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Abstract We present the results of an investigation of the
drag force on a horizontal grid of bars moving vertically
through a stratified fluid. A novel approach was used to
calculate the drag, based on measurements of the terminal
velocity of a freely rising grid. In the homogeneous case the
drag coefficient of the grid is found to be approximately
constant for a range of grid-based Reynolds numbers. In the
presence of a linear stratification, the drag on the grid was
found to be significantly larger than in the homogeneous
case. This increase is interpreted as being due to the addi-
tional buoyancy force required to displace fluid elements in
the wake of the grid from their equilibrium positions. A
buoyancy drag has been defined as the additional drag force
due to the stratification. The buoyancy drag coefficient is
relatively insensitive to grid Reynolds number Reg=WgM/m
and is shown to be a function of overall Richardson number
Rio=N2M2/W2

g, where N is the buoyancy frequency of the
stratification, Wg is the vertical velocity of the grid, M is the
grid mesh size, and m is the kinematic viscosity of the fluid.
The additional drag force varies as Ri

1=2
o suggesting that, as

Rio increases, a larger proportion of energy imparted to the
fluid by the grid is initially in the form of potential energy
caused by the displacement of the isopycnal surfaces. A
simple model of this process is described.

1
Introduction
Although the drag on a grid of bars submerged in a
homogeneous fluid has been measured for many experi-
mental configurations (see Sect. 2.2), the drag on a grid
moving through a stratified medium has received less
attention. The related problem of isolated bodies moving
through a stratification has been studied in more detail due
to a number of applications to naturally occurring flows. At
low Reynolds numbers the drag on airborne particles in the
atmosphere and particles in the upper ocean moving

parallel to a density gradient has an important effect on
their vertical distribution (Srdić-Mitrović et al. 1999;
Hanazaki and Torres 2000). Applications at larger
Reynolds numbers include the rise of thermals (Warren
1960) and the buoyant rise of a nuclear cloud (McLaren
et al. 1973) in a stably stratified atmosphere. A selection of
studies of the drag on isolated objects moving vertically in
a stratified fluid is discussed below.

The drag force acting on a sphere moving vertically
through a stratified fluid has been considered in numerical
simulations by Hanazaki and Torres (2000) and Torres et al.
(2000). These simulations show that the drag on the sphere
increases as the stratification of the fluid increases. The
increase in drag is attributed to the generation of a ‘rear jet’
(in the opposite direction to the sphere), which forms when
the isopycnal surfaces, deformed by the passage of the
sphere, return to their original positions. An equivalent
interpretation is that the drag is due to the work required to
create the potential energy associated with the departure of
the isopycnals from horizontal. In a related study of dense
particles settling through a diffuse density interface, Srdić-
Mitrović et al. (1999) found that under certain conditions the
drag on a particle can be an order of magnitude larger when
falling through the interface compared to the drag when
moving through the homogeneous layers above and below.

The drag on an object moving parallel to a constant
density gradient has been calculated for an inviscid flow by
Eames and Hunt (1997). In this problem, a drag force is
generated due to the action of the baroclinic torque and
vortex stretching produced by the density gradient. The
study does not, however, consider the effects of buoyancy
on the drag force. (The baroclinic torque is a result of an
object moving in a non-Boussinesq fluid rather than a
gravitational effect.) Despite these investigations, the
effects of stable stratification on the drag of a vertically
moving body are not understood.

In the present study, a set of experiments was carried
out in which a grid was suspended beneath a buoyant float.
This arrangement was then submerged in a stratified fluid
and allowed to rise freely under the action of buoyancy.
After an initial acceleration period, following the release of
the arrangement from rest, the drag on the grid and float is
balanced by their combined buoyancy forces.

In Sect. 2 the drag force on a grid moving in a homo-
geneous fluid is measured. The increased buoyancy force
on a grid submerged in a salt solution, above that in fresh
water, is considered in Sect. 3. In Sect. 4 the drag force on
the grid in a linearly stratified fluid is measured, and this is
modelled in Sect. 5. Section 6 summarises this discussion.

