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Eigenmode resonance in a two-layer stratification
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In this paper, we study the velocity field at the density interface of a two-layer
stratification system when the flow is forced at the mid-depth of the lower layer
by the source–sink forcing method. It is known that, in a sufficiently strong linear
stratification, the source–sink forcing in certain configurations produces a single-
vortex pattern which corresponds to the lowest eigenmode of the Helmholtz equation
(Kanda & Linden 2001). Two types of forcing configuration are used for the two-layer
experiments: one that leads to a steady single-vortex pattern in a linear stratification,
and one that results in an unsteady irregular state. Strong single-vortex patterns appear
intermittently for the former configurations despite the absence of stratification at
the forcing height. When the single-vortex pattern occurs at the density interface, a
similar flow field extends down to the forcing height. The behaviour is explained as the
coupling of the resonant eigenmode at the interface with the horizontal component of
the forcing jets. The results show that stratification can organise a flow, even though
it is forced by an apparently random three-dimensional forcing.

1. Introduction
In our previous paper (Kanda & Linden 2001, hereinafter referred to as KL),

we studied the interaction of multiple laminar jets in a linear stratification. The
jets are at the same vertical height and are issued from the boundary walls of
a square domain. Among various horizontal velocity fields, we found steady flow
patterns which do not reflect the symmetry of the jet configuration. They were
explained as resonant eigenmodes of the Helmholtz equation for the streamfunction.
The explanation, however, involved an assumption that the Helmholtz equation is
chosen out of all possible solutions to the vorticity equation. The assumption was
not justified in mechanical terms, but was supported by the fact that the observed
relations between the streamfunction and the vorticity are approximately the same as
those of the eigenmodes of the Helmholtz equation. Eigenmode resonance is necessary
for the observed steady states to appear, but our observations were limited to the
final results of resonance and we did not show the transient stage toward resonance.
In this paper, by using a two-layer stratification, we present the transient stage and
provide further support for our assumptions. We also obtain preliminary results on
the relation between the forcing configurations and the resulting velocity field. Two-
layer stratification has analogues in oceanic thermoclines, the upper troposphere,
and many industrial situations, and our results provide a new perspective on the
horizontal structures and mixing in such fluids.

First, we summarize our previous paper in more detail. In a linear stratification, lam-
inar horizontal jets are introduced by source–sink forcing. The source–sink method,
originally used by Boubnov, Dalziel & Linden (1994), employs injection and suction
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pipes on the domain sidewalls, and ensures mass conservation and unrestricted inter-
action of jets inside the domain. With four source–sink forcing pairs, we found that
some of the steady states have streamlines similar to eigenmodes of the Helmholtz
equation. A steady state can be approximated as an inviscid two-dimensional flow
and the Helmholtz equation for the streamfunction is one possible solution to the
vorticity equation. When the forcing geometry is perfectly symmetric and does not
impart any net angular momentum, a solution to the Helmholtz equation has the
same symmetry as the forcing geometry and the observed eigenmode structures with
significant circulation do not appear. However, small deviations from perfect sym-
metry allow such eigenmode structures. An eigenmode attains a dominant amplitude
when the proportionality constant between the vorticity and the streamfunction is
close to the corresponding eigenvalue for the given domain; otherwise the eigenmode
has small amplitude in proportion to the deviations. This resonant amplification is
the result of unintended net angular momentum. For three different steady states,
we obtained good agreement between the analytical solutions and the observations.
Although the eigenmode argument applies to any forcing configuration, the resonant
behaviour is observed only for certain configurations and we do not know the relation
between the forcing configurations and the resultant flows. The eigenmode argument
was introduced to explain the appearance of some steady states with significant circu-
lation. The relation between the forcing configurations and the resulting flows should
be investigated by taking account of the dynamics of individual forcing jets.

In this paper, we use a two-layer stratification which reveals the transient stage of
the resonant behaviour. The source–sink forcing pipes are placed at the mid-depth
of the lower layer. The source jets interact three-dimensionally in the homogeneous
fluid and induce horizontal flows at the density interface. Due to additional freedom
of motion, this setup reduces the probability of eigenmode resonance and makes
the resonant state less stable to disturbances. Two types of forcing configurations
are tested: one that results in a single-vortex pattern (the lowest eigenmode) in a
linear stratification, and another that results in unsteady irregular states in a linear
stratification. For the former type of configuration which introduces less disturbances,
we observe recurrence of the resonant state with distinctly larger kinetic energy than
non-resonant states.

