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This paper examines the motion of a dense fluid that develops as an inertial gravity
current of decreasing mass above a horizontal porous bed, while flow described by
Darcy’s law occurs in the bed. Measurements of the mass and the front position
of the current in a set of laboratory experiments performed by changing different
parameters are presented. The results are explained by means of a global analytical
model that suggests practical correlations combining the parameters. Thus, previous
experimental, numerical and theoretical findings are extended to describe lock-release
gravity currents above more realistic porous beds.

1. Introduction
Many environmental, geophysical and man-made flows in which a dense fluid is

suddenly released on a horizontal boundary into a less dense surrounding medium,
occur under the influence of gravity. This type of flow is often referred to as a gravity
current and numerous examples in the environment and laboratory are reviewed by
Simpson (1997). These flows are often modelled in the laboratory by releasing a finite
volume of dense fluid, initially held behind a vertical barrier that separates it from the
less dense ambient fluid. When the barrier is removed the differences in hydrostatic
pressure on the two sides of the barrier drive a dense gravity current along the lower
boundary. This is called a ‘lock release’ gravity current (Rottman & Linden 2001).
The dense fluid is initially held in the finite lock and the barrier is referred to as the
lock gate. Less dense fluid also flows in the opposite direction to the current into the
lock.

The motion of such a gravity current on an impermeable horizontal bottom may be
divided into three distinct phases. Initially the current accelerates and, if the Reynolds
number is large enough, then travels at a constant speed. This constant–speed regime
is associated with the fact that the volume flux from the lock is constant initially.
The ambient fluid entering the lock eventually reaches the back wall of the lock and
produces a disturbance that then propagates forwards in the same direction as the
current. When the depth of the dense fluid within the lock is the same as the ambient
fluid outside, the so-called ‘full-depth lock release’, this disturbance takes the form
of a bore on top of the current. Rottman & Simpson (1983) showed that the bore
travels faster than the current and eventually catches up with the front of the current
after the latter has travelled about 10 times the original length of the lock. This time
for the bore to catch the front is empirical, but well supported by experiment.
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At this point the effects of the finite volume of dense fluid become important
and the current begins to decelerate. From the results of experiments produced
by instantaneous releases (Huppert & Simpson 1980; Rottman & Simpson 1983),
theories (Fay 1969; Fannelop & Waldman 1972; Hoult 1972) and dimensional analysis
(Rottman & Linden 2001) shows that, in a channel, the velocity decreases like t−1/3.
Eventually the current slows sufficiently and viscous effects become important. The
onset of this third, viscous, phase depends on the initial conditions and if it is reached
the velocity decreases as t−4/5 (Didden & Maxworthy 1982; Huppert 1982; Marino
et al. 1996).

Here we consider the propagation of the current over a horizontal porous bed. The
bed is initially saturated with ambient fluid, and so the dense fluid in the current
sinks into the bed, driven by the excess pressure at the top of the bed. It is expected
that the loss of mass through the porous bed reduces the driving force for the current
and thereby affects its velocity and depth. Gravity currents propagating over porous
beds occur frequently in varied natural and man-made situations. Natural events
include the currents of brackish water generated by tidal motions over the permeable
bottom of estuaries, and internal waves impinging on continental shelves. Man-made
situations include the release of sewage liquids on nearby coasts and the accidental
escape of toxic liquids surrounded by gravel beds.

As an approximation to this problem Thomas, Marino & Linden (1998) studied
the sudden release of fixed volumes of salt water over a permeable base consisting
of two overlapping wire meshes. By changing the amount of overlap they were able
to alter the permeability of the base. They focused on the case where the holes were
small, so that the flow through the base was viscously controlled. They found, as had
some preliminary experiments by Lionet & Quoit summarized in Simpson (1997),
that the gravity current only travelled a finite distance before it stopped. This is in
contrast to gravity currents on impermeable bases, which propagate continuously
although, of course, with decreasing velocity. Thomas et al. (1998) found that the
maximum distance the current travelled from the lock decreased with increasing
density difference, suggesting that the loss of fluid through the base, which is driven
by this density difference, plays a crucial role in the dynamics.

Moodie & Pascal (1999a) obtained numerical results on driven gravity flows over
slightly sloping porous surfaces formed by the sudden release of a fixed volume
of fluid. Their results for horizontal beds are in accordance with the experimental
observations reported by Simpson (1997) for fixed values of porosity. Moodie & Pascal
(1999b) also presented results concerning a two-layer shallow-water formulation for
axisymmetric gravity currents overlaying a sloping porous bottom.

Ungarish & Huppert (2000) solved numerically the one-layer shallow-water
equations for high-Reynolds-number gravity currents propagating over a horizontal
porous boundary in both a rectangular and an axisymmetric geometry. One result
of this paper was to show the effects of the impermeable bottom of the lock
behind the lock gate on the initial phases of the motion of the current in the
experiments of Thomas et al. (1998). An integral model that assumes the current has
a constant height and a uniform density was also developed to provide estimates
of the distance of propagation and average thickness as explicit functions of
time.

