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A model of single-room displacement ventilation is extended to a space consisting of
two chambers of equal height connected by two openings. Individually, both chambers
have displacement ventilation in this geometrical arrangement, but the space itself is
not connected to the outside. Thus we are considering ventilation of two chambers in
the interior of a building, such as an office connected to an internal atrium. Theoretical
analysis and experimental results are presented in this paper. The experiments use salt
solutions to simulate thermal forcing in buildings and the theoretical analysis is based
on plume theory. The two chambers have a time-dependent interaction resulting from
changing stratification in the two chambers. We concentrate here on a small chamber
with an internal heat source connected to a large unheated chamber, and show that
the time variation is determined by the size of the larger chamber. We discuss the
implications of these results for building ventilation design and control.

1. Introduction
Natural ventilation is an important issue for the building industry. Air-conditioned

buildings use a large amount of energy, and natural ventilation provides an attractive
alternative if it can deliver a controlled and high-quality indoor environment. In
addition to energy saving, natural ventilation reduces noise from mechanical devices,
avoids maintenance of mechanical equipment and assists environmental conservation
by reducing emissions.

Most previous work on natural ventilation has been restricted to a single space.
Linden, Lane-Serff & Smeed (1990, hereafter referred to as LLSS) developed a
mathematical model of the steady-state natural displacement ventilation in a single
room produced by a single steady heat source. The room is connected to an infinite
homogenous environment via top openings at the ceiling and bottom openings at
the floor (figure 1). After the heat source has added buoyant fluid for some time, a
steady-state interface between two layers of uniform but different densities forms in
the room. The height of the interface depends on the size of the openings and the
height of the room but is independent of the strength of the heat source.

LLSS used the neutral pressure level concept (see § 2), volume and momentum
conservation to develop a mathematical model in which the heat source is treated as
a turbulent plume. The model predicts the interface height and the reduced gravity
of the upper buoyant layer in the steady state. This model has been verified against
experimental results in LLSS and following papers (Hunt & Linden 1999, 2001).

Cooper & Linden (1996) extended this model to two buoyancy sources with different
strengths in an enclosure, and Linden & Cooper (1996) considered the problem of
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Figure 1. Displacement ventilation in a single room with a single heat source. In the steady state
the interface height is determined only by the size of the openings and the height of the room. The
upper layer temperature is uniform and equal to the plume temperature at the interface. The flow
rate Q through the room is given by the volume flux in the plume at the interface height.

multiple sources in an enclosure. Hunt & Linden (1999, 2001) have examined the
effects of wind on these flows.

However, buildings rarely are simple single interior spaces. They are usually sub-
divided into interior spaces, such as rooms and corridors. The question then arises as
to how the interior geometry affects the ventilation flow. As a first step, we study two
connected spaces within a building. We restrict attention here to the case where the
building itself is not connected to the exterior environment. Thus we are considering
two rooms within the interior of a building, neither of which has any openings to the
outside. We further restrict attention to the flow generated by a steady heat source in
the smaller chamber. While this is a special case, we find an interesting behaviour that
justifies study and explanation. The two spaces are connected via the top and bottom
openings on a shared vertical wall. Figure 2 depicts the geometrical configuration.
This arrangement of openings induces displacement ventilation in both spaces.

A single heat source in an enclosed undivided space was studied by Baines &
Turner (1969). They showed that outside the plume a stable stratification developed,
which had a self-similar form at large times such that all the fluid within the space
was heated at the same rate. This form of stratification has become known as a
‘filling-box’ stratification. Different arrangements of openings can cause qualitatively
different flow patterns as shown by Wong & Griffiths (2001) who also studied the flows
produced by plumes in two connected regions. They considered a similar situation to
that studied here of a buoyant plume in one chamber but with only one opening at
the bottom (see figure 3a). When the plume is activated the buoyant fluid fills the
forced chamber (the chamber with the plume) until it reaches the height of opening
and flows into the unforced chamber (the chamber without a plume). The buoyant
fluid enters the unforced chamber and rises as a turbulent plume (effectively either
a point or line plume depending on the geometry of the opening). The unforced
chamber then develops a ‘filling-box’ stratification which descends until it reaches the
height of the opening. After this the stratification descends in both chambers with
continual flow of buoyant fluid through the opening into the unforced chamber. If
there is only one opening on the top (see figure 3b), the unforced chamber provides
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Figure 2. Thermal ventilation in two rooms, which are connected to each other by two openings.
The top and bottom openings have areas at and ab, respectively. The forced chamber of area Sf on
the left has one heat source; the right chamber of area Su is unforced.

(a) (b)

Figure 3. Different positions of connecting openings result in different flow patterns. (a) When the
opening is at the bottom, the buoyant fluid fills the forced chamber until it reaches the opening and
flows into the unforced chamber. (b) When the opening is at the top, the buoyant fluid enters the
unforced chamber and stays near the ceiling, eventually isolating the fluid below the opening.

additional space to hold the buoyant fluid from the forced chamber. The buoyant
fluid flows through the top opening and occupies the upper part of the unforced
chamber. When the stratification descends to the bottom of the opening, cool air
remains trapped in the unforced chamber, and it plays no part in the flow. This is
similar to the filling box of Baines & Turner (1969); however the cross-section area
is not uniform at all heights unlike the prototype model in their paper.