The outline of this paper is as follows. In § 2 we describe the apparatus and
the procedure of the two-layer experiments. We derive an empirical rule of pattern
formation in a linear stratification and select forcing configurations to be used in
the two-layer experiments. In § 3 we show the results of long-term observations
and identify resonant amplification of the lowest eigenmode. In § 4 we discuss the
implications and applications of the results.

2. Experimental method
2.1. Apparatus

The apparatus shown in figure 1 is the same as the one used in KL. The inner
dimension of the tank is 59.7 × 59.7 × 40.6 cm. Salt water of density 1.036 g cm−3 is
filled up to 20 cm. Kerosine (density 0.80 g cm−3) is poured on top of the salt water
until it forms a 1.1 cm layer. Kerosine is immiscible with salt water and a sharp density
interface is maintained. The relatively thin kerosine layer allows fast establishment
of horizontal two-dimensional motion in the layer. Four, eight, or twelve source–sink
forcing pairs are set on the sidewalls at the mid-depth of the salt water layer. The
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Figure 1. Apparatus showing a four-pair configuration. All the forcing pipes are connected to the
channels of a peristaltic pump.

sources and sinks are made of 3.175 mm inner diameter pipes bent at a right angle
near the orifices. They are connected to individual channels of a peristaltic pump and
the fluid sucked into the sinks is re-introduced from the sources. The source–sink pairs
are placed in configurations such that they do not impart any significant net thrust
or net angular momentum. In the next subsection, we choose forcing configurations
according to the resultant velocity field in a linear stratification. The mean velocity
V at the orifices of each source–sink pair is fixed at 2.3 cm s−1 with variation among
the pairs at most 10%. The Reynolds number Vd/ν, where d is the orifice diameter
and ν is the kinematic viscosity of salt water, is thus 730. Each source produces a
horizontal jet and each sink produces a velocity field similar to half the potential
field of a point sink. In a linear stratification, Boubnov et al. (1994) show that the
source jets cause mixing and the velocity field becomes three-dimensional in buoyancy
time 105 if the Froude number V/Nd, where N is the buoyancy frequency of the
initial stratification, is larger than 15. In the bulk of the homogeneous salt water
layer, the Froude number is infinite and the source jets immediately interact three-
dimensionally. At the density interface, horizontal flow is induced by this irregular
flow. For flow visualization, Pliolite VT particles (Goodyear chemicals, mean density
∼ 1.022 g cm−3, size 850 ∼ 1180 µmφ) are seeded at the density interface. Since the
particles are polymers and dissolve in kerosine in about an hour, they have to be
replenished on each observation occasion. The particles are illuminated by horizontal
slit light and the motion is recorded through a CCD camera from above. The velocity
field is analysed by DigImage, a particle tracking system developed at DAMTP,
Cambridge (Dalziel 1993).

Each experiment runs for three days with daytime observation at 1 to 3 h intervals.
No observation is done at night. At the end of the third day, the reaction product of
kerosine and Pliolite forms a thin white layer at the interface, and the resulting weak
intensity contrast of the recorded images makes particle tracking difficult. However,
no monotonic deceleration of the interfacial motion is observed due to this white
layer. Because we seed a small number of particles to ensure long-term observation
without thickening of the white layer and also because chemical reaction causes
fading or coagulation of particles, the analysed velocity data are missing or spurious
at some grid points. Spurious velocity data often have singularly large magnitudes
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and are manually removed before calculating the average velocity magnitude of the
domain. The essential features are not affected by this rough analysis.

2.2. Forcing configurations

Forcing configurations are chosen according to the resultant velocity field in a linear
stratification. A linear stratification of salt water is established by the double-bucket
method. The depth of the fluid is 20 cm and the constant buoyancy frequency is
1.5 s−1. The Pliolite VT particles are seeded at about 13 cm from the bottom of the
tank and the source–sink forcing pairs are set at the level of the seeded layer. The
source flow rate is 2.3 cm s−1 and the induced flow is horizontal and laminarized as
shown in figure 2 of KL.