Experiments in Fluids 34 (2003) 678–686

DOI 10.1007/s00348-003-0600-6

678

Received: 14 August 2001 / Accepted: 27 December 2002
Published online: 7 May 2003
	 Springer-Verlag 2003

R.C. Higginson (&), S.B. Dalziel, P.F. Linden
Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK
E-mail: rch26@damtp.cam.ac.uk

Present address: P.F.Linden
Department of Mechanical and Aerospace Engineering,
University of California, San Diego, 9500 Gilman Drive, La Jolla,
CA, 92093-0411, USA



2
Drag in a homogeneous fluid
In this section we describe measurements of the drag on a
grid (and float) in a homogeneous fluid. If Dfloat and Dgrid

are the drag forces on the float and grid, respectively, and
Farr is the buoyancy force in fresh water acting on the grid
and float (i.e., the weight of the grid and float subtracted
from their combined upthrust in fresh water), then for the
grid moving at constant velocity in fresh water

Farr ¼ Df loat þ Dgrid; ð1Þ
where Dfloat and Dgrid are each functions of Reynolds
number.

Rewriting Eq. (1) in terms of the drag coefficient of the
float Cfloat and the drag coefficient of the grid CD in the
standard way (see, for example, Hoerner 1965) gives

Farr ¼
1

2
q0Cf loatW

2Af loat þ
1

2
q0CDW2

g Agrid; ð2Þ

where Afloat and Agrid are the solid areas of the float and
grid, respectively, q0 is the density of fresh water, Wg is the
velocity of the grid, and W is the velocity of the float.
(With the grid attached to the float W=Wg.) This assumes
that there is negligible interaction of the drag on the two
objects.

By incrementally changing the buoyancy of the float
with and without the grid attached, the drag coefficient of
both objects was measured over a range of Reynolds
numbers.

2.1
Apparatus for drag measurement
The grid used in these drag experiments consisted of four
strips of 1 mm thick aluminium sheet, which were ar-
ranged as shown in Fig. 1a, having a mesh size M=9.8 cm.
The length of each strip was approximately equal to twice
the mesh size (2·9.8 cm), and each had a width of 2.0 cm.
The float consisted of two ‘ping-pong’ balls (diameter
3.8 cm) placed in series. A threaded steel rod passed

through the centre of the balls and extended 4.5 cm behind
the float. The rod was loaded with steel washers (5 mm or
9 mm diameter). The buoyancy of the float could be
changed by the removal or addition of a washer, and this
change was calculated by measuring both the weight and
upthrust (in fresh water) of the washers using a set of
electronic scales. Lengths of 0.3 mm diameter nylon thread
were used to connect the float to each corner of the grid
(Fig. 1b). The total height of the arrangement was 51.5 cm.
It is assumed that the length of the thread connecting the
float and grid was sufficient such that the interaction of
flow around the two objects was negligible.

The experiments were performed in a deep tank; a total
depth of 130 cm ensured that terminal velocity was
achieved. The tank had a large base area (75 cm·75 cm) to
avoid interaction between the grid and the tank walls.

2.2
Evaluation of drag coefficients
The drag coefficient of the float was measured without the
grid attached and is shown in Fig. 2. The drag coefficient
of the grid (determined from Eq. (2) using the value of
Cfloat as above) is plotted in Fig. 3.

In these plots different buoyancy forces Farr were cre-
ated by the removal of between one and eight steel washers
(relative to neutral buoyancy). The velocity of the
arrangement and the solid areas of the float and grid were
used to evaluate Cfloat and CD, respectively. To determine
the velocity of the grid or float, time series of the vertical
position of each object were made and the gradient cal-
culated using a linear least-squares fit algorithm. A typical
time series is shown in Fig. 4 and is described in more
detail in Sect. 4. For the purposes of calculating the drag
coefficients, the mean velocity from three traverses was
used. The horizontal and vertical error bars shown in both
plots are based on the maximum difference between the
three velocities. In both figures the drag coefficient is
plotted against the Reynolds number of the corresponding
object. The velocity scale used in the Reynolds number was

Fig. 1. a Plan view of the grid used in the drag
experiments. b A schematic diagram of the float
and grid arrangement used in the drag experi-
ments, together with their positions relative to the
stratified fluid surrounding them. The depth of
each of the two fluid layers was approximately
65 cm
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the velocity of the grid Wg or the float W, and the relevant
length scale used was the mesh size of the grid M, or in the
case of the float, its diameter Lfloat (=3.8 cm).