In our study we concentrate on a single geometry, where there are two openings
of fixed size, one at the top and one at the bottom of the shared vertical wall, and
examine the effects of changing the relatives sizes of the chambers. When the unforced
chamber is very large compared to the forced chamber, the system acts like a heated
room connected to the outside – in the limit of the unforced chamber becoming
infinite this is exactly what happens and the steady state described by LLSS applies.
At the other extreme, there is no unforced chamber adjacent to the forced chamber
and we return to the classical filling box described by Baines & Turner (1969). When
the unforced chamber is finite the flow is always unsteady, and we are concerned
with the time variation of the flow and its dependence on the relative sizes of the
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two chambers. In § 2 we develop a mathematical model for two connected rooms. In
§ 3 the experiments and the data processing are described. In § 4 the comparisons of
the theoretical model and experimental results are presented. The conclusions and
discussion of applications to buildings are given in § 5.

2. Theory
We extend the mathematical model of the single room in the infinite homogeneous

environment presented in LLSS to the case of two coupled spaces. The two spaces
are connected via the top opening and bottom opening on the shared vertical wall
(figure 2). We develop a mathematical model for a heat plume source in two chambers,
because thermal comfort problems in buildings are usually concerned with heat
sources. However the results apply equally to a cold source located at the ceiling
of the forced chamber, provided temperature differences are sufficiently small for
the Boussinesq approximation to be valid. Given that typical temperature differences
arising from heating or cooling in buildings are a few degrees Kelvin, this is usually
the case. In the experiments described in § 3 we use a dense source on the ceiling,
but we will describe the model for a hot source on the floor. For the small density
differences encountered in buildings, the Boussinesq approximation can apply and
this inversion gives equivalent flows.

LLSS showed theoretically that, in a single room containing one constant source
of buoyancy and connected by openings at the top and bottom to an infinite hom-
ogeneous environment, the steady-state stratification consists of two layers each of
uniform density. This two-layer stratification was observed in their experiments. There
is a steep density gradient at the interface and the density in the hot layer is almost
uniform. In this steady state the volume flux in the plume at the interface is equal to
the flux through the two openings, since air can only cross the stable interface inside
the buoyant plume (figure 1).

In the enclosed double-chamber case, when the width of the unforced chamber
is infinite, the flow in the forced chamber is the same as that in the single room
connected to an infinite environment. Therefore, when the unforced chamber is finite
we assume that the stratification in the forced chamber consists of two layers with
uniform but different densities. We expect this approximation to be valid when the
ratio RA = Su/Sf of their cross-sectional areas is large. Here Su and Sf are the cross-
sectional areas of the unforced and forced chambers, respectively. We will develop
the model based on this assumption and check its validity in our experiments.

When the plume starts to inject buoyant fluid, it first collects at the top of the
forced chamber and then flows into the unforced chamber through the top opening,
and there is a corresponding inflow from the unforced chamber to the forced chamber
through the bottom opening. There is a possibility that a two-way exchange flow may
occur through the upper opening, particularly if it is much larger than the lower
opening. In the present experiments when both openings were the same size, only
unidirectional flow as described was observed. Thus both chambers have displacement
ventilation: the forced chamber in the traditional sense of warm air leaving at the top
displaced by cool air from beneath. On the other hand, in the unforced chamber warm
air enters at the top and cool air leaves at the bottom. So while the characteristic
stable stratification associated with displacement is maintained, the direction of the
ventilation in the unforced chamber is downwards rather than upwards. In the
unforced chamber the displacement ventilation is not driven by the buoyancy within
that chamber – rather it is forced by the heated chamber.
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2.1. The ventilation model

Since an ideal plume source does not introduce volume flux, the volume flow rates Qt
at the top opening and Qb at the bottom opening must be equal to satisfy the volume
conservation law, i.e.

Qt = Qb = Q. (2.1)

Applying the two-layer stratification assumption in the forced chamber, the two
densities there are taken to be ρf (the density of the buoyant layer) and ρw (the density
of the lower layer which is also the initial density throughout the unforced chamber).
The two layers are separated by a horizontal interface. Since fluid only crosses the
stable density interface in the plume, if the interface remains stationary, the top and
bottom fluxes are equal to the volume flux Qp in the plume at the interface. Because
the upper layer has a uniform density, the density of the buoyant layer in the forced
chamber is the same as that of the plume at the interface.

As fluid flows from the upper layer of the forced chamber it forms a buoyant
layer along the ceiling of the unforced chamber. Consequently, the pressure difference
across the upper opening decreases. This means that Qt decreases with time, and a
smaller plume flow rate is needed. Since Qp increases with height due to entrainment,
this reduction is achieved by decreasing the interface height. The density of the fluid
entering the buoyant layer in the plume then decreases and the density of that layer
decreases with time. Fluid entering the unforced chamber fluid becomes less dense
with increasing time and so flows along the ceiling on top of fluid that entered
earlier. This process produces a stable stratification in the unforced chamber, which
we represent by ρu(z).

Although the build up of stable stratification is similar to that in the classical filling
box, the process itself is quite different. In the filling box, the stratification is produced
by re-entrainment of buoyant fluid by the plume. Here it is associated with a lowering
of the interface in the forced chamber caused by the presence of buoyant fluid in the
unforced chamber.

The pressure distributions in the two chambers are represented in figure 4, where
Pf and Pu denote the pressures in the forced and unforced chambers, respectively.
The neutral level is the height where pressures in the two chambers are equal and is
denoted by hn in figure 4.