We select two types of forcing configurations: one that results in the stable single-
vortex pattern and another that results in an unsteady irregular velocity field. Al-
though we found three different eigenmode structures for four-pair forcing in KL,
the single-vortex pattern (the lowest eigenmode) is the only steady state common in
various source–sink forcing experiments: eight pairs in a square domain in KL and
Boubnov et al. (1994), and twenty and forty pairs in a circular domain in Linden,
Boubnov & Dalziel (1995). Unsteady irregular states were first found by KL for four-
and eight-pair configurations. Until then it was believed that, if the induced flow
is sufficiently horizontal and laminarized, the flow eventually evolves into a single
dominant vortex through merger of like-sign vortices and shearing-out of weak vor-
tices irrespective of the forcing configuration. Boubnov et al. (1994) show temporal
evolution from an unsteady irregular state to the steady single-vortex pattern for their
fixed eight-pair forcing configuration. The time necessary to reach the single-vortex
pattern depends on the Froude number V/Nd. KL’s finding is that the formation
of the single-vortex pattern is very sensitive to the forcing configuration; some con-
figurations immediately result in the single-vortex pattern, but others never reach a
steady state. Here we seek configurations which result in either of these states.

Previous experiments show that the single-vortex pattern appears quickly when
the source jets are directed toward the centre of the domain. This conforms to a
qualitative picture where multiple jets meeting at the central point deflect each other
clockwise or counterclockwise and finally evolve into a single vortex occupying the
domain. We expect that the unsteady irregular state results when the colliding points
of the source jets are distributed in the domain.

The experimental results for four, eight, and twelve source–sink pairs in a linear
stratification are shown in figure 2. The four-pair case is thoroughly studied in KL.
The single-vortex pattern always appears when the source jets are placed at the
corners and directed toward the centre (figure 2a). Putting the source jets at one-third
points on the sidewalls makes the jets collide at two separate points in the domain,
but this configuration is known to result in a steady four-vortex pattern. However, by
putting the source jets at the mid-points of the sidewalls and directing them toward
the centre, a five-vortex instead of the single-vortex pattern appears in one out of
five trials, and an unsteady irregular state develops in other trials (figure 2d ). Hence
we choose this configuration as the one leading to the unsteady irregular state. For
the eight-pair case, the single-vortex pattern always appears when the source jets are
placed at the corners and the mid-points of the sidewalls, and are directed toward the
centre (figure 2b). When the sources and sinks are exchanged, an unsteady irregular
state always results (figure 2e). For the twelve-pair case, the single-vortex pattern
always appears when the source jets are at the corners and at one-third and two-third
points on the sidewalls, and are directed toward the centre (figure 2c). If the source
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(a) (b) (c)

(d ) (e) ( f )

Figure 2. Streak images of forcing experiments in a linear stratification. (a–c) Configurations
resulting in a dominant single vortex as a steady state. (d–f ) Configurations resulting in an irregular
unsteady state. Arrows denote sources and sinks.

jets on the sidewalls are directed perpendicular to the sidewalls, the central vortex
deforms significantly (figure 3a). When the source jets are placed at one-quarter,
one-half, and three-quarter points of the sidewalls, the velocity field is unsteady and
irregular (figure 2f ). If the source jets are placed at one-sixth, one-half, and five-sixth
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(a) (b)

Figure 3. Twelve-pair forcing in a linear stratification. (a) Source jets on the sidewalls are not
directed toward the centre (cf. figure 2c). (b) Outer source jets on the sidewalls are closer to the
corners (cf. figure 2f ).

points of the sidewalls, a large fluctuating central vortex results (figure 3b). In this
case, the sources near the corners merge and act like corner sources directed toward
the centre, hence making the configuration similar to figure 2(b) of eight-pair forcing.

We use the configurations in figure 2 and denote those leading to the single-vortex
pattern as S-configurations (figure 2a–c) and those leading to an unsteady irregular
state as I-configurations (figure 2d–f ).

3. Results
3.1. Temporal variation

Figure 4 shows the velocity and streamfunction field of the twelve-pair S-configuration
(figure 2c) in a two-layer stratification. Strong single-vortex patterns appear intermit-
tently. We note that out of five observed appearances, the single vortex is clockwise
in four (2–6 h, 10–14 h, 38 h, 50–58 h) and counterclockwise in one (28 h). Similar
behaviours are observed with other S-configurations.

Temporal variations of the spatially averaged velocity magnitude are shown in
figure 5 for the six configurations of figure 2. The filled circles denote strong single
vortices, the triangles weak or deformed single vortices, and the crosses irregular states.
The sign of the vorticity is indicated above the filled circles. Two squares in figure 5(d )
(four-pair I-configuration) represent a strong dipolar velocity field observed only for
this configuration. The single-vortex pattern appears with all the configurations, but
the velocity magnitude is distinctly larger for the S-configurations (figure 5a–c) than
for the I-configurations (figure 5d–f ). Particularly, with the eight-pair I-configuration,
the single-vortex pattern appears as frequently as with the S-configuration, but the
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Figure 4. Velocity and streamfunction fields at the density step forced by the twelve-pair
S-configuration in the kerosine–salt water experiments. Unfilled cells are caused by shortage of
tracked particles. The darkness of the streamfuction field is not proportional to the amplitude.