It is seen from Fig. 2 that the drag coefficient of the
float Cfloat is a decreasing function of Reynolds number.
This is a similar trend to the drag coefficient of a sphere
over the same Reynolds number range (examples may be
found in Batchelor (1967) and Massey (1983)). However,
Cfloat is slightly larger than previous measurements of the
drag coefficient of a sphere, which is attributed to the more
complex shape of the float. The curve 3.09·104Re)1.6+0.3
in Fig. 2 provides a reasonable fit to the data. Absolute
values of the drag force on the float and grid (not shown)

indicate that the drag on the grid was between 30 and 60
times larger (depending on grid speed) than that on the
float, and thus the precise behaviour of Cfloat was not
crucial.

The drag coefficient of the grid CD (Fig. 3) was
approximately constant and was equal to 2.97±0.18 over
the range of Reynolds numbers 1000 K Reg K 3000. The
finding that CD is approximately independent of Reg is
consistent with arguments by Fox and McDonald (1973)
and Massey (1983) that for objects with sharp edges (such
as the aluminium strips used to make the grid in the
present experiments) boundary layer separation always
occurs at the edges for Reynolds numbers greater than
about 100 (Massey 1983). As a result, the drag is propor-
tional to the square of the velocity, and CD is independent
of Reg. A similar independence of Reg (over a similar range
as investigated here) was found by Rottman and Britter
(1986), who measured a drag coefficient for a horizontally
traversed grid with a mean value of 1.4. However, Rottman
and Britter used the total area of fluid circumscribed by
the grid to nondimensionalise their drag data, whereas we
use only the solid area. A quantitative comparison is ob-
tained by dividing their drag coefficient by the solidity of
the grid r. The result is a rescaled drag coefficient of 3.5,
which is larger than, but within 20% of the present value.
Similarly, dividing the drag coefficient by the solidity of a
freely falling grid (in fresh water) in the experiments of
Linden (1980) gives a drag coefficient of 4.44 (for
Reg=5·103). In wind-tunnel experiments by Comte-Bellot
and Corrsin (1966), the drag coefficient was CD=4.53
(Naudascher and Farell 1970). However, these experiments
were performed at Reynolds numbers (Reg�34,000) sig-
nificantly larger than those considered in the present
experiments. The smaller drag coefficient measured in the
present work compared to those found by the aforemen-
tioned authors is thought to be due mainly to the overall
size of the present grid (a total span of two mesh lengths)
and the large clearance between the grid and the walls of

Fig. 3. The drag coefficient of a mesh of bars CD ¼
Dgrid

�
1
2q0W2

g Agrid plotted as a function of the Reynolds number,

WgM/m. The grid (Fig. 1a) was lifted through a tank containing
fresh water using a small buoyant float (Figs. 1b and 2). Error
bars are calculated in the same way as those in Fig. 2

Fig. 4. The grid arrangement was released from rest and allowed
to rise freely under the action of buoyancy. The vertical position h
of the grid is plotted as a function of time t. The axes have been
set so that the grid release coincides with (h,t)=(0,0). It is seen
that the grid accelerates from rest to a constant velocity
approximately equal to 1.06 cm s)1. The continuous line shows
the solution to Eq. (10) with Wg replaced by dh/dt

Fig. 2. The drag coefficient of a buoyant float Cf loat ¼
Df loat

�
1
2q0W2Af loat plotted as a function of the Reynolds

number WLfloat/m. The float was constructed from two hollow
spheres in series and was allowed to rise freely through a tank
containing fresh water. In calculating the mean velocity of the
float, velocity data from three float traverses was used and the
maximum difference between these is reflected in both the
horizontal and vertical error bars
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the tank, although it may also be affected by the grid
solidity. Measurements by Bearman (1978) suggest that the
drag on a bar of rectangular cross-section is relatively
insensitive to its thickness. It is therefore likely that the
thickness of the grid used in the present experiments
(1 mm, see Sect. 3) was not responsible for its smaller drag
coefficient.

For grids of circular rods, the drag coefficient CD was
found to be in the range 2.12 £ CD £ 2.18 in a collection
of grid turbulence experiments collated by Naudascher
and Farell (1970). For these experiments 650 £
Reg £ 11,000 and 0.338 £ r £ 0.376. For the present
experiment 1000 K Reg K 3,000 (Fig. 3), and r�0.36. The
values of CD in this range are smaller than the present
value; however, this may be expected since flow separa-
tion is likely to be more severe for the sharp edges of a
rectangular bar resulting in a higher drag (Comte-Bellot
and Corrsin 1966). Based on the experiments reviewed
above, the drag coefficient, CD=2.97, for the present
experiments appears to be consistent with the type of
grid used.