Noting that the neutral level is always above the level of the interface in the forced
chamber, we construct the formulae for the exchange flow rates and interface heights
as follows. The pressures at the top of the two rooms are

Pf(H) = Pn − gρf(H − hn) (2.2a)

and

Pu(H) = Pn − gρw(hu − hn)− g
∫ H

hu

ρu(z) dz, (2.2b)

where hf and hu are interface heights in the forced and unforced chambers, respectively,
as depicted in figures 2 and 4, and Pn is the pressure at the neutral level. The pressures
at the bottom of the two rooms are

Pf(0) = Pn + gρf(hn − hf) + gρwhf (2.3a)

and

Pu(0) = Pn + gρwhn. (2.3b)
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Figure 4. The thicker solid line represents the pressure profile Pf in the forced chamber and the
thinner line represents the pressure profile Pu in the unforced chamber. The neutral level where the
pressures are equal in the two connected rooms is hn. The plume source is at z = 0. This pressure
diagram corresponds to figure 2.

The pressure differences across the openings at the top and the bottom are

∆Pt = Pf(H)− Pu(H) = gρw(hu − hn) + g

∫ H

hu

ρu(z) dz − gρf(H − hn) (2.4a)

and

∆Pb = Pu(0)− Pf(0) = g(ρw − ρf)(hn − hf). (2.4b)

The pressure differences ∆Pt, ∆Pb are positive, since Pf(H) > Pu(H) and Pu(0) > Pf(0)
(see figure 4).

The density difference ∆ρf = ρw − ρf between the homogeneous buoyancy layer
ρf and fresh ambient layer ρw is small compared to ρw , so that the Boussinesq
approximation is valid. Let g′f = g(ρw−ρf)/ρw and g′u(z) = g(ρw−ρu(z))/ρw represent
the reduced gravities in the forced chamber and unforced chamber, respectively. The
buoyancy conservation equation for the total space is

Bt = Sfg
′
f(H − hf) + Su

∫ H

hu

g′u(z) dz, (2.5)

where B is the buoyancy flux in the plume and t is the time measured from when the
plume is turned on.

We write the flows through the top and bottom openings caused by pressure
differences as

ρfQ
2
t = A∗2t ∆Pt (2.6a)

and

ρwQ
2
b = A∗2b ∆Pb, (2.6b)

respectively. Here A∗t =
√

2ctat and A∗b =
√

2cbab are the effective areas of the top and
bottom openings. The coefficients ct and cb represent the effects of turbulent losses
and contractions at the openings. To be consistent with previous work (see Cooper
& Linden 1996) we take ct = 0.6 and cb = 0.7.
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Summing equations (2.6a) and (2.6b) and substituting ∆Pt and ∆Pb from (2.4a) and
(2.4b), we find

ρf
Q2
t

A∗2t
+ ρw

Q2
b

A∗2b
= g

(
ρf(hf −H) + ρw(hu − hf) +

∫ H

hu

ρu(z) dz

)
,

= gρw

(
ρw − ρf
ρw

)
(H − hf)− gρw

∫ H

hu

ρw − ρu(z)
ρw

dz,

= ρw

(
g′f(H − hf)−

∫ H

hu

g′u(z) dz

)
. (2.7)

Using the Boussinesq approximation (ρf ≈ ρw), (2.7) becomes

Q2
t

A∗2t
+
Q2
b

A∗2b
= g′f(H − hf)−

∫ H

hu

g′u(z) dz. (2.8)

Define, as in LLSS the effective area A∗ of the openings,

A∗ =
atab

( 1
2
(a2
b/C

2
t + a2

t /C
2
b ))1/2

, (2.9a)

which can be expressed in terms of A∗t and A∗b as

1

A∗2
=

(
1

A∗2t
+

1

A∗2b

)
. (2.9b)

Using the effective area A∗ by (2.9b) and volume conservation equation (2.1), (2.8)
becomes

Q2

A∗2
= g′f(H − hf)−

∫ H

hu

g′u(z) dz. (2.10)

Using buoyancy conservation (2.5), we can replace
∫ H
hu
g′u(z) dz with known par-

ameters Su, Sf, B, t, g
′
f , and then (2.10) becomes

Q2

A∗2
= g′f(H − hf)− 1

Su
(Bt− Sfg′f(H − hf)),

= g′f(H − hf)
(

1 +
1

RA

)
− Bt

Su
, (2.11)

where we recall that RA = Su/Sf .

2.2. The forced chamber

In the forced chamber, the volume flux in the plume at the interface is equal to the
sum of the outflow volume flux into the unforced chamber and the rate of increase
in the volume of the upper layer, i.e.

Qp(hf, B) = Qt + Sfwf(t) = Q+ Sfwf(t), (2.12)

by (2.1), where wf = dhf/dt is the velocity of the changing interface in the forced
chamber.

Substituting equation (2.12) into (2.11), we obtain equations for the time evolution
of the exchange flow rate and the interface height in the forced chamber:

Qp(hf, B)− Sfwf(t) = A∗
(
g′f(H − hf)

(
1 +

1

RA

)
− Bt

Su

)1/2

(2.13)
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and

wf(t) =
1

Sf

(
Qp(hf, B)− A∗

(
g′f(H − hf)

(
1 +

1

RA

)
− Bt

Su

)1/2
)
. (2.14)

Morton, Taylor & Turner (1956), using the entrainment assumption, derived the
equations of the reduced gravity g′p and volume flux Qp in a plume, in terms of
the buoyancy flux B and distance z from the source. In the initially homogeneous
environment

B = g′pQp = constant, (2.15a)

g′p = g′p(z, B) = (B2z−5)1/3/C (2.15b)

and

Qp = Qp(z, B) = C(Bz5)1/3, (2.15c)

where z is measured from the source origin. In equation (2.15), the universal constant
C = 6α/5(9α/10)1/3π2/3, where α is the entrainment constant, which is the ratio of the
entrainment velocity into the plume to the mean vertical velocity at any height.