230 I. Kanda and P. F. Linden

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60

(a)
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60

(b)
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60

(c)

A
ve

ra
ge

 s
pe

ed
 (

m
m

 s
–1

)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60

(d )
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60

(e)
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60

( f )

A
ve

ra
ge

 s
pe

ed
 (

m
m

 s
–1

)

Time (h) Time (h) Time (h)

Figure 5. Temporal variation of spatially averaged velocity magnitude at the density step in the
kerosine–salt water experiments. The forcing configurations for (a–f ) are given in figure 2. Filled
circle: clear single-vortex pattern, triangle: deformed unclear single-vortex pattern, cross: irregular
pattern, filled square: dipolar pattern. The signs above the filled circles represent the signs of the
vorticity.

kinetic energy attained is much smaller than with the S-configuration. Hence the
behaviour in a linear stratification is reflected in the behaviour at the interface in a
two-layer stratification even though the source jets are supposed to interact three-
dimensionally in the homogeneous lower layer. Also we note that the variation period
of the velocity magnitude is approximately the same (5–10 h) for all the configurations.
This indicates that the time scale of variation of the large-scale flow structure due
to jet interaction is not sensitive to the forcing configuration, and the distinctly
large velocity magnitudes are related to a flow field that can be achieved only by
the S-configurations. We next examine how ‘three-dimensionally’ the source jets are
interacting in the lower layer and identify the flow field related to the large velocity
magnitudes.

3.2. Vertical structure

We visualize the velocity field in the forcing plane. For this purpose, the kerosine–salt
water combination is not suitable because Pliolite particles are trapped at the interface
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Figure 6. Vertical density profile for a fresh–salt water experiment with H = 30 cm.
The measurement was taken 24 h after filling the tank.

and react with kerosine even if their density is larger than that of the salt water.
To resolve this problem, fresh water is used instead of kerosine. The depth H of the
lower salt water (density ∼ 1.036 g cm−3) is 10, 20, and 30 cm. Fresh water is added
slowly through sponge foam to minimize mixing with the salt water. A 3 cm-thick
layer is formed. The density profile for H = 30 cm after 24 h of interface formation
is shown in figure 6. Pliolite VT particles are seeded at the interface (z = 29 cm for
H = 30 cm). The buoyancy frequency at the seeded plane is initially about 3.6 s−1 and
decreases to about 2.7 s−1 in 20 h. With this stratification, the four- and eight-pair
S-configurations are tested.

The results are shown in table 1 by qualitative classification from A to D. The
state A has similar appearance to the single-vortex pattern in a linear stratification,
i.e. the single-vortex pattern is maintained during the run. The state B behaves
similarly to the intermittent strong single-vortex pattern in the kerosine–salt water
experiments. The state C has a weak single-vortex pattern similar to the eight-
pair I-configuration in the kerosine–salt water experiments. The state D is unsteady
and irregular. Although we always obtain state B for the S-configurations with the
kerosine–salt water experiments, the probability here of obtaining state B is much
smaller for H = 20, 30 cm. It suggests that a large density gradient is necessary to
obtain state B. State A for H = 10 cm is due to the sufficiently large density gradient
at the forcing height. As we can see in figure 6, a non-negligible density gradient
exists 4 cm below the seeded plane and the forcing jets 5 cm below the seeded plane
result in a velocity field similar to that in a linear stratification. During each run,
molecular diffusion of salt spreads the density profile by about 1 cm and the forcing
jets for H = 20, 30 cm are not directly affected by the stratification. Indeed there was
no noticeable temporal increase in the frequency of appearance of the single-vortex
pattern for H = 20, 30 cm.