Marino & Thomas (2002) studied the gravity currents travelling over a permeable
surface in the case in which the flow through the porous base is limited by inertial
effects, that is, when Darcy’s law is not valid. The results provided by an analytical
model, and corroborated by experiments, suggest that the mass of the current also
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decays exponentially in this case, but with a decay constant that is different from the
viscous case found by Thomas et al. (1998).

In all these papers the flow of dense fluid inside the porous bed is ignored. However,
this flow is taken into account by Acton, Huppert & Worster (2001), who studied
the evolution of a viscous gravity current (low Reynolds number) over a deep and
(initially) unsaturated porous substrate. More recently, S. Khan & H. E. Huppert
(2003, private communication) analysed the behaviour of a gravity current which
propagates over and drains into a deep dry porous substrate where surface tension
effects are relevant. On the basis of both shallow water and integral models of the
current, it is found that the decay of the current volume above the porous bed is more
closely approximated by a linear relationship. In this case the boundary condition of
the flow through the porous medium is different from that considered here, and the
partial analogy with the theoretical treatment developed in the present work will be
examined in § 2.

Our previous experimental results (Thomas et al. 1998; Marino & Thomas 2002)
were obtained by studying the behaviour of dense currents running over and through
permeable surfaces such as grids. The flow through grids is only an approximation
to flow in a porous medium. Although these studies have provided useful insights, in
many practical circumstances the flow within a porous bed will change as the dense
fluid enters it.

In this paper the behaviour of plane inertial gravity currents running over more
realistic permeable layers of non-negligible thickness is investigated. Laboratory
experiments were carried out in which fixed volumes of salt water were released
from behind a lock with an impermeable bottom into a large rectangular cross-
section channel containing fresh water. The current flows over a thick permeable
layer, which is initially saturated with fresh water. As the salt water penetrates the
bed, it drives the fresh water downwards in the bed, and out through the bottom.
Measurements are presented of the gravity current and related to the loss of salt
water from the current.

In § 2 we calculate the flow in the bed driven by a layer of salt water on top and
its influence on the gravity current over the bed. This calculation is used to relate the
present experiments to our earlier ones over a grid. The experiments are described in
§ 3, and the results are given in § 4. A summary and conclusions are given in § 5.

2. Dynamics of the flows involved
2.1. Dense fluid penetration into a porous bed

In order to study the behaviour of the gravity current, it is necessary to determine the
flow into the porous medium. Specifically, consider a porous bed initially filled with
fresh water over which a saline gravity current flows (figure 1). The boundary between
the bed and the overlying fluid is at z = 0. If the gravity current travels significantly
faster across the bed than the salt water intrudes into the porous medium, the dense
fluid extends over an horizontal length much greater than the vertical depth through
which the salt water has percolated into the porous medium. In such a case, the
flow in the porous medium can be treated as one-dimensional (see figure 2), with the
gravity current represented as a layer of fluid of constant depth h and density ρc.

We assume that the bed is initially saturated with fresh water and that as the
salt water in the gravity current sinks into the bed, the fresh water beneath it
flows downwards. Since the flow involves dense fluid over lighter fluid, the flow is
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Figure 1. Schematic view of a gravity current above a permeable bed of thickness D. The
lock gate is positioned at x = x0, and the dense fluid initially occupies the full depth h0 inside
the lock. The percolation through the porous medium generates a horizontal flow Q in the
free space under the porous layer without affecting the gravity current motion.

Figure 2. A schematic of the flow of dense fluid into the porous bed. The depth of the dense
fluid above the bed is h and it has penetrated into the bed uniformly to a depth η.

statically unstable but, for the purposes of this discussion the possibility of convective
instabilities is ignored.

The vertical Darcy velocity w within the bed is then given by Darcy’s equation
(Darcy 1856; Bear 1972)

w = − k

µ

(
∂p

∂z
+ gρ

)
, (2.1)

where k is the permeability, µ is the dynamic viscosity of the fluid, ρ is the density
and g is the gravitational acceleration.

The pressure gradient driving the fluid from the current into the bed is given by the
difference in pressures p(0) at the top of the bed and the pressure p(−η) at the inter-
face z = −η between the salt and fresh water. The pressure at the top of the bed is

p(0) =

∫ ∞

0

g(ρc − ρa) dz, (2.2)

where ρa is the density of the fluid initially in the bed. Both the initial densities of
the fluid in the gravity current and in the bed can, in principle, be represented by
functions of the height z. However, we will focus on the case in which ρa is a constant.
Suppose, also, that the current is Boussinesq so ρc ≈ ρa , then (2.2) reduces to

p(0) = ρa

∫ ∞

0

g′(z) dz ≡ ρa〈g′h〉, (2.3)
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where g′ = g((ρc − ρa)/(ρa)) is the reduced gravity. The quantity 〈g′h〉, defined in (2.3)
is the total buoyancy in the current at any x location. Hence the pressure gradient in
the region above the interface z = −η is (p(0) − p(−η))/η. The vertical Darcy velocity
wS in the salt water at the interface is given by (2.1) as

wS = − k

µ

(
ρa〈g′h〉 − p(−η)