Substitution of the plume equations (2.15b) and (2.15c) in the interface evolution
equation (2.14) gives

dhf
dt

=
1

Sf

C(Bh5
f)

1/3 − A∗
(

(B2h−5
f )1/3

C
(H − hf)

(
1 +

1

RA

)
− Bt

Su

)1/2
 . (2.16)

There are two extreme cases to verify this equation. One is the Baines & Turner
(1969) filling box when the Su = 0, and the other is from LLSS when there is an
infinite homogeneous environment Su = ∞ outside the forced chamber.

When Su = 0, (2.5) implies Bt = Sfg
′
f(H − hf), and the buoyant fluid is all included

in one fixed space. For this filling-box case (2.16) becomes

dhf
dt

=
1

Sf
C(Bh5

f)
1/3 =

1

Sf
Qp(hf, B). (2.17)

The interface growth rate given by (2.17) is determined by the plume flow rate at
the interface Qp(hf, B) and cross-section area Sf . This relation is equivalent to the
equation for the growth of the stratified layer in the filling box in Baines & Turner
(1969) (see their equation (3)). In their paper, the cross-section area is πR2 and the
volume flux is πb2w, where b is the radius and w is the vertical velocity at the interface
of plume. However, our model only predicts the descent of the stratification region
in this limit but not the stratification since we assume a two-layer stratification. The
correct descent rate is obtained since it only depends on entrainment into the plume
below the stratified region.

When Su = ∞, the terms 1/RA and Bt/Su in (2.16) are zero. So when the interface
height is at the value given in LLSS

dhf
dt

= 0,

and the interface is steady. Therefore (2.16) is reduced to

C(Bh5
f)

1/3 = A∗
(

(B2h−5
f )1/3

C
(H − hf)

)1/2

. (2.18)
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The left-hand-side term of (2.18) is the volume flux in the plume at the interface, and
right-hand-side term is the exchange flow rate Q with the outside environment. This
is the same result as obtained by LLSS: the volume flux in the plume at the interface
is equal to the exchange flow rate at the top and bottom openings.

We can make (2.18) non-dimensional with the height H of the chamber to obtain

A∗

H2
= C3/2

(
ξ5
f

1− ξf

)1/2

, (2.19)

where ξf = hf/H is the non-dimensional height of the interface in the forced chamber,
and (2.19) is the same as (2.11a) in LLSS.

We use the chamber depth H and the time scale T to make (2.16) non-dimensional.
We choose T to be the time scale proportional to the filling-box time for the unforced
chamber,

T =
SuH

B1/3H5/3
=

Su

B1/3H2/3
. (2.20)

The numerator of (2.20) is the volume of the unforced chamber and the denominator
is proportional to the volume flux in the plume at the top of the forced chamber and
so T is proportional to the time taken for all the fluid in the unforced chamber to be
circulated through the plume. Let τ represent the non-dimensional time τ = t/T =
B1/3H2/3t/Su.

Multiply (2.16) by T/H to obtain the non-dimensional interface evolution equation

dξf
dτ

= RA

(
Cξ

5/3
f − A∗

H2

(
1

C
ξ
−5/3
f (1− ξf)

(
1 +

1

RA

)
− τ
)1/2

)
. (2.21)

The evolution of the interface in a filling box depends only on the cross-section
area and the volume flux across the density interface from (2.17). When a single
room connects to an infinite environment, (2.19) shows that the effective area A∗ and
height H determine the density interface position. Here, a room with a heat source is
adjacent to an unforced room of finite volume, and the interface evolution becomes
more complicated than before. Two additional parameters are introduced in (2.21).
These two new parameters are T , which is the time scale to fill the unforced chamber
with fluid from the plume and determines the dimensionless time τ, and RA, which is
the ratio of the cross-section areas of the two rooms.

2.3. The unforced chamber

The unforced chamber receives buoyant fluid through the top opening. The interface
evolution rate in the unforced chamber depends on the cross-section area of unforced
chamber Su and exchange flow rate Qt, i.e.

Qt = wu(t)Su =
dhu
dt
Su. (2.22)

Combining (2.13) and (2.22) we obtain

dhu
dt

=
A∗

Su

(
g′f(H − hf)

(
1 +

1

RA

)
− Bt

Su

)1/2

. (2.23)

Substituting g′f by (2.15b) in (2.23), then using the time scale T defined by (2.20)
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and the length scale H to make (2.23) non-dimensional gives

dξu
dτ

=
A∗

H2

(
1

C
ξ
−5/3
f (1− ξf)

(
1 +

1

RA

)
− τ
)1/2

, (2.24)

where ξu = hu/H is the non-dimensional upper layer depth in the unforced chamber.
The reduced gravity of the fluid entering the unforced chamber is the same as that

in the forced chamber, i.e.

g′u(1, τ) = g′f(τ). (2.25)

The buoyant fluid is assumed to spread out horizontally instantaneously as a
homogeneous thin layer. The fluid entering at later times flows on top of the fluid
that previously entered. This is an idealized assumption. In reality, the reduced gravity
change in this room is due to the propagation of a gravity current, which has a finite
depth and takes a finite time to propagate across the unforced chamber. This is not
an ideal model for a short time period; however it is close to the experiment when
the time period is long.