The horizontal velocity field below the interface is observed by sprinkling Pliolite
AC particles (density ∼ 1.042 g cm−3) on the surface. The particles fall through the
lower layer at about 0.8 mm s−1. Horizontal slit lights of 2 cm thickness are used
and the streak images of the horizontal motion are recorded while the particles fall
through the illuminated layer.
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Configuration H (cm) Run Duration Result Comment

4S 10 00MC111 16 h A
00MC221 20 h 45 m A
00MC291 20 h A

20 00MC191 15 h B
00MC251 23 h 30 m D
00MY041 20 h 40 m B b

30 00MC151 20 h 30 m B b
00MC171 21 h C
00MC271 32 h 45 m D

8S 10 00AP121 9 h A
00AP131 9 h A
00AP132 9 h A

20 00AP141 19 h 25 m B b
00AP271 19 h C
00AP281 25 h 10 m C

30 00AP041 18 h D
00AP051 18 h C b
00AP061 23 h D
00AP081 19 h D
00AP101 17 h B b

Table 1. List of the fresh–salt water experiments. The results are classified as A: persistent
single-vortex pattern, B: intermittent strong single-vortex pattern, C: intermittent weak single-vortex
pattern, D: unsteady and irregular. Vertical structures are observed in figures 7 and 8 for the runs
marked ‘b’.

Horizontal streak images are taken at various heights for the runs marked ‘b’ in
table 1. The results are shown in figures 7 and 8 for H = 20 and 30 cm, respectively.
For nearly steady states (those except for figure 8b), the velocity field at the density
interface is calculated by DigImage to compare the velocity magnitudes. The circula-
tion in mm2 s−1 along a circle of radius 150 mm with the origin at the centre of the
vortex is shown below the velocity field. The centre of the vortex is determined at the
location of the minimum velocity magnitude. When there is a strong single vortex at
the interface (figure 7a; figure 8a, d ), the single-vortex structure extends down to the
forcing height. In other cases (figure 7b, c; figure 8b, c, e), the streak images in the
forcing plane are irregular.

Our interpretation is as follows. The source jets are principally horizontal, but
since they interact three-dimensionally, the resulting velocity field in the lower layer
is unsteady and irregular. However, near the orifices of the forcing pipes, the source
jets are unaffected by the other source jets and the horizontal velocity components
are diffused onto the density interface. If the forcing configuration is S-type, there
are centrally directed steady components at the density interface. With such velocity
components, there is a high probability that the interfacial flow becomes similar to
the single-vortex pattern produced by jets deflecting each other. At this stage, the
single-vortex pattern may be disturbed by the irregular flow in the interior. However,
if the velocity field happens to have the property of an eigenmode of the Helmholtz
equation, i.e. the vorticity is proportional to the streamfunction and the proportionality
constant is equal to the corresponding eigenvalue, then the velocity can attain large
magnitude by resonance. The strong horizontal flow at the interface then makes the
flow in the lower layer nearly horizontal by viscous friction. The S-configuration
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Figure 7. Horizontal fields at various heights for the fresh–salt water experiments with H = 20 cm.
The particle-tracked velocity fields are shown at the largest density gradient. The numbers beneath
the velocity fields are the circulation in mm2 s−1 along a circle of radius 150 mm with the origin at
the centre of the vortex.

results in the single-vortex pattern in the forcing plane and kinetic energy is efficiently
supplied to the interfacial flow. Vertical coherence is thus established. Although we
described the evolution as a two-step process of eigenmode formation at the interface
and redirection into the horizontal in the forcing plane, they are expected to occur
concurrently. Due to the resonant amplification, the single-vortex structure is stable
to disturbances and remains for hours until a sufficiently large disturbance destroys it.
The dipolar pattern observed with the four-pair I-configuration is also an eigenmode
for the square domain. With the I-configurations, the disturbances at the forcing
plane are large and the resonant state which must be quasi-two-dimensional cannot
be established.

3.3. ψ–ω relation

In this subsection, we verify that the single-vortex pattern has the property of the
lowest eigenmode. First, we recapitulate the argument of KL.

When the flow is steady and vertical coherence is established, vertical shear be-
comes negligible compared to horizontal shear and the flow is approximately two-
dimensional. With length scale 200 mm and velocity scale 2 mm s−1 (typical values for
the single-vortex pattern), the Reynolds number is 40. Hence at the leading order, the
steady-state vorticity equation is reduced to

J(∇2ψ, ψ) = 0, (3.1)

where ψ is the streamfunction and J is the Jacobian. The general solution to (3.1) is
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Figure 8. As figure 7 but with H = 30 cm. The particle-tracked velocity fields are shown at the
largest density gradient except for 00MC151 which is unsteady and irregular.

given by ∇2ψ = f(ψ), where f is an arbitrary continuously differentiable function of
ψ. Assuming a linear functionality f(ψ) = −λ2ψ, we obtain the Helmholtz equation

∇2ψ = −λ2ψ. (3.2)