η
+ gρc

)
. (2.4)

At the bottom of the bed z = −D the pressure is p(−D) = gρaD, and the vertical
Darcy velocity wF in the fresh water is

wF = − k

µ

(
p(−η) − gρaD

D − η
+ gρa

)
. (2.5)

It is assumed that ρc is independent of position within the porous medium. Continuity
requires that wS = wF , and hence the interface velocity wη is given by

wη = −k

ν

〈g′(h + η)〉
D

, (2.6)

where ν = µ/ρa is the kinematic viscosity of the ambient fluid, and g′ is assumed
independent of depth. In addition, the velocity wη is related to the advance of the
interface in the porous layer by

wη = −φ
∂η

∂t
, (2.7)

where φ is the porosity of the medium.
S. Khan & H. E. Huppert (2003, private communication) show that for an initially

dry porous medium the one dimensional percolation (2.6) is replaced by

wη = −gk

ν

(
1 +

h

η

)
− pck

µη
, (2.8)

where pc is an effective capillary pressure jump (Bear 1972; S. Khan & H. E. Huppert
2003, private communication). Some consequences of this different interface condition
are discussed below.

2.2. Gravity current over a porous bed

Equations (2.6) and (2.7), which are valid for any x coordinate, have to be joined to
relationships associated with the flow of the gravity current over the porous medium.
In general, this is a complicated coupled problem and analytical solutions are only
possible when simplifying assumptions regarding the gravity current flow are made.

The excess mass m(t) per unit width of dense fluid above the porous bed is

m(t) =

∫ xf (t)

0

∫ ∞

0

(ρc(x, z, t) − ρa) dz dx, (2.9)

where xf is the position of the front. As fluid from the current enters the porous bed,
mass conservation implies that

dm

dt
= −

∫ xf

x0

(ρc(x, 0, t) − ρa)wη dx. (2.10)

This mass conservation relationship can be employed to obtain an average value
of wη if dm/dt is known. Provided the current does not mix with ambient fluid, (2.10)
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may be written as

dm

dt
= − (ρc − ρa) wη(t) (xf (t) − x0) , (2.11)

where the overbar indicates the average along the permeable surface x0 � x � xf

covered by the current. Thus, (2.11) becomes

wη(t) = − dm(t)/dt

(xf (t) − x0)(ρc − ρa)
, (2.12)

which provides an estimate of the average vertical flow rate of the dense fluid per
unit area through the porous medium, wη – see § 4.

We now introduce the time scale τD

τD =
νD

kg′
0

, (2.13)

based on the reduced gravity g′
0 of the initial release, first introduced by

Thomas et al. (1998). For comparison, we recall that Marino & Thomas (2002)
found a time scale

τ =
const

φ

a
1/4
0

g
1/2
0

,

instead (2.13), in the case of a porous layer of negligible thickness.
In addition, we define a mass scale m0 = (ρc − ρa)x0h0 = ρag

′
0a0. Using these scales,

the dimensionless mass M =m/m0 and dimensionless time T = t/τD , with M(0) = 1, are
introduced. Also the horizontal and vertical lengths are non-dimensionalized by x0 and
h0, respectively, and the reduced gravity by the initial value g′

0. Dimensionless variables
are denoted by capital letters. Thus (2.10) can be expressed in the dimensionless form

dM

dT
= −[M + Mη − M1], (2.14)

where

M =

∫ Xf

0

〈G′H 〉 dX (2.15)

is the total mass remaining in the current obtained from (2.9),

Mη =

∫ Xf

1

〈G′η〉 dX (2.16)

is the mass in the porous medium, and

M1 =

∫ 1

0

〈G′H 〉 dx (2.17)

is the mass remaining in the lock.
Global mass conservation implies that

M + φ Mη = 1 (2.18)

and, therefore, (2.14) becomes

dM

dT
= − 1

φ
[1 − (1 − φ)M − φM1] . (2.19)

An analytical solution to this equation can be found when the mass remaining in
the lock is small enough, i.e. M1 � M . Integration of (2.19) from T = 0 leads to the
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simple solution

M =
1

1 − φ

[
1 − φ exp

(
1 − φ

φ
T

)]
, (2.20)

that does not depend on the height profile h(x), the front evolution xf (t) and mixing,
so that the result has significant generality. Equation (2.20) shows that the mass decays
exponentially on a time scale defined by the porosity φ and τD , and that the time of
extinction tEND of the current mass over the porous medium is finite and given by

tEND =
φ

(1 − φ)
τD ln

(
1

φ

)
. (2.21)

Consider that a given initial condition introduces a small shift δT in the time origin
of (2.20). The solution for T > δT is

Mδ =
1

1 − φ

[
1 − φ exp

(
1 − φ

φ
(T − δT )

)]
. (2.22)

The difference �M between this solution and that given by (2.20) is

�M = Mδ − M 	 exp

(
1 − φ

φ
T

)
δT . (2.23)

Therefore, �M increases with time T ; this behaviour is different from that found
for currents over thin substrates (Thomas et al. 1998) or the similar solutions on
impermeable boundaries (Rottman & Simpson 1983). This is probably because the
flow through the porous medium depends not only on the mass in the current M , but
also on the mass in the porous bed Mη as shown by (2.14).