In numerical calculations, we solve g′f(τ) and ξu(τ) simultaneously and in every time
interval ∆τ we assume that the new thin layer entering (the dimensionless thickness
is ∆ξu(τ1) = |ξu(τ1 + ∆τ)− ξu(τ1)|) has the homogeneous reduced gravity (g′f(τ1)), the
reduced gravity in the forced chamber at that moment. The previous fluid layers are
all moved downwards a distance ∆ξu. Then the numerical calculations of the reduced
gravity in the unforced chamber at different moments g′u(ξ, τ) are obtained as a simple
initial value problem. We will present the numerical calculations together with the
experimental results in § 4.

3. Experiments
The experiments were conducted in a Plexiglas tank 122 cm long, 15.6 cm wide and

59 cm deep. Two dividers, one 15.6 cm wide by 46 cm high and the other 15.6 cm wide
by 59 cm high, and both 2 cm in thickness, were used to subdivide the tank. The
smaller divider (15.6 cm by 46 cm) was placed inside the tank to form a fixed 15 cm
wide space which was the forced chamber, connected to the other space via the top
and bottom openings. When the tank is filled with fresh water to 49 cm high, the
openings at the top and bottom are both 1.5 cm in height. The larger divider was
placed at different positions in the other side of tank to form the unforced chamber.
Its length varied from 15 cm to 105 cm at 30 cm intervals, giving ratios RA of the two
chambers from 1 to 7. Refer to figure 5 for a sketch of the experimental design.

Fresh water was used as the ambient fluid and replenished in each experiment.
A plume nozzle was placed in the centre of forced chamber and supplied by a
constant-head source of salt solution with density ρs = 1.117 g cm−3. The orientation
in this section and in § 4 is upside down compared with the coordinate system of
theoretical thermal model in § 2 (see figure 2). However, the coordinate system is
consistent throughout the paper, and the plume nozzle is always positioned at z = 0.
The description of the experimental results will be in terms of the orientation of the
experiments. Blue food dye was added to the salt solution to make injected fluid
visible. A flow meter regulated a constant flux of buoyant fluid into the tank. The
plume nozzle was designed by Dr Paul Cooper in the Department of Engineering,
University of Wollongong, NSW, Australia, and details can be found in Hunt &
Linden (2001).

A shield of transparent Plexiglas sheet (12 cm high by 12 cm wide) was placed near
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Figure 5. The experimental arrangement shows the forced chamber on the left and the unforced
chamber on the right. A plume nozzle, located at the free surface, is placed at the centre of the left
chamber. The columns of windows for measuring light intensity in both chambers are also depicted.

the top of the forced chamber between the plume nozzle and the smaller divider
to reduce plume deflection due to the flow through the top opening into the forced
chamber.

Experimental data were recorded on digital files and videotape. Videotape recording
requires signals to pass through the VCR (Video Cassette Recorder) and then be
recorded onto tape. Both procedures add nonlinear effects to the signals, which
makes later analysis complicated. Therefore, we only used videotape recordings as
reference data. DigImage, an image processing software developed by Dalziel (1993),
was used to record and analyse the experimental data. Images were recorded through
a Cohu 7710 series CCD camera directly into the computer hard drive. The linear
gain of the CCD camera and direct recording onto digital files reduce noise and
simplify later analysis.

The light attenuation due to the dye in the salt solution is related to the density
of the solution, since the dye is added in proportion to the salt concentration. The
details of this technique are given by Cenedese & Dalziel (1998), and the basics are as
follows. Before running experiments, we used the same lighting as in the experiments
to record images of sample solutions and measured their densities with an Anton
Paar densitometer. We used the light intensities of the samples and their measured
densities to interpolate the density distribution in the tank from images taken in
experiments.

The experiment started when the plume was turned on. The flow meter maintained
a constant flow Qf = 2.1 ml s−1 of brine through the plume nozzle into the tank
during the entire experiment. This flow rate was small compared to the exchange flow
between the two chambers, which was the volume flux in the plume at the interface,
so that the source volume flux was negligible in the experiments. DigImage took an
image every 20 s and the VCR recorded the whole experiment while it was running.
The experiment was stopped when the front of dense fluid in the unforced chamber
reached the top opening and began to flow back into the forced chamber.

Images taken in the experiment were used to analyse the evolution of density in
both chambers. The average light intensity of a small window, which was 2 pixels
high by 14 pixels wide (about 0.3 cm high by 2.0 cm wide in real scale) in the forced
chamber and 2 pixels high by 45 pixels wide (0.3 cm high by 6.8 cm wide) in the
unforced chamber, was evaluated by DigImage. Every image had two columns of
windows. The column of windows in the forced chamber was positioned outside
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Figure 6. The comparison of the mass added through the plume source and the mass calculated in
the tank for RA = 5. The solid line is the added mass against time, using the reading from the flow
meter and the supply density. The points (∗) are the mass calculated from images taken during the
course of the experiment. In general the two masses balance to within 10%.

the plume to monitor the evolution of the chamber environment. The centre of the
window column in the unforced chamber was positioned 11.5 cm from the small
divider. The column consisted of 97 windows in the forced chamber, from 0.5 cm to
48.5 cm originating from the plume nozzle with 0.5 cm vertical interval between two
adjacent windows. There were 48 windows, from 1 cm to 48 cm with 1 cm vertical
interval, in the unforced chamber, placed where the stratified flow developed without
too much disturbance by the flow from the forced chamber and the effect of the
sidewall. Figure 5 also shows a sketch of the windows in an image. The average
intensity values were translated into the density values using the calibration data.
In this way vertical density profiles in both chambers were obtained throughout the
duration of an experiment.

