
The investigation of the signs of the roots in terms of their product and sum gives the 
conditions for the existence of a positive root   p / K   so that nucleation will occur. For 
drop in bulk modulus (  K * < K ) a positive root always exists since the product of the roots 
C/A is negative, so a positive nucleation pressure exists. For   K * > K  the sum of the roots 
depends the sign of the change in density:  for increase in density   ε kk

* < 0   there will be 
two positive roots. For decrease in density and   K * > K  no positive root exists. The root 
(smaller) is plotted in Figure 1.  
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Figure 1: Critical pressure for nucleation of a spherical defect of change in density and 
bulk modulus  
 
The first two terms in the curly brackets in (15) represent a Peach-Koehler type of force 
to balance the third term, which is the self-force (Eshelby dissipation). We note that for  
pressures lower than the critical pressure the M integral is negative. For one material with 
change in density only, with bulk modulus   K = K * , the coefficient A in eqtn (16) 
vanishes, and we observe that equations (15)/ (16) equate the Peach-Koehler force   − pε kk

*  
to the third term   −2µ(1+ν ) / (1−ν )(e*cd )2 = −2µ(3λ + 2µ) / (λ + 2µ)(e*cd )2  which is the 
Eshelby dissipation (Eshelby, 1951, 1956, 1970, 1975a) for a spherical inclusion with 
eigenstrain as given by Eshelby (1978). The self-force in the equation of motion with 
inertia (Markenscoff, 2010, 2019b)) includes the above term, which shows that the 
solution of the dynamically self-similarly expanding spherical inclusion automatically 
expends the energy needed to nucleate a static inclusion from non-existence before 
growing it (which is the nonzero term at expansion speed V=0). This is to be expected, 
since the governing system of equations for the self-similarly expanding inclusion is 
starting from zero initial conditions. 
  
IV.  Symmetry breaking instability as a penny-shape (“pancake”) growing inclusion 
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It was shown in Markenscoff, 2019b, that the shape which a self-similarly expanding 
ellipsoidal inclusion will assume is the one for which the Hamiltonian remains invariant 
under a group of infinitesimal translations of the inhomogeneity position. From Noether’s 
theorem (dynamic J integral), under total loading, the energy -release rate through a 
contour surrounding the surface of discontinuity and shrinking onto it was obtained as  
 
 
   
δ !Etot = − lim

S d→0
!l([[W ]]− <σ ij

S d
∫ > [[ui, j ]])dS = 0                                                              (20) 

 
so that the moving phase boundary does not become a source or sink of energy. The 
quantity in parenthesis in (20) is the energy-momentum tensor, Eshelby, 1970, 1975a, 
1978), where the square brackets [[.]] denote jumps across the interface, <.> the average , 
  !l   the normal boundary velocity ( not the scaling parameter as in the previous sections, in 
order to maintain consistency with notations in the pertinent literature), and 

  W = 1/ 2σ ij (ε ij − ε ij
* ) = 1/ 2Cijkl (ε kl − ε kl

* )(ε ij − ε ij
* ) is the strain energy density; the expression in 

parenthesis in (20) coincides with the expression in parenthesis in eqtns  (4) and (5). The 
field quantities include both the applied pre-stress loading and the self-stresses due to the 
motion of the self-similarly expanding inclusion. It should be noted that before the 
inclusion starts to nucleate/expand the integral in (20) is a negative quantity under total 
loading.

  
In eqtn (20) two possibilities exist: either the quantity in parenthesis is zero (symmetry 
preserving) or to have the normal boundary velocity    !l = 0  on the upper and lower 
surfaces, in the limit of a flattened ellipsoid  (“pancake”), which has only axisymmetric 
symmetry (symmetry-breaking). The two modes are in competition for nucleation and 
growth, as will be shown below. In self-similar expansion the nucleated shape does not 
change, it only scales. 
 
The evaluation of the M integral (eqtns (4) with (14)) shows that the M integral for the 
sphere depends on the radius as  a3  .The M integral for the circular pancake of phase 
change is not calculated at this point, but we can make the following remarks: As shown 
in Eshelby, 1975b, Freund, 1978, Rice (1985), the M   integral  MO  about the origin will 
be shifted with regard to the crack tip by   xi

0Ji  .  For a circular penny-shape crack in 

tension the stress intensity factor is   KI = (2 / π )σ aπ , so that     J ∼ KI
2 ∼ a  . Thus, for the 

circular penny-shape,  MO  would vary as    aJ ∼ a2  . While this holds for cracks (which are 
a special limit of inclusions, e.g., Mura (1982), Markenscoff (2019b), the singularity at 
the tip of the flattened ellipsoidal inclusion with eigenstrain will also be square-root 
singular.  The square root singularity at the tip of the inclusion was obtained by the 
integration of distributed centers of eigenstrain inside the flattened elliptical cylinder in 
Markenscoff  (2019a), where the principal value of the resulting integral gives a square-
root singularity according to Kaya and Erdogan, 1987. 
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The fact that the  MO  integral for the sphere varies as   a3 , while for the pancake it varies 
as   a2  ,  implies that, for small  a   (as   a→ 0 ),  initial growth at nucleation requires a 
smaller loss of the potential energy of the system, while for growth into a larger shape, as 
 a→∞    the pancake mode is energetically favored , as the  MO  integral tends to infinity 
at a slower rate. From the above, we may infer that, if there is enough energy to nucleate 
an inclusion as a “pancake”, it will then grow planarly with less energy expenditure, 
while a spherically nucleated one may not have the energy to grow large. 
 
V. Conclusions  
 
The path-independent M integral in linear anisotropic elasticity, as the energy-release rate 
under scaling of the defect, provides an instability criterion for nucleation of a defect, for 
incremental growth of an arbitrarily small defect to grow without loss of potential energy 
under scaling.  The instability pressure for nucleation of an inclusion of phase change in 
density and concurrent change in bulk modulus was obtained as a quadratic equation 
(independent of the radius), in which the Peach-Koehler forces balance the self-force of 
Eshelby dissipation, with the conditions for the existence of a positive root investigated.  
As shown in Markenscoff, 2019b, Noether’s theorem allows both for a symmetry 
preserving nucleation shape and also for a symmetry breaking axisymmetric one, as a 
“pancake”-like ellipsoidal limit, under conditions of total symmetry in the loading and 
material properties. The comparison of the M integrals shows that the two geometries are 
in competition for nucleation and growth, and the results are also valid for self-similarly 
expanding inclusions of phase change with inertia, which in self-similarity start with zero 
initial conditions and include the nucleation energy. Indeed, as shown in Markenscoff and 
Ni (2016) the dynamic solution includes the static Eshelby energy to nucleate them, so 
that the above comparisons also hold in dynamic expansion of regions of phase change.  
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