The solution (2.20) makes sense for xf 
 x0, that is, in the later stages of the flow.
However, (2.23) shows that (2.20) may contain a significant accumulated error when
(2.19) is integrated from T = 0.

On the other hand, in the early stages of the flow the mass of fluid M1 retained in the
lock is not negligible. In such a case the motion of the front of the current is important,
and the speed may be associated with a constant Froude number F by the relation

dxf

dt
=F

√
〈g′h〉, (2.24)

where the right side must be evaluated at the front of the current. The empirical
formula introduced by Huppert & Simpson (1980),

F =

{
1.19, 0 <H < 0.075

H −1/3, H > 0.075,
(2.25)

is used, although we found that F = const gives also acceptable results in the deter-
mination of M =M(T ).

Using dimensionless variables (2.24) becomes

dXf

dT
= F λ

√
〈G′H 〉, (2.26)

where

λ=
τD

tc
(2.27)

is the ratio between the characteristic time τD of the vertical flow through the porous
medium given by (2.13), and

tc =
x0√
g′

0h0

. (2.28)



306 L. P. Thomas, B. M. Marino and P. F. Linden

The characteristic time tc is proportional to the time it takes for the gravity current
to travel the length of the lock, and so measures the time scale for the finite lock
volume to become important. The time scales are ratios between a length scale and
the corresponding velocity, so that

λ=
τD

tc
=

h0

x0

√
g′

0h0

νD/k
(2.29)

may also be thought of as the ratio of the horizontal and vertical characteristic
velocities times the initial geometrical aspect ratio.

Equations (2.19) and (2.26) constitute a pair of coupled differential equations whose
solutions depend on the horizontal variations in the height h(x) and reduced gravity
g′(x). The simplest case to consider is an integral model in which the current is
represented as a rectangle of constant depth h(x) = h and uniform density g′(x) = g′.
As we will see in § 4.1 the observed currents do have fairly uniform values of g′

along their length, but the depth increases significantly from the rear to the front. We
discuss the relation of the observed current to this model in § 4. In the case of this
simplified integral model, from (2.15) and (2.17) it follows that

M = 〈G′H 〉 Xf (2.30)

and

M1 = 〈G′H 〉 . (2.31)

Then (2.19) and (2.26) become

dM

dT
= − 1

φ

[
1 − (1 − φ) M − φ

M

Xf

]
(2.32)

and

dXf

dT
= F λ

√
M

Xf

. (2.33)

An analytical solution can also be obtained for M1 � M , but the general case is
solved by using any simple integrator of ordinary differential equations. The total
mass in the porous medium Mη is calculated from this solution and (2.18).

The profile η(x, t) of the interface between dense and ambient fluids inside the
porous bed may also be determined numerically. From (2.6) and (2.7), it follows that

φ
dη

dt
=

k

ν

〈g′(h + η)〉
D

(2.34)

that becomes in the dimensionless relationship

φ
dN

dT
= 〈G′(H + N)〉, (2.35)

where N = η/h0. Using (2.30) and assuming no mixing inside the porous medium, we
obtain

φ
dN

dT
= N +

M

Xf

. (2.36)

The numerical solution of (2.32)–(2.33) is used to calculate the right hand side of
(2.36), and the interface position N for a fixed X is obtained by time-integrating the
interface velocity dN/dT starting from the time at which the front of the current
passes through X.
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Figure 3. (a) Typical profiles of the current over and inside the porous medium obtained for
λ= 70 and φ = 0.375. (b) Shape of interface inside the porous medium shown in (a).

Figure 3(a) shows the profiles obtained at different times for typical parameter
values. The corresponding profiles of the current over the porous layer are also
included to complete the picture. Figure 3(b) illustrates the shapes of the interface
profiles in the porous layer. These profiles evolve from an almost linear initial shape
to a concave shape at later times. The penetration into the porous bed is greatest
near the lock, since the current is deeper there and the bed is covered by the gravity
current for the longest time.

The profile shapes and their time evolution shown in figure 3(b) are different from
those profiles obtained for the flow into a deep dry porous medium. In the latter
case the boundary condition at the interface may retard the rate of drainage near
the origin at later times giving, as a consequence, a convex shape (see figure 4 of
Khan & Huppert 2003).

3. The experiments
Gravity currents were generated in a long rectangular tank with transparent Perspex

sidewalls by means of a lock-exchange system. Dense salt solution was initially held
in a confined region behind a vertical barrier – the lock gate. The current was
initiated by carefully lifting the gate. The tank, 3 m long, 0.2 m wide and 0.6 m deep,
is approximately 50% longer than that used by Thomas et al. (1998), allowing for a
longer evolution of the current along the tank.
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A porous layer was composed of glass spheres with an average diameter of 0.286 cm.
The porosity of the matrix was measured by pouring the dry spheres into a calibrated
cylinder of known volume, and then adding water to the top of the packed spheres.
The porosity φ was determined by weighing the cylinder before and after the water
was added. We found that φ = 0.375.