3
Analysis of the buoyancy force
In a stably stratified fluid, the buoyancy of the grid is
expected to decrease as the grid rises from surroundings of
one density into surroundings of a lower density. Thus, to
properly investigate the drag on the grid in a stratified
fluid it is necessary to consider this effect in more detail.
For the low grid speeds used in the present drag experi-
ments, differences in salinity (and hence density) pro-
duced an upthrust on the grid that was significant
compared to the small drag forces. To quantify this effect,
experiments were performed in a tank filled with a step
stratification made up of two homogeneous layers. The
step stratifications had fresh water at the top (surrounding
the float at all times) and dense salt solution (with
q=1.03 g/cm3 or q=1.06 g/cm3) at the bottom (surround-
ing the grid at all times), with each layer having a depth of
approximately 65 cm. Rewriting Eq. (1) to include the
additional buoyancy force Bgrid acting on the grid because
of a density difference across the step of Dq gives

Farr þ Bgrid ¼ Df loat þ Dgrid: ð3Þ
Since Farr is a known function of the number of steel

washers attached to the float, and Dfloat and Dgrid are
measured empirical functions of Reynolds number, Bgrid

may be determined from the velocities measured in the
step stratification experiments. For both objects, the
absolute drag was found to be modelled closely using
curves of the form k1Re2+k2Re, where k1 and k2 are
dimensional constants. Calculating the grid velocity (as
described in Sect. 2.2) for the two known density steps,
the additional buoyancy was found to be Bgrid (New-
tons)=(0.144±0.021)Dq (g/cm3).

It is noted that Bgrid may be written in terms of the
volume of the grid Vgrid, thus

Bgrid ¼ gDqVgrid; ð4Þ
where g is the acceleration due to gravity.

Estimating the volume of the grid using Eq. (4) and
Bgrid measured in the step stratification experiments leads
to Vgrid=14.7 cm3. This estimate compares well with the
volume of the grid measured directly, equal to 15.3 cm3

(there being only 4% difference between the two values),
providing support for the accuracy of the drag measure-
ments.

To minimise the direct effects of density variation on
the grid motion, it is noted from Eqs. (2) and (4) that, for
a given value of Farr, the ratio of the buoyancy force Bgrid

to the drag on the grid Dgrid is

Bgrid

Dgrid
¼ gDqAgridTgrid

1
2 q0CDW2

g Agrid
; ð5Þ

where Tgrid is the thickness of the grid, and AgridTgrid=Vgrid

is the grid volume. Bearman (1978) reports that CD is only
a weakly increasing function of Tgrid, and therefore the
enhanced buoyancy Bgrid may be reduced by decreasing
the thickness of the grid. The grid used in the drag
experiments reported here had a relatively small thickness
of 1 mm compared to the bar width of 20 mm.

4
Measurement of the buoyancy drag
To measure the effects of a constant density gradient on
the drag of the grid, stratifications were prepared in which
a layer of fresh water (containing the float) overlay a lin-
early stratified layer (containing the grid), with each layer
having a depth of approximately 65 cm (Fig. 1b). The
linear stratifications used in these experiments were cre-
ated using a ‘double-bucket’ technique (Oster 1965), and
the buoyancy frequencies N=[g/q0(¶�qq/¶z)]1/2 were deter-
mined from a set of six density samples taken from known
depths. If Dstrat is the additional drag due to the vertical
transport of buoyant fluid by the grid, then rewriting
Eq. (3) to include this term gives

Farr þ Bgrid ¼ Df loat þ Dgrid þ Dstrat: ð6Þ
It is noted that no additional buoyancy term is required
for the float in this equation as it continuously remains
immersed in fresh water.

4.1
Force analysis for an accelerating grid
Implicit in Eq. (6) is the assumption that acceleration
terms are negligible and the forces acting on the system
(grid and float) are in balance. However, for the grid tra-
versing a linear stratification, Bgrid (and hence Dfloat, Dgrid,
and Dstrat ) are expected to vary in time. Thus the velocity
of the grid is not constant and acceleration terms may be
significant.

As Dstrat is unknown, it is not possible to evaluate the
combined effect of the acceleration terms directly by
summing the forces acting on the grid arrangement. To
justify the force balance used in Eq. (6), time scales for
the change in buoyancy force acting on the grid and the
velocity adjustment of the grid to its surroundings are
compared. If the forces acting on the arrangement
adjust (become balanced) at a rate significantly faster
than the rate of change caused by the grid moving
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into surroundings of different density, then the accel-
eration terms will be small compared to the individual
forces.