The total mass added to the tank at the time when an image is taken is compared
with the mass obtained from the image. Assuming the vertical density profile is
independent of horizontal position in both chambers, we use the measured density
profiles in each chamber to calculate the total mass in the tank from each image.
Although the density profiles are not uniform everywhere in these two chambers,
especially at the two ends of the unforced chambers as we mentioned before, there
is an excellent agreement between total mass values calculated in these two ways as
shown in figure 6.

The consistency in the mass balance was within ±10% for all experiments and
usually considerably better. Given that the flow meter accuracy was not better than
±2%, we consider that this level of deviation is acceptable and that the density
measurement is reliable.

The light source is a fluorescent light positioned directly behind the tank and the
camera is positioned 2.5 m in front of tank. The recorded image area is 59 cm by
59 cm in the tank, which is the area illuminated by the fluorescent light. Figure 7
shows a series of photos for two rooms with RA = 5, after variations in background
lighting have been removed.

In the experiments, the plume source has a finite volume flux and momentum flux
at its origin, contrary to the pure plume theory, which assumes that the plume is a
source of buoyancy only. Therefore, we need to adjust the real plume origin in the
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Figure 7. Images taken 310, 390, 470 and 550 s after the plume nozzle is turned on for the case
RA = 5. The corresponding non-dimensional times are τ = 22, 28, 34 and 40. The horizontal white
lines beside the pictures show the region of sharp density gradient that is about 12% of the total
height, and the middle line in each picture is the interface height in the forced chamber, calculated
as described in § 4.

experiment to fit pure plume theory and to do this we introduce the virtual origin. At
the virtual origin the plume has no volume and momentum fluxes. Depending on the
plume source properties, we can obtain a virtual origin height, the distance between
the real and virtual plume sources. Hunt & Kaye (2001) give a detailed discussion on
the virtual origin in their paper. We use equation (34) in their paper to calculate the
virtual origin height zv where zv > 0 implies that the virtual origin is below the plume
source. In our experiments, the buoyancy flux B = 265 cm4 s−3, the reduced gravity
g′ = 118 cm s−2, the volume flux Qf = 2.1 cm3 s−1 and the diameter of plume nozzle
is 0.5 cm; therefore the virtual origin correction is zv = 1.66 cm.

4. Results
When the plume is turned on dense fluid arrives at the bottom of the tank. Some

of this fluid flows through the bottom opening into the unforced chamber while the
rest accumulates to form a dense layer in the forced chamber. Figure 8 shows the
density profiles measured in the forced and unforced chambers for the area ratio
RA = 5. The depth is normalized with the total depth H and the reduced gravity with
G′ = (B2(H + zv)

−5)1/3/C , the plume reduced gravity at the base of the tank. The
profiles were measured at τ = 22, 28, 34 and 40, corresponding to the images shown
in figure 7. Note that the profiles begin at g′/G′ = 1. For lower values of g′/G′ the
profiles are noisy due to resolution problems with the dye intensity measurements.

These images are taken at equal time intervals after the initial stage. In the
initial stage the flow in the forced chamber is very disturbed and is difficult to
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Figure 8. The normalized vertical reduced gravity profiles in (a) the forced chamber and (b) the
unforced chamber. The four profiles were measured at τ = 22, 28, 34 and 40, corresponding to the
four images shown in figure 7.

analyse. Therefore, we only do some qualitative analysis for this stage without the
quantitative comparisons. However, we are more concerned about the behaviour of
the latter stages and both qualitative and quantitative results are presented.

The profiles in the forced chamber show an interface where there is a rapid
transition of density from ambient values to a dense lower layer. This lower layer
has almost uniform density with height (figure 8a), which supports our assumption
that the two-layer stratification found for an isolated chamber with displacement
ventilation is maintained here. The density and depth of this lower layer increase with
time. This behaviour is consistent with the density of this layer being equal to the
plume density at the interface height.

The profiles in the unforced chamber (figure 8b) show a more gradual vertical
stratification, resulting from the displacement of the fluid vertically by new fluid
entering through the bottom opening. Note that at each time the density at the
bottom of the unforced chamber is equal to that in the forced chamber, consistent
with the model assumption (2.25).

From the images, it is impossible to determine unambiguously the height of the
interface in the forced chamber. Typical image data (figure 7) have density profiles as
in figure 8(a), which show that the reduced gravity increases from that of the fresh
water (g′ = 0) to the average value of the lower layer (g′f) across an interface of finite
thickness, which is usually about 12% of the total height in our experiments.

In order to determine the mean interface position in the forced chamber we average
the density values of those points below a non-dimensional height 0.5 (figure 8a),
for the density ρf in the lower layer. The interface position is taken as the height at
which ∆ρint = 0.6∆ρf (where ∆ρ is the density difference with the fresh water density
0.998 g cm−3). The interface position calculated in this way is shown on the images in
figure 7. As can be seen from the figure the interface is not perfectly horizontal and
is slightly lower at the right due to inflow through the top opening from the unforced
chamber. However, the calculated position is consistent with a rough visual estimate.