The glass spheres were contained in a specially constructed container consisting of
thin Perspex sidewalls. The container was placed above the bottom of the tank and
abutted the end of the lock. The lock had an impermeable base. When the gate was
lifted the current flowed along the top of the porous layer (see figure 1).

The bottom of the container holding the glass spheres was made of a highly
permeable mesh and was located at a distance R =0.12 m above the bottom of
the tank. Initially the tank was filled with fresh water to a depth h0 above the
porous boundary. The porous bed was saturated with fresh water, which also initially
occupied the space beneath the bed.

When the gate was raised, dense salt solution flowed out along the top of the porous
bed. The excess pressure produced by the dense fluid on top of the bed, forced a flow
inside the bed. Fresh water was driven out through the mesh base and flowed along
the unobstructed channel beneath the bed. In order to limit the interaction between
the flow Q of fresh water drained away from the bed, and the gravity current, a space
was left between the porous medium and the endwall of the tank (see figure 1). We
find that the most of the fresh water goes upwards through this unrestricted opening
and the residual flow through the bed does not affect the dynamics of the gravity
currents. After each run the porous bed was washed with fresh water and dried with
warm air in order to avoid random bubbles beneath and inside the bed that can
affect the reproducibility of the results.

The lock was formed by a vertical gate located at a distance x0 from the rear
wall. Two values of x0, 0.10 m and approximately 0.20 m, were used. In both cases
the tank length was longer than 10 lock lengths, so the transition from the constant
velocity phase to the similarity phase (see § 1) is expected to occur if the currents were
travelling over an impermeable base. Dense salt solution, density ρc, with a small
amount of dye for visualization, was added behind the gate and was filled to the same
depth as the fresh water, density ρa <ρc, in the tank, so that these were ‘full-depth
lock releases’. In every case the length of the lock x0 was smaller than its depth h0.
Two depths D, 0.09 m and 0.12 m, of the porous bed were used. The driving force
for the flow is described by the reduced gravity g′

0 = g[(ρc − ρa)/ρa]. The maximum
value of g′

0 was 73 cm s−2, and the currents were Boussinesq. Table 1 lists the main
parameters for the 33 experiments.

A panel of lights with a diffusing screen located behind the channel provided nearly
uniform back-lighting. A video camera was placed at a fixed position 6m away from
the tank. The images captured by the video camera were stored in a PC and digitally
processed. Measurements of the light intensity are obtained for each pixel. These
are related to the concentration of the dye along each light path and so provide
the width averaged dye concentration. The dye concentration is related to the width
averaged salt concentration, since the dye acts as a passive tracer. Thus the intensity
measurements give the full two-dimensional density distribution ρ(x, z, t) − ρa on
each video frame (Thomas et al. 1998), and the relative mass m per unit width (2.9)
is obtained by integration. Because of the opacity of the glass spheres it was only
possible to obtain density measurements above the porous layer.

The presence of dissolved salt increases the refraction index of water. Variations
in the refraction index may modify the light intensity captured by the camera, which
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x0 h0 g′
0 D tc τD τexpt

Run (cm) (cm) (cm s−2) (cm) (s) (s) (s) λ

1 10.0 25.6 10.9 12.0 0.599 202 189 337
2 10.0 25.6 20.1 12.0 0.441 109 108 248
3 10.0 25.6 30.1 12.0 0.360 73.1 73.0 203
4 10.0 25.6 39.2 12.0 0.316 56.1 62.3 178
5 10.0 25.6 49.0 12.0 0.282 44.9 44.6 159
6 10.0 25.6 65.1 12.0 0.245 33.8 32.9 138
7 19.6 25.6 4.2 12.0 1.89 524 510.0 277
8 19.6 25.6 5.8 12.0 1.61 379 402.0 236
9 19.5 25.6 11.2 12.0 1.15 196 189.0 171