For the grid traversing a stratified fluid with constant N,
the balance of forces acting on it will be altered through
changes in the additional buoyancy force acting on the
grid Bgrid. If the forces are to balance, the combined drag
on the grid and float must adjust so that no net force acts
on the arrangement. The rate at which the forces acting on
the arrangement become unbalanced is taken to be the
rate at which Bgrid changes due to the grid traversing a
linear stratification. Since g and Vgrid are constant, Bgrid

(defined by Eq. (4)) can only change because of the local
density of the surrounding fluid. A quantity (with the units
of inverse time) representing a rate for the change of local
fluid density is

dq
dt

����

����

�
q0 ¼

dq
dz

����

����
Wg

q0

¼ N2

g
Wg: ð7Þ

In order to estimate the rate at which the velocity of the
grid (or the forces acting on the grid) adjusts to new
surroundings, the acceleration of the grid in a homoge-
neous fluid is considered

Farr � Df loat � Dgrid ¼ m
dWg

dt
; ð8Þ

where dWg/dt is the acceleration of the grid arrangement,
and m is its inertial mass, including the added mass of any
fluid transported with the grid. It is assumed, for conve-
nience, that the rate of the velocity adjustment in a strat-
ified fluid is equal to the rate of velocity adjustment in a
homogenous fluid. In Sect. 3 it was noted that the absolute
drag of the float or grid could be modelled using curves of
the form k1Re2+k2Re, where k1 and k2 are constants. Using
this result, the combined drag force acting on the grid
arrangement (submerged in a homogeneous fluid) is
approximated by

Dgrid þ Df loat ¼ aW2
g þ bWg: ð9Þ

where a and b are constants.
Substituting Eq. (9) into Eq. (8) gives a first-order or-

dinary differential equation describing the acceleration of
the grid. Solving this differential equation gives

e�2aat=m ¼ Wg �W1

A Wg þW1 þ b
a

� �

������

������
; ð10Þ

where W1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4aFarr

p
� bÞ=2a is the grid velocity as

t fi ¥ (obtained by solving Eq. (8) with the right side set
to zero), a=W¥+b/2a, and A is a constant of integration.
Thus, the grid released from rest, say, would be expected
to accelerate to W¥ at a rate O (2aa/m). This rate will be
taken as the rate of adjustment of the velocity of the grid as
it moves into surroundings of different density. It is as-
sumed that buoyancy does not significantly affect the rate
of velocity adjustment of the grid as it moves from one
region with local asymptotic velocity W¥(1), the velocity as
t fi ¥, to a new region with asymptotic velocity W¥(2).

To evaluate the adjustment rate it is necessary to
estimate m as defined by Eq. (8) relevant for a bluff
body towed through a fluid of density q0. This mass is
the summation of the inertial mass (of the combined
float and grid) and the added mass ma from fluid
transported forward by the passage of the float and grid
(Massey 1983, p 343; Lamb 1932). For an inviscid fluid,
the added mass of an accelerating body represents the
effective mass of the fluid that surrounds the body that
must be accelerated with it, and depends on the body
shape and orientation (Newman 1977). For a thin strip
of width 2a, moving through a fluid of density q0, per-
pendicular to its width, ma=q0pa2L, where L is the length
of the strip (Newman 1977; McCormick 1973). If the four
bars making up the grid are each approximated by
such strips, then the added mass of the grid is ma

(grid)�4q0p(b/2)22M=2q0pb2M , where b is the width of
each bar and 2M is the bar length. Thus to determine
the adjustment rate, the effective mass m in Eq. (10)
must be replaced by marr+ma(grid), where marr is the
inertial mass of the combined grid and float arrange-
ment. The added mass of the float has been neglected in
the estimate of m because its added mass is less than a
tenth that of the grid.

As stated earlier, different values of Farr were achieved
by removing steel washers from the arrangement, which
resulted in a range of adjustment rates 1.3 s)1 K 2aa/
m K 3.8 s)1, with the larger rates corresponding to the
larger number of removed washers. The removal of the
washers also resulted in a change in the inertial mass of
the arrangement, 72.4 g £ marr £ 74.3 g.