The boundary condition for this equation is the source–sink forcing on the sidewalls.
Although the forcing is arranged in configurations which do not impart net angular
momentum or thrust, experimental errors always exist. We decompose the solution
into three parts ψ = ψ0 + ψ1 + ψ2, where ∇2ψi = −λ2ψi (i = 0, 1, 2), and ψ0 satisfies
the boundary condition without net angular momentum or thrust, ψ1 satisfies the
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boundary condition corresponding to the experimental errors, and ψ2 satisfies the
homogeneous boundary condition (ψ2 = 0) on the sidewalls. Only when λ2 is equal to
one of a set of discreet values (eigenvalues), is the last part ψ2 non-zero and is called
an eigenmode. The amplitude of ψ2 is arbitrary. When λ2 is not an eigenvalue, ψ0 and
ψ1 have finite amplitudes proportional to their amplitudes on the boundary. However,
when λ2 approaches certain eigenvalues, the amplitude of ψ0 remains finite while the
amplitude of ψ1 tends to infinity. The form of ψ1 becomes approximately the same
as the corresponding eigenmode. Such a resonant amplification of an eigenmode is
a general property of the Helmholtz equation, and detailed algebra specific to the
source–sink forcing experiments appears in Kanda (2001). This eigenmode resonance
occurs at the lowest eigenvalue in a square domain and induces significantly larger
circulation than can be achieved without resonance. The single-vortex patterns in
figure 2 correspond to the lowest eigenmode ψ ∼ cos(πx/L) cos(πy/L) with λ2 =
2π2/L2, where the square domain is defined by −1/2 6 x/L 6 1/2, −1/2 6 y/L 6 1/2
and L is the length of a side. The choice of the linear function f(ψ) = −λ2ψ is not
justified in mechanical terms, but such a resonant behaviour is known only for the
Helmholtz equation. We emphasize that the eigenmode argument is introduced to
explain the steady states with significant circulation, and does not apply to unsteady
states.

The distinctly large velocity magnitudes in the form of the single-vortex pattern in
figure 5(a–c) are considered to be caused by this resonance mechanism. We examine
the relation between the stream function ψ and the vorticity, ω = −∇2ψ to see whether
the observed single-vortex patterns have the property of the Helmholtz equation. In
the linear stratification experiments, the domain boundary is the sidewalls where the
forcing exists, but in the kerosine–salt water experiments, the forcing is well inside the
sidewalls because it acts through viscous diffusion from below the density interface.
Considering a square domain with free-slip boundary condition on the sidewalls and
forcing in the interior is mathematically intractable. Instead of developing a theory
applicable to general steady states, we consider a simplified model specific to the
single-vortex pattern. In the single-vortex pattern, the fluid is trapped inside the
central vortex, exchanging with the exterior only at the locations where the source
jets merge with the central vortex. Hence we consider a circular domain of a diameter
2R with forcing at the perimeter. Any polygon reflecting the number of sources may
be used, but since we will need the approximate magnitude of the eigenvalue of the
lowest eigenmode and it is determined by the representative size of the domain, we
choose a circle for simplicity. The lowest eigenmode is then ψ ∼ J0(λr) with the
eigenvalue λ2 = (ν0/R)2, where J0 is the zeroth-order Bessel function, r is the radial
coordinate, and ν0 is the smallest root of J0(x) = 0.

The relation between the vorticity ω and the streamfunction ψ is shown in figure 9
for representative single-vortex patterns (filled circles in figure 5) corresponding to the
forcing configurations in figure 2(a–f ). The corresponding velocity fields look similar
to the single-vortex patterns in figure 4 for all the configurations. The streamfunction
ψ is calculated such that the average of ψ over the analysed region is zero. While
the four-pair S-configuration (figure 9a) and I-configurations (figure 9d–f ) have
approximately linear relations over the whole domain, the eight- and twelve-pair S-
configurations (figure 9b, c) have two linear segments with different slopes. When the
flow is unidirectional in azimuth as in the single-vortex pattern, the streamfunction
changes monotonically with respect to the radius (figure 10). We regard the larger |ψ|
segments, which correspond to the central region in the flow domain, as belonging to
the resonant eigenmode. The smaller |ψ| segments correspond to the region near the
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Figure 9. Relation between the streamfunction ψ and the vorticity ω for the kerosine–salt water
experiments. The forcing configurations are the same as figure 2(a–f ). The data are for the single-
vortex patterns (filled circles in figure 5). The lines in (a, d–f ) have the same slope corresponding to
2R = 385 mm.