10 19.6 25.6 13.6 12.0 1.05 162 178.0 154
11 19.6 25.6 18.8 12.0 0.893 117 119.0 131
12 19.7 25.6 24.5 12.0 0.787 89.8 98.4 114
13 19.4 25.6 27.4 12.0 0.732 80.3 80.2 110
14 19.6 25.6 33.4 12.0 0.670 65.9 64.5 98.3
15 19.4 25.6 38.3 12.0 0.620 57.4 55.0 92.7
16 19.6 25.6 44.1 12.0 0.583 49.9 51.6 85.5
17 19.4 25.6 46.9 12.0 0.560 46.9 44.8 83.8
18 19.6 25.6 55.5 12.0 0.520 39.6 41.3 76.2
19 19.6 25.6 62.5 12.0 0.490 35.2 35.2 71.8
20 19.5 25.6 73.4 12.0 0.450 30.0 31.0 66.6
21 19.9 20.0 2.8 9.0 2.66 589 587.0 222
22 19.6 20.0 9.8 9.0 1.40 168 165.0 120
23 19.7 20.0 19.6 9.0 0.995 84.2 88.3 84.6
24 20.0 20.0 36.5 9.0 0.740 45.2 45.2 61.1
25 19.7 20.0 63.0 9.0 0.555 26.2 28.1 47.2
26 10.0 25.0 1.9 9.0 1.45 868 790.0 599
27 10.0 25.0 2.8 9.0 1.20 589 555.0 493
28 10.0 25.0 6.0 9.0 0.816 275 273.0 337
29 10.0 25.0 11.9 9.0 0.580 139 133.0 239
30 10.0 25.0 21.6 9.0 0.430 76.4 77.0 178
31 10.0 25.0 41.6 9.0 0.310 39.7 39.7 128
32 10.0 25.0 51.0 9.0 0.280 32.4 31.8 116
33 10.0 15.0 20.9 9.0 0.565 78.9 76.5 140

Table 1. Main parameters of the experiments.

affects the density measurements. There are several standard ways to overcome this
problem (Dalziel 1995; Merzkirch 1987). We performed a correction that we tested
with an additional set of experiments carried out over a transparent solid base and
without adding dye to the current or the the ambient fluid. As expected, the amount
of correction increased with the density of the current and inversely with its depth.
After image processing the relative mass m per unit width was obtained with an error
less than 2% (Dalziel 1995).

4. Results
4.1. Qualitative observations

Figure 4 shows the gravity current in Experiment 9. This experiment is typical
of all the experiments we carried out. The images are in false colour, which is
related to the density in the current. These images show a number of features, some
of which are observed in currents over an impermeable base, while others are a
result of the penetration into the bed. In the initial stages the flow from the lock
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Figure 4. Grey-scale representation of the motion of a gravity current over a porous bed.
The distance in lock-lengths and the intensity scale are shown at the bottom of the figure.

is essentially the same as over a solid base – see, for example, similar images in
Hacker, Linden & Dalziel (1996). Fluid moves horizontally at the base of the lock
and billows form on the top of the current. The density in the bulk of the current
remains unchanged during this collapse. The front of the current is marked by a
sharp density change, and a head, deeper than the following current, forms.
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As the current propagates, there are three main changes from the solid bed case.
The depth of the dense fluid behind the front decreases with time, the density in the
head also decreases (as can be seen by the change in colour) and there is evidence
of some disruption to the interface at the top of the current. These changes are a
result of the penetration of dense fluid into the porous bed which, unfortunately, is
not visible in these images due to the opaqueness of the bed. The decrease in current
depth at any given horizontal location is almost all due to this penetration, since over
a solid base the depth remains nearly constant during the constant velocity phase.
We observed fresh water driven out through the base of the bed by this penetration,
but it was not possible to measure this flow accurately.

It seems, however, and in contrast to the model in § 2, that some of the fresh water
within the bed also rises upwards through the bed and the current. This fluid is driven
by a Rayleigh–Taylor instability produced by the salt water in the current on top of
the fresh water. This forms convective plumes that disrupt the top of the current, and
carry with them some of the salt water. The mixing associated with this process also
dilutes the salt water within the current and causes the density within the current to
decrease with time.

While this convectively-driven flow changes the look of the current it does not
appear to have a first order effect on the dynamics. Both the horizontal speed of the
current and the penetration of the salt water into the bed, depend on 〈g′h〉, the total
buoyancy in the current. If, as is appropriate, we include all fluid with density larger
than the ambient fresh water as being in the current, then this total buoyancy is not
altered by the convective action above the bed. The additional mixing reduces the
density but increases the volume, keeping 〈g′h〉 constant.

The convectively-driven flow above the current does induce additional turbulence in
the current, the effect of which may be to decelerate the current (Linden & Simpson
1986). Also, there is an enhanced penetration of salt water into the bed, driven
by a corresponding convective flow in the porous medium. This would be the only
penetration, for example, if the bed had an impermeable base which prevented any
fluid from being displaced below it. We will show in § 4.2 that an adequate model of
the current can be derived even when these effects are ignored and so we conclude
that these convective effects are not of prime importance (see also § 5).

4.2. Quantitative observations

The mass of the current is of interest because it is related to the driving force
of the current and can be directly obtained with the diagnostics described above.
Figure 5(a) illustrates the evolution of the dimensionless mass M(t) = m(t)/m0 of the
current plotted against the time t measured from release for D = 12 cm, a0 ≈ 500 cm2

and different values of g′
0. As the current propagates over the porous bed, the results

show that the mass of the gravity current decreases at a rate that increases with
g′

0. Figure 5(b) shows the data in figure 5(a) using the dimensionless time T = t/τD ,
where τD is the characteristic time defined by (2.13). We see that, with this scaling,
the experimental values of M for all the experiments collapse on to a single curve,
within experimental accuracy.