The accuracy of the estimates of the adjustment rate
may be tested by comparing predictions of the initial
acceleration of the grid with experimental measurements
such as those presented in Fig. 4. This figure shows the
vertical elevation of the grid h plotted against the cor-
responding time t for the grid released from rest (at
t=0). The case shown here represents the slowest
adjustment rate, where only one washer was removed,
leading to a terminal velocity W¥�1.06 cm s)1. Noting
that the elevation of the grid h obeys dh/dt=Wg and
substituting this into Eq. (10) with the initial conditions
Wg=0 and h=0 at t=0 , we may solve the resulting or-
dinary differential equation to obtain h(t). The solid line
in Fig. 4 shows the curve given by h(t) with a value for
the adjustment rate of 1.1 s)1. Evaluating the predicted
adjustment rate, 2aa/m=1.3 s)1, which is greater than
but close to that in Fig. 4, validating the inclusion of the
added mass contribution to m.

The rate of adjustment must be much faster than the
rate at which the forces become unbalanced (see Eq. (7))
for the forces acting on the grid to be in approximate
balance, hence

C ¼ 2aaq0

mWg

dq
dz

����

����

�1

� 1: ð11Þ

Substituting for the maximum density gradient and
velocities measured experimentally, we find 350KGK750.
It is assumed hereafter that these values of G are
sufficiently large to satisfy Eq. (11) and consider the forces
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to be in equilibrium, thus allowing the use of the force
balance given by Eq. (6).

In contrast to the case of a linear stratification,
acceleration terms were observed to be significant while
performing the experiments in a step stratification (see
Sect. 3), where |dq/dz| can be large. In these experiments
the grid was often observed to stop or temporarily reverse
direction upon reaching the sharp salinity interfaces, as
dense fluid carried into the upper layer settled under the
action of gravity. It is therefore expected that Eq. (11) will
not be satisfied in such cases. The salinity interfaces in the
experiments were observed to be diffuse and had a width
~0.5 cm. Assuming that the density at the interface varied
smoothly over this height, and that the motion at the
interface can be approximated by the motion in a con-
tinuous stratification with a density gradient equal to the
gradient of the diffuse interface, we find 6.6KGK8.0, and
it is not clear that Eq. (11) is satisfied. This suggests that
the grid motion at a sharp density interface cannot be
analysed using the simple force balance used here to study
the motion in a linear stratification. Further discussion on
the behaviour in a step stratification is beyond the scope of
this paper.

4.2
Evaluation of the buoyancy drag
Before proceeding it is noted that time series of the grid
position in a linear density gradient will differ from those
in a homogeneous fluid because Bgrid decreases as the grid
rises into less dense fluid. For the linear stratifications
studied here the measured time series were not linear, with
h qualitatively appearing to have a t1/2 dependence. It was
found that each time series could be closely modelled with
a curve of the form h=c1t1/2+c2t+c3 (where c1, c2, and c3 are
constants), which was differentiated to obtain the instan-
taneous grid velocity.

Using the known empirical functions for Farr, Dgrid,
Dfloat, and Bgrid, the buoyancy drag Dstrat was calculated for
two stratifications (N=1.1 s)1, 1.69 s)1) and a range of grid

velocities. The results are shown in Fig. 5. Here the
buoyancy drag Dstrat (for two strengths of stratification)
and the unstratified drag on the grid Dgrid are plotted
against the grid Reynolds number. The values of Dstrat for
different buoyancy frequencies N are distinct with Dstrat

increasing with N, thus showing that Dstrat is dependent on
the overall Richardson number Rio. For the relatively low
grid speeds here, Dstrat is greater than Dgrid for both values
of N, suggesting that much of the work done by the grid is
converted initially to potential energy rather than kinetic
energy. It can also be seen from Fig. 5 that Dstrat is
approximately proportional to Reg for each value of N, and
the data are plotted together with linear least squares fits
for the two stratifications.