100

50

0

–50

–100

–150

–200
0 100 200 300 400

r (mm)

(a)
200

150

100

50

0

–50

–100
0 100 200 300 400

r (mm)

(b)

ψ
 (

m
m

2 
s–1

)

Figure 10. Relation between the radius r from the vortex centre and the streamfunction ψ: (a)
eight-pair S-configuration (figure 9b), (b) twelve-pair S-configuration (figure 9c). The dotted lines
indicate the radii corresponding to the values of ψ at the crossing points of the lines in figure 9.

sidewalls outside the single vortex. The radii corresponding to the dividing values of ψ
are 130 and 115 mm for figures 9(b) and 9(c), respectively. As shown in figure 2(a–c),
the region outside the central vortex is much smaller for the four-pair S-configuration
than for the eight- and twelve-pair S-configurations, and this is why there is only one
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Figure 11. Diameter 2R of the effective domain for the single-vortex patterns. The values are
calculated only for the single-vortex patterns. The forcing configurations are the same as figure
2(a–c).

linear segment in figure 9(a). When a strong single vortex is observed at the interface,
the effective domain diameter 2R is calculated from the slope of the ψ–ω relation
(figure 11). The obtained diameters are comparable to those of the observed vortices
in a linear stratification (figure 2a–c). The value of 2R is larger for the four-pair
S-configuration than for the eight- and twelve-pair S-configurations. It is consistent
with the size of the single vortices in a linear stratification of figure 2. Also, although a
little larger, the radii R obtained from the slopes of the ψ–ω relation are comparable
to the radii corresponding to the dividing values of ψ in figures 9(b) and 9(c). The
single-vortex patterns of the I-configurations have slopes approximately equal to that
of the four-pair S-configuration. The slope of the lines on figure 9 corresponds to
2R = 385 mm. We note that a single-vortex pattern without coupling with the forcing
plane has about this size, and do not further examine this coincidence.

4. Discussion
First, we summarize the results, and then discuss three aspects: energy balance of the

eigenmode state, relevance to two-dimensional turbulence, and practical applications.
We studied the velocity field at the density interface of a two-layer stratification

system when the flow is forced at the mid-depth of the lower layer by the source–sink
forcing method. Two types of forcing configuration are used: one that leads to a
steady single-vortex pattern in a linear stratification, and the other that results in an
unsteady irregular state. Strong single-vortex patterns appear intermittently for the
former configurations. They are identified as the lowest eigenmode of the Helmholtz
equation for the streamfunction. Resonant amplification of the eigenmode and the
tendency of the forcing configuration to produce the single-vortex pattern cooperate
to stabilize a vertically coherent single-vortex structure. While KL shows the evidence
of three different eigenmode structures in a linear stratification, this paper shows that
the linear stratification is not necessary to obtain the lowest eigenmode structure and
reveals the resonating behaviour as energy accumulation into the lowest eigenmode.

We discuss the amplitude of an eigenmode in terms of energy balance. With a fixed
amount of energy supply from the forcing, an unsteady irregular state, whether quasi-
horizontal or fully three-dimensional, establishes energy balance by viscous dissipation
in the relatively small-scale shear field. For a quasi-two-dimensional steady state with
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moderate horizontal velocity, dissipation due to vertical shear is smaller than in the
unsteady states because the horizontal velocity decreases monotonically from the
forcing height to zero at the bottom of the tank. To achieve energy balance, the vel-
ocity magnitude at the forcing height must become large. The Helmholtz equation
provides a mechanism to accumulate kinetic energy in the form of an eigenmode. A
non-resonant quasi-horizontal flow cannot attain sufficiently large velocity magnitude
and becomes unsteady in order to increase vertical shear. The velocity magnitude of
the eigenmode state can be estimated by this energy argument. In the source–sink
forcing experiments, the energy input for n source–sink pairs with the forcing velocity
V is proportional to nV 2. If the representative horizontal velocity magnitude is U,
viscous dissipation is proportional to U2. When the horizontal flow is almost circular
and viscous diffusion reduces the horizontal shear, viscous dissipation is mostly due
to the vertical shear. The energy balance requires U ∝ √nV . The same relation is
observed by de Rooij, Linden & Dalziel (1999) from similar source–sink experiments
in a circular domain. In our experiments, approximate proportionality to

√
n is seen

in figure 5(a–c): the peak average speed is 0.4, 0.55, 0.6 mm s−1 for n = 4, 8, 12,
respectively. The relatively small speed for n = 12 is probably because not all the
twelve source jets are contributing to the central vortex as can be seen in figure 2(c).