There are three theoretical curves shown on this figure. The dashed line is the result
of the integral model (2.20) for the case x0 = 0 corresponding to a lock of zero length.
This solution underestimates the mass in the current since it does not account for
the mass remaining above the impermeable base in the lock, and does not result in a
good approximation to the experimental behaviour. The solid curves on figure 5(b)
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Figure 5. Dimensionless mass M remaining in the current for a porous bed of thickness
D = 12 cm, a0 ≈ 500 cm2 and different g′

o as a function of (a) time t measured from release
and (b) dimensionless time using (2.13). The dashed line is given by (2.20), while the solid lines
correspond to solutions of the integral model with the minimum (70) and maximum (280)
values of λ of the experiments shown.
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are the solutions corresponding to the integral model (2.32)–(2.33) associated with
the highest and lowest values of λ in the present experiments.

Figure 6 shows the equivalent plots as in figure 5 for the case D = 9 cm and several
combinations of a0 and g′

0. Again the data collapse with the time scaled on τD and the
integral model gives a good representation of the data. The good agreement between
the model developed in § 2 and the experimental results, occurs because the model
includes the effects on M(t) of the finite lock length, which may be taken into account
by employing the parameter λ= τD/tc �= 0. However, the effects on the flow are not
the same that those indicated by Ungarish & Huppert (2000) as they did not consider
the contribution of the weight of the fluid inside the porous medium.

Figure 7(a) illustrates the evolution of the location of the front of the current with
time. Two sets of experiments are shown. The first set (runs 1–6, see table 1)) have
a short lock x0 = 10 cm, while the second set (runs 7–20, see table 1) have a longer
lock x0 = 20 cm. Since the tank is 3 m long the currents have the potential to travel
further than 10 lock lengths, and so to change from the constant-velocity phase to the
similarity phase. Figure 7(b) shows the dimensionless front position (xf (t) − x0)/x0,
plotted against the dimensionless time t/tc for D = 12 cm and two values of x0.

Also shown on figure 7(b) are the constant-velocity and the similarity predictions
for impermeable lower boundaries. The constant-velocity line is given by a Froude
number F0 = u/(

√
g′

0h0) = 0.46, based on the initial depth in the lock. The similarity

solution xf (t)/x0 = 1.5(t/tc)
2/3 is plotted by a dashed line using the empirical coefficient

obtained by Rottman & Simpson (1983), Huppert & Simpson (1980) and our own
experimental data. The line describing the similarity phase intersects the constant-
velocity line at approximately 10 lock lengths, as expected from the results of the
standard lock release on an impermeable base. Also included in figure 7(b) is the
evolution given by the integral model over a porous bottom (2.32)–(2.33) and a solid
bottom (M = 1 in (2.33)). As seen, the integral model is only a fair approximation
for the evolution of the front position itself with and without loss of mass. However,
it should be recalled that the model provides the rough correction M1 needed for
calculating the evolution of the current mass over the porous medium with the integral
model (2.20).

Figure 7(c) shows that the speeds developed by the currents initially are slightly
slower than those provided by the energy conserving solution of Benjamin (1968)
with the same boundary conditions at the top and the bottom of the channel, for
which F0 = 0.5. However, the value F0 = 0.46 ± 0.02 obtained here is within the
experimental error of the Froude number for lock-release experiments performed
with an impermeable base and an upper free surface (Rottman & Simpson 1983;
Shin et al. 2003). This suggests that the initial value of uf for t/t0 � 15 is not strongly
modified by the presence of the porous medium for any value of λ under the present
experimental conditions. The initial velocity of the front is then determined by h0 and
g′

0, as expected for the lock-exchange problem.
Subsequently, the front tends asymptotically to the self-similar solution for gravity

currents running over a solid bottom as indicated by the dashed line in figures 7(b)
and (c). We also see that there is no appreciable difference between the evolution of
the fronts in our experiments and the solid bottom case, suggesting that the reduction
of the global mass has not influenced the leading part of the current at this time in
its motion. However, for the latest times of the evolution that difference increases as
shown in figure 7(c), and the evolution of the experimental points seems to follow
the trend indicated by the solution of the integral model with the permeable base
(dash-dotted line).
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Figure 6. Dimensionless mass M remaining in the current for a porous bed of thickness
D = 9 cm with different a0 and g′

o as a function of (a) time t measured from release, and
(b) dimensionless time formed by using (2.13). The solid lines correspond to the solutions of
the integral model with minimum (60) and maximum (600) values of λ of the experiments.
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Figure 7. Evolution of the front position (a, b) and the front velocity (c) of the gravity currents
for D = 12 cm. The experiments 1-6, with a0 ≈ 250 cm2 are shown by solid symbols, while
the runs 7-20 (a0 ≈ 500 cm2) by open symbols. The solid and dashed lines correspond to the
theoretical evolution in the constant-velocity phase and the self-similar phase for imperme-
able bases, respectively. The dash-dotted and dash-dot-dot lines correspond to the solution of
the integral model with and without mass losses, respectively.