The dense layer in the forced chamber initially grows rapidly in height, and
then ascends more gradually. Figure 9 shows non-dimensional interface height ξf
plotted against non-dimensional time τ in the forced chamber at four different ratios
RA = 1, 3, 5, 7. Results from both the experiments and the numerical calculations are
shown in this figure, and the rapid initial growth and the subsequent slower rise of
the interface are clearly revealed. The initial behaviour mainly depends on the size of
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Figure 9. The numerical (lines) and experimental (∗) interface heights in the forced chamber plotted
against non-dimensional time for four different area ratios, (a) RA = 1, (b) RA = 3, (c) RA = 5
and (d ) RA = 7. The three lines on each plot are numerical results with entrainment constant
values α = 0.074 (dashed line), α = 0.083 (solid line) and α = 0.094 (dotted line). Note that the
dimensionless times are different in each plot as they are based on the horizontal area of the
unforced chamber.

the forced chamber while the later stage depends on the stratification of the unforced
chamber which, in turn, depends on the size of that chamber. The size of openings
also has some effect on initial growth since it determines how quickly the forced
chamber exchanges fluid with the unforced chamber. If the unforced chamber were
infinite in extent, a steady state would be achieved with inflow and outflow of the
forced chamber equal to the plume volume flux at the interface and the interface
would remain stationary (LLSS). The behaviour in the initial phase is very similar to
this case and the interface ascends to a value close to that for a chamber connected
to an infinite environment. Using the steady-state formula (2.19), the forced chamber
has the interface height ξf = 0.31 (with α = 0.083) with these two openings, which is
close to the observed values (figure 9).

We use (2.21) to calculate the height of the interface in the forced chamber as
an initial value problem. As we mentioned in § 3, the real plume origin needs some
modification to fit the theoretical formula. The distance parameter z in the plume
equations (2.15) is replaced by ze = z + zv and (2.21) is modified to

dξf
dτ

= RASf

(
C(ξf + k)5/3 − A∗

H2

(
1

C
(ξf + k)−5/3(1− ξf)

(
1 +

1

RA

)
− τ
)1/2

)
, (4.1)

where k = zv/H = 0.034.
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Figure 10. The normalized reduced gravity values in the forced chamber from the numerical
calculation (lines) and the experimental measurements (∗) against non-dimensional time for four
area ratios. (a) RA = 1, (b) RA = 3, (c) RA = 5 and (d ) RA = 7. The lines are numerical values with
the three entrainment constants used in figure 9.

The numerical solutions use three different plume entrainment constants α = 0.074,
0.083 and 0.094 to predict the interface position. These values of α are suggested by
Baines (1983), Turner (1986) and Morton et al. (1956), respectively. The experimental
data agree well with the model results and the best fit for RA = 5 and 7 is achieved
with α = 0.083, consistent with other studies on ventilation (Linden 1999).

As mentioned above, the results given in figure 9 show that there are two time
scales for the development of the interface in the forced chamber. The initial time
scale is associated with the plume filling the smaller forced chamber and on these
plots, non-dimensionalized by the size of the large unforced chamber, they do not
collapse onto a single curve. Had time been made dimensionless using Sf , then the
early-time growth of the interface height in each experiment would collapse onto
the same curve. The subsequent increase in interface height, associated with filling
the unforced chamber, scales on τ as can be seen from the figure. The agreement
between the model and the data improves as RA increases. When RA ≈ 1, the two
time scales are quite similar and the separation of scales assumed in the model is less
well satisfied.

The predicted interface height hf is used to estimate the reduced gravity in the
dense layer of the forced chamber from (2.15b). The height z in this equation is
substituted by hf + zv to allow for the vertical origin correction. Figure 10 shows
numerical solutions and experimental data for the reduced gravity in the lower layer
of the forced chamber normalized by G′, the reduced gravity in the plume at the base
of the tank.
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Figure 11. The experimental results (a, c, e, g) and numerical calculations (b, d, f, h) for the dimen-
sionless reduced gravity in the unforced chamber. (a, b) RA = 1 and non-dimensional time interval
∆τ between two adjacent lines is ∆τ = 3. (c, d ) RA = 3 and ∆τ = 9. (e, f ) RA = 5 and ∆τ = 14.
(g, h) RA = 7 and ∆τ = 20.

The reduced gravity increases with time as observed in figure 8, and this increase
is associated with the plume entering the layer closer to its source. As explained
above, the initial values were not captured by the image analysis but the later results
showed good agreement with the model calculations, with α = 0.083 giving the
closest match with the data. In this case agreement is excellent for all RA > 1. When
RA = 1 the model slightly over-predicts the density. As with the interface height the
later time development scale is on the ‘filling-box’ time of the unforced chamber,
and when RA = 1 the time scales of the two chambers are the same. Consequently,
the assumption that the forced chamber forms a two-layer stratification while the
unforced chamber develops over a longer time is not satisfied.

Once the reduced gravity in the lower layer in the forced chamber is known, we
can calculate the interface growth in the unforced chamber as described by (2.24).
Using the virtual origin again, we have the modified formula

dξu
dτ

=
A∗

H2

(
1

C
(ξf + k)−5/3(1− ξf)

(
1 +

1

RA

)
− τ
)1/2

. (4.2)

The numerical solutions of non-dimensional height against non-dimensional re-
duced gravity at different times for four cases are presented in figure 11 to compare
with the experimental measurements. Here, to avoid clutter we only use the entrain-
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ment constant α = 0.083 in the numerical calculations. This value is chosen because
it gives the best fit to the experimental results in the forced chamber, and agrees with
the value selected by Turner (1986) for top-hat profiles.