The Dstrat data for both stratifications appears to be
grouped into sets of individual curves superimposed on
one another, and it is noted that each of these sets cor-
responds to the range of Wg observed from a single grid
release. Some patterns can be seen in the scatter of the
data, particularly between the data from different grid
releases. This may be a Reynolds number effect since the
grid velocity decreases with height, although it could be a
systematic feature of the error in the individual forces used
in Eq. (6) to estimate Dstrat. Another possible source of
systematic error is in the estimate of Dgrid. It is recalled
that Dgrid was measured in experiments performed in fresh
water and modelled using Eq. (9); however, for the dense
salt solutions used in the stratified experiments it is not
clear that the flow may be considered to be Boussinesq. In
the regions of each stratification where the local density is
significantly greater than that of fresh water (up to 15% for
the N=1.69 s)1 case) the unstratified component of the
total drag is likely to be greater than the fresh water
measurement (for the same value of Reg), thus Eq. (9)
provides an underestimate of Dgrid. Using Eq. (6) it was
calculated that an underestimate of Dgrid of 15% could
account for an overestimate of Dstrat of up to 6% in regions
of high density and may explain some of the pattern seen
in the data. However, reducing the values of Dstrat by 6%

Fig. 5. The additional drag force (defined
by Eq. (6)) acting on a grid moving
vertically through a linear stratification is
shown here for two values of the buoy-
ancy frequency N. Also shown is the drag
on the grid moving through fresh water.
All are plotted against Reynolds number
Reg=WgM/m. The unstratified drag has
been fitted with a curve of the form
aRe2

g+bReg, while the Dstrat data is found
to be approximately proportional to Reg.
Since the range in the experimental data
is clear from the plot, error bars have
been omitted for the Dstrat data
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for data corresponding to regions of high local density was
found to increase the scatter in the data, suggesting that
non-Boussinesq effects are not the major component of
the observed scatter.

In addition to the standard parameters used to nondi-
mensionalise the unstratified drag (Dgrid), Dstrat may also
depend on other parameters associated with the stratifi-
cation, e.g., dq/dz and g. Thus, there is no unique nondi-
mensionalisation including some or all of the available
quantities. However, to simplify the interpretation and
discussion we follow the same framework as is used for
homogeneous fluids and write the combined drag force
DTotal as

DTotal ¼ Dgrid þ Dstrat ¼
1

2
q0 CD þ CSð ÞW2

g Agrid; ð12Þ

noting that the stratification (buoyancy) drag coefficient
CS may be a function of Reg and Rio. This approach is
similar to that used by Srdić-Mitrović et al. (1999) to
nondimensionalise their stratification drag in studying the
motion of negatively buoyant particles moving through
homogeneous and stratified layers. This nondimensional-
isation is also adopted in the present study, as it allows for
direct comparison of the magnitudes of both the stratified
and unstratified drag coefficients.

For sufficiently high Reg and Schmidt numbers, we may
anticipate that CS will only be a function of overall Rich-
ardson number, Rio=N2M2/W2

g. This is demonstrated in
Fig. 6, which plots the dimensionless buoyancy drag
coefficient CS as a function of Rio, and suggests a power
law relationship of the form

CS ¼
Dstrat

1
2 q0W2

g Agrid
¼ kRip

o; ð13Þ

for constants k and p. A linear least-squares fit suggests
p=0.47 and k=1.034. This fit is plotted as a solid line with
the data in Fig. 6. We see that plotting the data in this way
provides an adequate collapse, supporting the assumption
that there is no additional dependence on Reynolds

number. Error bars have been omitted from this plot since
the range in the experimental data is clear.

As with Fig. 5 some pattern can be seen in the spread of
the data in Fig. 6. The possibility of non-Boussinesq effects
was investigated for this data, namely through the choice
of appropriate reference density q0 in Eqs. (12) and (13).
Although the density used was that of fresh water (con-
sistent with the measurements of CD), larger densities may
be more applicable for data corresponding to regions of
the stratifications of greater density. However, as with
Fig. 5, adjusting these data did not improve the collapse.

5
Modelling the behaviour of CS

We now present a simple scaling argument consistent with
the power law relationship between CS and Rio given by
Eq. (13). The scaling is not intended to explain the com-
plex dynamics of the flow that results from the passage of
the grid, but simply to illuminate the mechanism
responsible for the drag.

Consider the grid travelling upwards through a linearly
stratified fluid with constant velocity Wg. As the grid
moves, isopycnal surfaces, which are initially horizontal,
are displaced upward in the wake of the grid. In the ab-
sence of any mixing, the restoring force F per unit volume
of a fluid element displaced vertically a distance l in a
linearly stratified fluid with mean density gradient
d�qq=dz is

F ¼ gl
d�qq
dz
: ð14Þ

We propose that this restoring force is the main contri-
bution to Dstrat. Additional experiments (Higginson 2000)
were performed to estimate the internal wave energy in the
wake of the grid in a linear stratification, and based on
these measurements and comments by Hanazaki and
Torres (2000), it is believed that the contribution to the
drag on the grid due to internal waves (Warren 1960) is
relatively minor.