The organizing behaviour of the source–sink forced flows resembles that of forced
two-dimensional turbulence in a bounded domain. Here we discuss the difference.
First, we briefly review related work. For two-dimensional turbulence, Kraichnan
(1967) predicts energy transfer from the forcing scale to larger scales and accumulation
of energy in the largest structure the flow domain can accommodate. Paret & Tabeling
(1998), in their laboratory experiments, use electromagnetic forcing in a thin layer of
salt water to create irregular quasi-two-dimensional flows, and observe a dominant
vortex when the effect of bottom friction is small. Numerical experiments show similar
organizing behaviour, but they are unforced unbounded (Bracco et al. 2000; Dritschel
1993), forced unbounded (Smith & Yakhot 1994; Legras, Santangelo & Benzi 1998),
or unforced bounded (Li & Montgomery 1996; Clercx, Maassen & van Heijst 1999).
The source–sink forced flows are distinctly different from two-dimensional turbulence
in that the turbulence is controlled by the forcing on the sidewalls. A fundamental
assumption of two-dimensional turbulence is that the velocity field is homogeneous,
at least locally, and the properties of the flow are independent of the nature of
the forcing. The forcing of Paret & Tabeling (1998) is uniformly distributed in the
domain and simulates two-dimensional turbulence properly. In contrast, the source
jets in the source–sink forcing experiments decay by viscous friction as they advance
horizontally into the domain, and the supply of kinetic energy is not uniform in
the domain. As shown in figure 2, the induced flows exhibit sensitivity to the forcing
configuration, which is expected of two-dimensional turbulence. As emphasized in KL,
the organizing behaviour in a linear stratification should be studied in terms of laminar
jet interaction. Laminar jet interaction, however, is known to show highly complicated
bifurcation behaviour (e.g. Goodwin & Schowalter 1996). The eigenmode resonance
argument does not relate the individual forcing configurations to the resultant flows,
but it is useful in explaining the emergence of steady states with significant circulation.
We also note that the linear relationship between the streamfunction and vorticity
of an eigenmode state (figure 9) should not be confused with the linear relationships
of the maximum-entropy state (Chavanis & Sommeria 1996) or minimum-enstrophy
state (Leith 1984). The maximum-entropy state is a macroscopic realization of a
purely inviscid two-dimensional turbulence and the minimum-enstrophy state is a
hypothesized long-time limit of a decaying viscous two-dimensional turbulence.
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Our work is motivated by scientific interest and does not address specific practical
problems, but we point out some possible directions. Firstly, our results are limited
to bounded flows because eigenmode resonance requires a finite domain. Fluctuating
leaks of net angular momentum or thrust by the flow across the domain boundary
would not satisfy the condition for the eigenmode resonance. The boundary walls
also help establish the single-vortex pattern by attracting the jets to the walls through
the Coanda effect. Secondly, our results are not necessarily limited to laminar flows.
As discussed in Voropayev & Afanasyev (1994), if we are, for example, concerned
with the interaction of large-scale structures in an ocean basin, the effective Reynolds
number is moderate because the large-scale structures evolve against the background
of small-scale motions which provide an eddy viscosity much larger than the molecular
viscosity of salt water. This picture is justified by the observations of the gap in the
energy spectrum between the large-scale structures and the small-scale motions in
the ocean. Thirdly, the two-layer stratification has analogues in the thermocline of
the ocean or the upper troposphere in the atmosphere, where the flow forcing is
usually separated from the steepest density gradient. Particularly, the single-vortex
pattern resembles the antarctic polar vortex which exhibits an annual cycle between
quasi-steady and irregular states although the generation mechanisms are different
and Earth’s rotation plays an important role. The polar vortex contains low-ozone
air and the horizontal mixing at the perimeter is an important environmental issue.
While mixing in an irregular state is obvious, mixing in a quasi-steady state occurs
through folding and stretching by Rossby wave-breaking at the vortex boundary (e.g.
Bowman & Magnus 1993). Such Lagrangian mixing or chaotic advection occurs in
our experiments through the fluctuating velocity field outside the central vortex.

We have shown that the formation of the single-vortex pattern depends on the
forcing configuration, but have not yet given a satisfactory explanation for why some
configurations result in the single-vortex pattern and others do not. Our empirical
rule is that the single-vortex pattern appears when all the source jets are directed
toward the centre of the domain. We are currently working with rectangular and
triangular domains to confirm this rule.
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