Figures 5(b) and 6(b) show a systematic deviation of the last points in the
experiments with higher g′

0 that might indicate the presence of another flow regime.
Reynolds numbers Rec of the currents, where

Rec =
hf

ν

dxf

dt

and hf the height of the current at the front, were measured to be high (Rec > 4000)
even in the later stages of the experiments. Further, there is no evidence of a transition
to the x ∝ t1/5 expected for the viscous regime in figure 7. We believe these deviations
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Figure 8. Comparison of the dimensionless mass M(T ) in four cases that have similar λ
coming from different combinations of a0, D and g′

o. The dashed line is the corresponding
solution provided by the integral model.

are a result of residual error in the definition of the level of the porous medium
and the refraction index correction applied in the image processing described in § 3,
because they appear for the smallest heights and the densest gravity currents where
the error in the measurements is largest.

According to (2.32)–(2.33), the theoretical curve for M(T ) is unique for a given λ,
regardless of the individual values of a0, g

′
0 and D. As shown in figure 8, this behaviour

is also found when comparing the time evolution of M obtained in experiments with
analogous values of λ.

From comparisons between theoretical and experimental evolution of M(T ) such
as those shown in figure 7, we determined, for each experiment, the value λexpt

that minimized the mean square deviation between the theoretical curve and the
experimental values of M(T ). Accordingly, we obtain τexpt = λexpt × tc that can be
compared directly with τD given by (2.13). Figure 9 shows the resulting τexpt as a
function of g′

0/D for all the experiments. It is seen that there is no dependence of
a0 = x0h0 as expected from the theoretical relationship (2.13). The best fit line of the
experimental points τexpt = C(D/g′

0) is also shown in the figure. Comparison with (2.13)
shows that C = ν/k, and, therefore, the coefficient of the best fit line allows us to
obtain the permeability k of the porous material. Using ν = 1.1×10−6 m2 s−1, we obtain
k 	 6×10−5 cm2. This value agrees well with that estimated using the Kozeny–Karman
equation (k = 6.14 × 10−5 cm2) (see Duillen 1979 or Fand et al. 1987).

In addition, knowledge of the evolution of the mass remaining in the current makes
possible to calculate the Reynolds number Reη = wη d/ν of the flow through the
porous medium, where wη is obtained from (2.12) and d is the diameter of the glass
spheres. It is found that Reη < 5 in all experiments and, in most of the runs Reη < 1.
These values, and the estimate of the permeability described above, supports the use
of Darcy’s law for the flow within the porous medium (Fand et al. 1987).
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Figure 9. Experimental measurements of τexpt as function of g′
c/D. As suggested by the time

scale given by (2.13), results coming from experiments performed with different a0 introduce
no deviations from the general trend.

5. Summary and conclusions
Plane inertial gravity currents travelling over a thick porous bed consisting of small

glass spheres were investigated. This work is an extension of previous experiments
by Thomas et al. (1998), where the porous bed was represented by a thin grid. The
currents were produced by lock-release of salt water in a channel containing fresh
water. The porous bed was initially saturated with fresh water, which was displaced
by the dense fluid in the current as it moved over the bed.

The progress of the front position of the currents was measured directly and the
corresponding velocity was calculated. From the measurements of the fluid mass
lost from the current, we are able to estimate the flow of these fluid through the
bed to confirm that it is well described by Darcy’s law and scales on a time scale
τD = νD/kg′

0. This time scale was also found by Thomas et al. (1998) for the flow of
fluid coming from a gravity current running over a permeable base made from a thin
mesh, despite the fact that subsequent experiments performed by Marino & Thomas
(2002) indicated that Darcy’s law is not valid at all times.

We present results of a model that describes the flow of the current in terms
of a local Froude number at the front, and a global mass balance suggesting an
analytical approximation, (2.20), for extended currents over thick porous layers: the
mass evolution does not depend on the height profile, mixing, Froude number at the
front, details of the beginning of the flow including the evolution of the bore, and
the initial fractional depth of the dense fluid. For a better comparison between the loss
of fluid from the current and the laboratory results, we introduce a simple correction
through an integral model obtaining (2.32)–(2.33) with proper initial conditions and
F function, and achieving a good agreement. In addition, the current may decelerate
as the driving pressure is reduced because of the current thinning due to the sinking
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of fluid into the bed, but significant changes in the evolution of the front position or
its velocity take place outside the maximum extension of the present experiments.

The findings reported cover the full-depth release case. However, some preliminary
experiments performed for partial-depth release shown no significant difference of
the behaviour of the gravity currents during the initial stages with respect to those
described by Huppert & Simpson (1980), or at the later times with respect to those
introduced here.

Thus the present experimental work and analysis extend our previous work over
thin permeable surfaces to gravity currents on thick porous beds. The experiments
are arranged so that the fresh water within the bed can be displaced downwards and
out through the bottom of the bed. In other practical cases this may not be possible
and the only exchange will occur by the gravitational driven flow within the bed. We
observed this flow, but in our present arrangement it was of secondary importance.
Further work is needed to investigate this case.

L. P. T. and B.M.M. acknowledge financial support from CONICET and UNCPBA,
Argentina.
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