Fig. 6. The buoyancy drag coefficient
CS ¼ DTotal

�
1
2q0W2

g Agrid is found for the

present data to collapse onto a single
curve when plotted against the overall
Richardson number Rio=N2M2/W2

g. A
curve of the form CS=kRio

0.47 is also
plotted, with the constant k=1.034. Since
the range in the experimental data is clear
from the plot, error bars have been
omitted
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In order to calculate the total restoring force resulting
from the fluid displaced by the grid, estimates of the vol-
ume of fluid displaced and the height to which it is lifted
are required. Associated with the added mass ma of a body
is its ‘drift volume’ Vdrift. The drift volume of a body
(Darwin 1953; Yih 1985) is the (finite) volume of fluid
transported in the direction of propagation as a result of
its motion and is equal to the volume ma/q0, where q0 is
the density of the surrounding fluid (Eames and Flör
1998). For the vertically traversing grid considered here it
is assumed that the volume corresponding to the displaced
isopycnal surfaces is equal to the drift volume of the grid,
2pb2M (Sect. 4.1), and that this volume is relatively unaf-
fected by the presence of a stratification. In particular, we
assume that the primary effect of the stratification is to
reduce the vertical extent of the isopycnal deformations,
before buoyancy returns the displaced fluid elements to
their equilibrium positions.

From dimensional arguments we expect that the max-
imum displacement of the isopycnal surfaces will scale as
l.cWg/N, where c is a constant O (1). This scaling may be
obtained by equating the initial vertical kinetic energy per
unit volume of the fluid elements perturbed by the grid
1
2 q0w2 (assumed to be proportional to 1

2 q0W2
g ) to the

resultant potential energy change per unit volume caused
by the fluid displacements g=2 @�qq=@zð Þl2 (Pearson et al.
1983).

From Eq. (14) an estimate of the total gravitational
restoring force Dstrat acting on the grid may now be written

Dstrat ’ g
cWg

N

@�qq
@z

2pb2M ¼ 2pcq0b2NMWg: ð15Þ

Using this estimate, the buoyancy drag coefficient CS may
be expressed as

CS ¼
Dstrat

1
2 q0W2

g Agrid
’ 4pcb2

Agrid

NM

Wg
¼ 4pcb2

Agrid
Ri1=2

o

� c 0:35ð ÞRi1=2
o : ð16Þ

Comparison of Eq. (16) and the empirical relationship
Eq. (13) shows that the exponents of Rio are in close
agreement. This suggests that the above scaling argument
justifies the use of a power law fit to the CS data. Also, since
c is an O (1) constant, the value of k=1.034 in Eq. (13) is
consistent with this scaling. It is noted that since the
present modelling is based only on the drift volume of
the grid and a scaling for the maximum displacement of
isopycnal surfaces, the Rio

1/2 dependence of CS found
for the present grid of bars is likely to apply to
general symmetric objects traversing a constant density
gradient.

6
Summary
Experiments were performed to calculate the drag forces
on a grid moving vertically through a homogeneous and a
stratified fluid. No such results for a stratified fluid have
previously appeared in the literature. The drag coefficient
CD (defined by Eq. (2)) of the grid in a homogeneous fluid
was found to be approximately equal to 2.97 over the range

of grid Reynolds numbers considered (1,000 K Reg K
3,000). This value compares well with existing data (see
Sect. 2.2). In a linearly stratified fluid, an additional drag
coefficient CS caused by the stratification (defined by
Eq. (12)) was introduced and was found to be independent
of Reg but was an increasing function of the overall
Richardson number, approximately as Rio

1/2 (given by
Eq. (13)). This Richardson number dependence is found
to be consistent with a simple model discussed in Sect. 5.
Using an estimate of the fluctuating potential energy and
kinetic energy caused by internal waves from particle
tracking and salinity probe measurements it was found
(Higginson 2000) that approximately 5% of the energy
supplied to the fluid by the grid went directly into exciting
internal waves, for an overall Richardson number of 134.6.
This suggests that wave drag (Warren 1960), although
undoubtedly a function of Rio, is a relatively small com-
ponent of the buoyancy drag.
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