The reducing flow rate with time can be observed from figure 11. In these plots
the spacing between two interface levels in the unforced chamber, which is the same
time interval in each pair of plots, becomes smaller with time. This behaviour is more
obvious at early times; there is an almost constant exchange flow at later times.

The flow entering the unforced chamber is more complicated than in the forced
chamber. Mixing occurs when the flow enters though the lower opening and the
effects of reflection from the far endwall produce horizontal variations in density as
shown in figure 7. However, as discussed in § 2 we neglect these variations and treat
the flow as being simply vertically stratified in the model. We assume that as new fluid
enters, it lifts the existing fluid without any mixing. The results in figure 11 show that
this assumption captures the main structure of the stratification. However, there are
differences between the numerical calculations and the experimental observations and
it is likely that these would only be reconciled by a more complex model including
the effects of mixing and flow in the unforced chamber.

There is good qualitative and acceptable quantitative agreement between the model
and the experiments for all aspect ratios, although as expected the agreement improves
as RA increases. The main qualitative difference is that the observed profiles are
steeper than the calculated values, particularly near the bottom of the chamber.
This difference may be a result of the gravity-driven currents that spread the fluid
across the chamber over a finite depth rather than as an infinitely thin layer as
assumed.

5. Conclusions
We have studied the flow between two coupled chambers driven by a single source

of buoyancy in one of the chambers. The case we have considered is where the
buoyancy source creates a plume and is located in the forced chamber, which is the
same size or smaller than the unforced chamber. We have carried out laboratory
experiments and developed a model for the flow.

In this section we take the orientation as that in § 2. Therefore the results in § 4 are
taken upside down and the salt plume in the experiments is regarded as a heat plume
here.

In the experiments, both chambers have displacement ventilation and the flow
between them is in a transient state. The unforced chamber receives the hot buoyant
fluid from the forced chamber and supplies the cold fresh ambient fluid to it.

The forced chamber has two distinguishable stages in the evolution of the density
interface: the initial fast developing one, which is determined by the size of the
forced chamber and the effective area of openings, and the later gradually evolving
one, which responds to the changing stratification in the unforced chamber. The
descending interface introduces hotter fluid into the buoyant layer in the forced
chamber and the reduced gravity of this layer becomes larger with time.

The unforced chamber has a stable and transient stratification because the inflow
fluid from the top opening is always lighter than the fluid that has previously
entered. The exchange flow rate between two chambers depends on the pressure
drops at the openings and the vertical pressure distribution varies with time in both
chambers. The neutral level is not stationary like that in LLSS, but descends with
time. The transient stratification in both chambers results in the pressure differences
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at both openings changing, and this reduces the quantity of the exchange flow with
time.

The mathematical model, based on evolution through quasi-steady states, is con-
sistent with two extreme cases, one studied by Baines & Turner (1969) when RA = 0
and one by LLSS (1990) when RA = ∞. The model gives good agreement with the
experiments in both chambers, especially when RA is large.

The two-layer model in the forced chamber might not be very accurate at the small
ratios, and the theoretical model overestimates the interface position when RA = 1.
Although the quantitative prediction is not fully satisfactory when RA is small,
qualitative observations confirm our transient model well. The unforced chamber has
a more complicated flow than that simulated by the present numerical calculations.
Nevertheless, the simple model used here has a good qualitative and acceptable
quantitative comparison with experiments. Thus the observed mixing and gravity
current dynamics are second-order effects. This is reasonable since the pressure is a
result of an integral of the density distribution, and so differences in the details of
the vertical profile are not so important.

This study completes the range of phenomena that occur in two connected interior
spaces with a single heat source, where neither space is connected to the outside.
It is restricted to times before warm fluid flows back into the forced chamber from
the unforced chamber through the lower opening. After that occurs we expect an
asymptotic state in which the fluid in the unforced chamber is heated uniformly at
all heights. Since, in contrast to the filling box, the vertical velocity is constant with
height there, we expect the asymptotic temperature gradient at heights between the
two openings to be linear. As discussed in the introduction (see figure 3), cases with
a single opening between two spaces lead to variations on the filling-box problem.
When there are two (or more) openings the flow is topologically different, and the
flow goes through a transient phase where there is displacement ventilation in both
spaces. This cannot occur when there is only a single opening.

The results of this study show that when a smaller space with a heat source is
connected to a larger unheated space, the evolution of the stratification occurs on
two filling-box time scales. The initial adjustment takes place on the time scale of the
smaller space, and is similar to the development in a space connected to an infinite
environment. There is then a slower adjustment at later times that occurs on the time
scale associated with the larger space. This means that the ventilation in a specific
room depends not only on the geometry and openings in the room, but also on the
size (and openings) of adjacent rooms. The details of this co-dependence are complex
when there are multiple rooms connected together, but some simple rules are evident
from the present study.

First, when all spaces within a building are enclosed, and do not communicate with
the exterior, a heat source leads to a continuous increase of heat and the stratification
is not steady. Second, in this case the time scale for the evolution depends on the
size of the largest space. This means, for example, that in a shopping mall or office
complex attached to an atrium the evolution of the stratification within individual
shops and offices varies according to the size of the atrium. This means that if steps
are taken to control the temperature within a shop, by locally changing conditions, it
may never be possible to reach a desired set temperature.

Finally, it is clear from the discussion of the archetypal cases in figures 2 and 3
that the transient behaviour is strongly dependent on the geometry of the connecting
openings between the spaces. Thus there should be careful consideration of the
placement of openings when ventilation systems are designed.
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